Design Tradeoffs of Data
Access Methods

Manos Athanassoulis Stratos Idreos

Harvard University

Part B: Design Dimensions

School of Engineering
and Applied Sciences

HARVARD

Logarithmic
Design

Partitioning

Fractional
Cascading

Log-Structured
Updates

Differential

Buffering Updates

Sparse
Indexing

each design decision affects

R (u M read / update / memory overheads

HARVARD

School of Engineering
and Applied Sciences

Logarithmic
Design

Partitioning

Fractional
Cascading

Log-Structured
Updates

Differential

Buffering Updates

Sparse
Indexing

HARVARD
v School of Engineering
and Applied Sciences

Partitioning Definition < e

adds structure to the data
helps reads
updates are more expensive (maintain the structure)

RIUI MI

HARVA
v School of Engineering
and Applied Sciences

Partitioning Feature Implementation
Range Hashing Radix

—
- 0
)

22 2

Partitioning

Bounded Disorder

>X

Fealure Imyiémeméaééam

epoch 1

epoch 2

epoch 3

Time

228 HARVARD
School of Engineering

ol of Engin
and Applied Sciences

HARVARD
v School of Engineering
and Applied Sciences

Partitioning oo by example

Static

B-Trees Zonemaps

Hash Index

Tries
Bitmap Indexing \

Dynamic

Dynamic Hash Index

Cracking

Adaptive Zonemaps

Adaptive Indexing \

HARVARD
v School of Engineering
and Applied Sciences

Partitioning: a detailed example

a tight column: 81211|7/6/9|3

* reads haveto scan
* no memory overhead

* in-place updates and efficient inserts

HARVARD
v School of Engineering
and Applied Sciences

Partitioning: a detailed example

a tight column: [8|2|1|7|6|9|3 a tight sorted column: |1/2|3/6/7/8|9
* reads haveto scan » very efficient reads (logarithmicsearch)
* no memory overhead * no memory overhead

* in-place updates and efficient inserts e updates & inserts reorganization

10

HARVARD
v School of Engineering
and Applied Sciences

Partitioning: a detailed example

a tight column: [8|2|1|7|6|9|3 a tight sorted column: |1/2|3/6/7/8|9
* reads haveto scan » very efficient reads (logarithmicsearch)
* no memory overhead * no memory overhead
* in-place updates and efficient inserts e updates & inserts reorganization

/\
2113|7698

adding clustering:
 efficientreads

* small memory overhead
e updates & inserts: reorganization

11

HARVARD
v School of Engineering
and Applied Sciences

Partitioning: a detailed example

a tight column: [8|2|1|7|6|9|3 a tight sorted column: |1/2|3/6/7/8|9
* reads haveto scan » very efficient reads (logarithmicsearch)
* no memory overhead * no memory overhead
* in-place updates and efficient inserts e updates & inserts reorganization

\4

/\ /\
adding clustering: |2|13|7|6{9|8 ... and ghost values: |2|1| |3|7|6| (9|8

e efficientreads e efficientreads

* small memory overhead * small memory overhead (butincreased)
e updates & inserts: reorganization * updates: reorganization (butinserts for free)

12

School of Engineering
and Applied Sciences

HARVARD

Design Opportunity

Partitioning Logarithmic Fractional Log- Buffering Differential Sparse
Design Cascading Structured Updates Indexing
Base Data & Columns no, range
Trees range, radix, time
Hashing hash
Bitmaps range, radix
Differential Files time, range

what else is needed to “come up” with access methods?

13

HARVARD

School of Engineering
and Applied Sciences

Logarithmic
Design

Partitioning

Fractional
Cascading

Log-Structured
Updates

Differential

Buffering Updates

Sparse
Indexing

14

HARVARD
v School of Engineering
and Applied Sciences

Logarithmic Design Definition A

organize metadata in an exponentially increasing manner
helps reads (logarithmic search)
helps updates (update in place/amortize update cost)
... at the expense of the metadata

RIUI MI

15

HARVARD
v School of Engineering
and Applied Sciences

Logarithmic Design Feature Implementation

connected levels

Tries & Variants
Traditional Tree Structures

B-Trees & Variants Tree-Trie hybrids

16

HARVARD
v School of Engineering
and Applied Sciences

Logarithmic Design Feature Implementation

independent levels

LSM Trees & Variants MaSM

Update-optimized data organization:
FD-Tree Stepped-Merge

17

Design Opportunity

Partitioning Logarithmic Fractional Log- Buffering Differential Sparse
Design Cascading Structured Updates Indexing
B-Trees & Variants [1] range v (naturally)
Tries & Variants [2] radix v (naturally)
LSM-Trees & Variants [3] time v (naturally)

