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Partitioning Definition < e

adds structure to the data
helps reads
updates are more expensive (maintain the structure)
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a tight column: 81211|7/6/9|3

* reads haveto scan
* no memory overhead

* in-place updates and efficient inserts
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Partitioning: a detailed example

a tight column:  [8|2|1|7|6|9|3 a tight sorted column: |1/2|3/6/7/8|9
* reads haveto scan » very efficient reads (logarithmicsearch)
* no memory overhead * no memory overhead

* in-place updates and efficient inserts e updates & inserts reorganization
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Partitioning: a detailed example

a tight column:  [8|2|1|7|6|9|3 a tight sorted column: |1/2|3/6/7/8|9
* reads haveto scan » very efficient reads (logarithmicsearch)
* no memory overhead * no memory overhead
* in-place updates and efficient inserts e updates & inserts reorganization

/\
2113|7698

adding clustering:
 efficientreads

* small memory overhead
e updates & inserts: reorganization
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Partitioning: a detailed example

a tight column:  [8|2|1|7|6|9|3 a tight sorted column: |1/2|3/6/7/8|9
* reads haveto scan » very efficient reads (logarithmicsearch)
* no memory overhead * no memory overhead
* in-place updates and efficient inserts e updates & inserts reorganization

\4

/\ /\
adding clustering: |2|13|7|6{9|8 ... and ghost values: |2|1| |3|7|6| (9|8

e efficientreads e efficientreads

* small memory overhead * small memory overhead (butincreased)
e updates & inserts: reorganization * updates: reorganization (butinserts for free)
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Partitioning  Logarithmic  Fractional Log- Buffering Differential Sparse
Design Cascading  Structured Updates Indexing
Base Data & Columns no, range
Trees range, radix, time
Hashing hash
Bitmaps range, radix
Differential Files time, range

what else is needed to “come up” with access methods?
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Logarithmic Design Definition A

organize metadata in an exponentially increasing manner
helps reads (logarithmic search)
helps updates (update in place/amortize update cost)
... at the expense of the metadata

RIUI MI
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Logarithmic Design Feature Implementation

connected levels

Tries & Variants
Traditional Tree Structures

B-Trees & Variants Tree-Trie hybrids
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Logarithmic Design Feature Implementation

independent levels

LSM Trees & Variants MaSM

Update-optimized data organization:
FD-Tree Stepped-Merge
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Design Opportunity

Partitioning Logarithmic  Fractional Log- Buffering Differential Sparse
Design Cascading  Structured Updates Indexing
B-Trees & Variants [1] range v (naturally)
Tries & Variants [2] radix v (naturally)
LSM-Trees & Variants [3] time v (naturally)

[1] B-Trees (Acta Inf. 1972), B-Tree techniques (FNT 2011)

[2] Tries (CACM 1960), PATRICIA (JACM 1968), ART (ICDE 2013)

[3] LSM-Tree (Acta Inf. 1996), VT-Trees (FAST 2013), LSM-Trie (ATC 2015)
18



HARVARD

School of Engineering
and Applied Sciences

Logarithmic
Design

Partitioning

Fractional
Cascading

Log-Structured
Updates

Differential

Buffering Updates

Sparse
Indexing

19



HARVARD
v School of Engineering
and Applied Sciences

p D ) um)

Fractional Cascading  Dpefinition ——

adds metadata for efficient accessing/searching
pointers between different”levels” of access methods
easy navigation to the “corresponding” partitions
need maintenance on updates

RIUI MI
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Fractional Cascading  Feature Implementation

Naturally exists in connected levels!
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Fractional Cascading  Feature Implementation

An additional layer of metadata for independent levels
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Design Opportunity

Partitioning Logarithmic  Fractional

Design Cascading
B-Trees & Variants range v v
Tries & Variants radix v v (naturally)
LSM-Trees & Variants time (V4 [1]