[1] B-Trees (Acta Inf. 1972), B-Tree techniques (FNT 2011)

[2] Tries (CACM 1960), PATRICIA (JACM 1968), ART (ICDE 2013)

[3] LSM-Tree (Acta Inf. 1996), VT-Trees (FAST 2013), LSM-Trie (ATC 2015)
18

HARVARD

School of Engineering
and Applied Sciences

Logarithmic
Design

Partitioning

Fractional
Cascading

Log-Structured
Updates

Differential

Buffering Updates

Sparse
Indexing

19

HARVARD
v School of Engineering
and Applied Sciences

p D) um)

Fractional Cascading Dpefinition ——

adds metadata for efficient accessing/searching
pointers between different”levels” of access methods
easy navigation to the “corresponding” partitions
need maintenance on updates

RIUI MI

20

HARVARD
v School of Engineering
and Applied Sciences

Fractional Cascading Feature Implementation

Naturally exists in connected levels!

') [\\ \\ \\]
o SN
/ \ / \
(/-] V)

21

HARVARD
v School of Engineering
and Applied Sciences

Fractional Cascading Feature Implementation

An additional layer of metadata for independent levels

[|
([] B

22

Design Opportunity

Partitioning Logarithmic Fractional

Design Cascading
B-Trees & Variants range v v
Tries & Variants radix v v (naturally)
LSM-Trees & Variants time (V4 [1]

[1] FD-Tree (PVLDB 2010), bLSM (SIGMOD 2012)

Log-
Structured

Buffering

Differential
Updates

Sparse
Indexing

23

HARVARD

School of Engineering
and Applied Sciences

Logarithmic
Design

Partitioning

Fractional
Cascading

Log-Structured
Updates

Differential

Buffering Updates

Sparse
Indexing

24

HARVARD
v School of Engineering
and Applied Sciences

Log-Structured Updates Definition

apply and organize updates by
appending instead of in-place updates
reads need to merge updates with old data

RIUI MI

25

HARVARD
v School of Engineering
and Applied Sciences

Log-Structured Updates Feature Implementation

26

HARVAR

School of eering
and Appli i

Design Opportunity

Partitioning Logarithmic Fractional Log- Buffering Differential Sparse
Design Cascading Structured Updates Indexing
B-Trees & Variants range v = [1]
Tries & Variants radix v v
LSM-Trees & Variants time v ~ v (naturally)
Differential Files time, range [2]

fractional cascadingand log-structured updates? challenging to combine efficiently

log-structured updateswith radix/hash partitioning? open research question!

[1] Storage/Memory-Aware Trees: Bw-Tree (ICDE 2013), pu-Tree (EMSOFT 2007), IPLB*-Tree (JISE 2011)

[2] Differential Files (TODS 1976) & Variants: Stepped-Merge (VLDB 1997), MaSM (TODS 2015)

27
v integral part of design = optional design decision

HARVARD

School of Engineering
and Applied Sciences

Logarithmic
Design

Partitioning

Fractional
Cascading

Log-Structured
Updates

Differential

Buffering Updates

Sparse
Indexing

28

HARVARD
v School of Engineering
and Applied Sciences

Buffering Definition

explicitly buffer recently read / updated objects / requests

direct tradeoff between memory and read/update performance

RIU-MI « R-UIMI

29

Buffering

Buffering Recent Reads/Updates/Requests

Fealure Imyiémeméaééam

Buffering Recent Updates

{ Updates

HARVARD
School of Engineering

ol of Engin
and Applied Sciences

30

Partitioning
B-Trees & Variants range
Tries & Variants radix
LSM-Trees & Variants time
Differential Files time, range

Logarithmic

Design Opportunity

Fractional Log- Buffering
Cascading Structured
v = reads [1]

updates [2]
requests [3]

v
(%4 updates [4]

)
AN

[1] Trees with buffered reads: Fractal Tree, BRT, COLA (SPAA 2007), LA-Tree (VLDB 2009), ADS (SIGMOD 2014)

[2] Trees with buffered updates: IPLB*-Tree (JISE 2011), LA-Tree (VLDB 2009), PDT (SIGMOD 2010)

[3] Trees with buffered requests: PIO B-Tree (VLDB 2011), Virtual Nodes (VLDB 2003)