[1] FD-Tree (PVLDB 2010), bLSM (SIGMOD 2012)
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Log-Structured Updates Definition

apply and organize updates by
appending instead of in-place updates
reads need to merge updates with old data

RIUI MI
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Log-Structured Updates Feature Implementation
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Design Opportunity

Partitioning Logarithmic  Fractional Log- Buffering Differential Sparse
Design Cascading  Structured Updates Indexing
B-Trees & Variants range v = [1]
Tries & Variants radix v v
LSM-Trees & Variants time v ~ v (naturally)
Differential Files time, range [2]

fractional cascadingand log-structured updates? challenging to combine efficiently

log-structured updateswith radix/hash partitioning? open research question!

[1] Storage/Memory-Aware Trees: Bw-Tree (ICDE 2013), pu-Tree (EMSOFT 2007), IPLB*-Tree (JISE 2011)

[2] Differential Files (TODS 1976) & Variants: Stepped-Merge (VLDB 1997), MaSM (TODS 2015)

27
v integral part of design = optional design decision
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Buffering Definition

explicitly buffer recently read / updated objects / requests

direct tradeoff between memory and read/update performance

RIU-MI « R-UIMI
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Buffering Recent Reads/Updates/Requests
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Buffering Recent Updates
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Partitioning
B-Trees & Variants range
Tries & Variants radix
LSM-Trees & Variants time
Differential Files time, range

Logarithmic

Design Opportunity

Fractional Log- Buffering
Cascading  Structured
v = reads [1]

updates [2]
requests [3]

v
(%4 updates [4]

)
AN

[1] Trees with buffered reads: Fractal Tree, BRT, COLA (SPAA 2007), LA-Tree (VLDB 2009), ADS (SIGMOD 2014)

[2] Trees with buffered updates: IPLB*-Tree (JISE 2011), LA-Tree (VLDB 2009), PDT (SIGMOD 2010)

[3] Trees with buffered requests: PIO B-Tree (VLDB 2011), Virtual Nodes (VLDB 2003)

[4] Differential files with buffered updates: Stepped-Merge (VLDB 1997), MaSM (TODS 2015)

v integral part of design

= optional design decision

Differential
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Differential Updates  Definition 6

next step for log-structure

only deltas are stored in order to minimize storage overheads

RI1Ul Ml
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Differential Updates Feature Implementation
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Design Opportunity

Partitioning Logarithmic  Fractional Log- Buffering
Design Cascading  Structured
B-Trees & Variants range v = = =
Tries & Variants radix v v
LSM-Trees & Variants time v ~ v v
Differential Files time, range v v

[1] PDT (SIGMOD 2010), IPLB*Tree (JISE 2011), LA-Tree (VLDB 2009), PBT (CIDR 2003)

[2] Differential Files (TODS 1976), MaSM (TODS 2015)

v integral part of design = optional design decision
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Sparse Indexing Definition & e

light-weight indexing that allows for skipping unnecessary data
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Sparse Indexing Feature Implementation

membership tests

[ Data J

sparse range partitioning
L mnninrnam e

[ Data ]

bitwise representation
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Design Opportunity

Partitioning Logarithmic  Fractional Log- Buffering
Design Cascading  Structured

B-Trees & Variants range v v = =
Tries & Variants radix v v
LSM-Trees & Variants time v ~ v v
Differential Files time, range v v
Membership Tests —
Zonemaps & Variants range
Bitmaps & Variants range

[1] BF-Tree (VLDB 2014)

[2] Bloom filters (CACM 1970), Quotient Filters (VLDB 2011), Cuckoo Filters (CONEXT 2014)

[3] Zonemaps (IBM Redbook 2011, VLDB 2013, SIGMOD 2013, SIGMOD 2014), Column Imprints (SIGMOD 2013)
[4] Bit Transposed Files (VLDB 1985), Bitmap Indexing (HPTS 1987, SIGMOD 1997, 1998, 1999)

v integral part of design = optional design decision

Differential
Updates

~
~

Sparse
Indexing

[1]

[2]
[3]
[4]
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B-Trees & Variants
Tries & Variants
LSM-Trees & Variants
Differential Files
Membership Tests
Zonemaps &Variants
Bitmaps & Variants
Hashing

Base Data & Columns

v integral part of design

Design Opportunity

Partitioning Logarithmic
Design
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= optional design decision

Fractional
Cascading

v
v

22

Log-
Structured

~
=

Buffering

12

Differential
Updates

~
~

Sparse
Indexing

~
-~

AN

40



B-Trees & Variants
Tries & Variants
LSM-Trees & Variants
Differential Files
Membership Tests
Zonemaps &Variants
Bitmaps & Variants
Hashing

Base Data & Columns

v integral part of design

Design Opportunity

Partitioning Logarithmic  Fractional

Design Cascading
range v v
radix v v
time v =
time, range ? ?

— ? ?
range ? ?
range ? ?

hash ? ?
no, range ? ?

Log-
Structured

~
=

?

v
v

Buffering

12

S X

Open research questions!

= optional design decision

Differential
Updates

?

?

Sparse
Indexing

~
-~

?

41



B-Trees & Variants
Tries & Variants
LSM-Trees & Variants
Differential Files
Membership Tests
Zonemaps &Variants
Bitmaps & Variants
Hashing

Base Data & Columns
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Design Opportunity
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Hardware-Aware Access Methods

Read vs. Write latency Impact of Read vs. Write Variable latency (due to data placement)

How?

Use design elements to match hardware properties!

Ef'xampieas
Partitioning : ensure local (faster) accesses
Log-Structure/Differential Updates : storage friendly updates

Buffering : exploit additional memory
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Workload-Driven Access Methods

workload-driven orthogonal to design elements

a way to incrementally reach the goal of a design element

query time _
.’ update time
o P 27
initializationtime ® ’»‘*‘ it “'4’ ,i ] q
% MNOe - .
; ,‘\ . ? memory requirements
- }

/

can be a design element!
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Partitioning Logarithmic
Design
B-Trees & Variants range v
Tries & Variants radix v
LSM-Trees & Variants time v
Differential Files time/range ?
Membership Tests — ?
Zonemaps &Variants range ?
Bitmaps & Variants range ?
Hashing hash ?
Base Data & Columns no, range ?

[1] Adaptive Indexing (VLDB 2011)

[2] Database Cracking (CIDR 2007)

v integral part of design

= optional design decision
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Partitioning Logarithmic
Design
B-Trees & Variants range v
Tries & Variants radix v
LSM-Trees & Variants time v
Differential Files time/range ?
Membership Tests — ?
Zonemaps &Variants range ?
Bitmaps & Variants range ?
Hashing hash ?
Base Data & Columns no, range ?

[1] Adaptive Indexing (VLDB 2011)

[2] Database Cracking (CIDR 2007)

[3] UpBit: Updatable Bitmap Indexing (SIGMOD 2016)

v integral part of design

= optional design decision
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Partitioning Logarithmic  Fractional Log- Buffering Differential  Sparse Adaptivity
Design Cascading  Structured Updates  Indexing
B-Trees & Variants range v (4 = = = = ~
Tries & Variants radix v v ? ? ? ? ?
LSM-Trees & Variants time v = v v ? ? ?
Differential Files time/range ? ? v v v ? ?
Membership Tests — ? ? ? ? ? 4 ?
Zonemaps &Variants range ? ? ? ? ? v ?
Bitmaps & Variants range ? ? ? ~ ~ v ~
Hashing hash ? ? ? ? ? ? ?
Base Data & Columns no, range ? ? ? ? ? ? =

map existing designs — find commonalities
propose new combinationsand predict their behavior

tune existing access methods (altering/addingindividual design elements)
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v integral part of design = optional design decision
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