[4] Differential files with buffered updates: Stepped-Merge (VLDB 1997), MaSM (TODS 2015)

v integral part of design

= optional design decision

Differential
Updates

Sparse
Indexing

HARVARD

School of Engineering
and Applied Sciences

Logarithmic
Design

Partitioning

Fractional
Cascading

Log-Structured
Updates

Differential

Buffering Updates

Sparse
Indexing

32

HARVARD
v School of Engineering
and Applied Sciences

Differential Updates Definition 6

next step for log-structure

only deltas are stored in order to minimize storage overheads

RI1Ul Ml

33

HARVARD
v School of Engineering
and Applied Sciences

Differential Updates Feature Implementation

Query result

log-based tree-based
< Merging > ()
4)) ’
Base / (|
Data stores data physical location info
4)
Delta Store
\- J J
S, 34

Design Opportunity

Partitioning Logarithmic Fractional Log- Buffering
Design Cascading Structured
B-Trees & Variants range v = = =
Tries & Variants radix v v
LSM-Trees & Variants time v ~ v v
Differential Files time, range v v

[1] PDT (SIGMOD 2010), IPLB*Tree (JISE 2011), LA-Tree (VLDB 2009), PBT (CIDR 2003)

[2] Differential Files (TODS 1976), MaSM (TODS 2015)

v integral part of design = optional design decision

Differential
Updates

[1]

2]

Sparse
Indexing

35

HARVARD

School of Engineering
and Applied Sciences

Logarithmic
Design

Partitioning

Fractional
Cascading

Log-Structured
Updates

Differential

Buffering Updates

Sparse
Indexing

36

HARVARD
v School of Engineering
and Applied Sciences

-
>

Sparse Indexing Definition & e

light-weight indexing that allows for skipping unnecessary data

RI U’ MI

37

HARVARD
v School of Engineering
and Applied Sciences

Sparse Indexing Feature Implementation

membership tests

[Data J

sparse range partitioning
L mnninrnam e

[Data]

bitwise representation
(LTI E DR R DR E OO ERRDEA DDA

38

Design Opportunity

Partitioning Logarithmic Fractional Log- Buffering
Design Cascading Structured

B-Trees & Variants range v v = =
Tries & Variants radix v v
LSM-Trees & Variants time v ~ v v
Differential Files time, range v v
Membership Tests —
Zonemaps & Variants range
Bitmaps & Variants range

[1] BF-Tree (VLDB 2014)

[2] Bloom filters (CACM 1970), Quotient Filters (VLDB 2011), Cuckoo Filters (CONEXT 2014)

[3] Zonemaps (IBM Redbook 2011, VLDB 2013, SIGMOD 2013, SIGMOD 2014), Column Imprints (SIGMOD 2013)
[4] Bit Transposed Files (VLDB 1985), Bitmap Indexing (HPTS 1987, SIGMOD 1997, 1998, 1999)

v integral part of design = optional design decision

Differential
Updates

~
~

Sparse
Indexing

[1]

[2]
[3]
[4]

39

B-Trees & Variants
Tries & Variants
LSM-Trees & Variants
Differential Files
Membership Tests
Zonemaps &Variants
Bitmaps & Variants
Hashing

Base Data & Columns

v integral part of design

Design Opportunity

Partitioning Logarithmic
Design
range v
radix v
time 4
time, range
range
range
hash
no, range

= optional design decision

Fractional
Cascading

v
v

22

Log-
Structured

~
=

Buffering

12

Differential
Updates

~
~

Sparse
Indexing

~
-~

AN

40

B-Trees & Variants
Tries & Variants
LSM-Trees & Variants
Differential Files
Membership Tests
Zonemaps &Variants
Bitmaps & Variants
Hashing

Base Data & Columns

v integral part of design

Design Opportunity

Partitioning Logarithmic Fractional

Design Cascading
range v v
radix v v
time v =
time, range ? ?

— ? ?
range ? ?
range ? ?

hash ? ?
no, range ? ?

Log-
Structured

~
=

?

v
v

Buffering

12

S X

Open research questions!

= optional design decision

Differential
Updates

?

?

Sparse
Indexing

~
-~

?

41

B-Trees & Variants
Tries & Variants
LSM-Trees & Variants
Differential Files
Membership Tests
Zonemaps &Variants
Bitmaps & Variants
Hashing

Base Data & Columns

v integral part of design

Design Opportunity

Partitioning Logarithmic
Design
range v
radix v
time v
time, range ?

— ?
range ?
range ?
hash ?

no, range ?

Fractional
Cascading

v
v

~
~

Log-
Structured

~
=

?

v
v

Buffering

S N n

)

Open research questions!

= optional design decision

Differential
Updates

~
~

Sparse
Indexing

~
-~

?

?

®
v
v
v
?

?

42

HARVARD
v School of Engineering
and Applied Sciences

Hardware-Aware Access Methods

Read vs. Write latency Impact of Read vs. Write Variable latency (due to data placement)

How?

Use design elements to match hardware properties!

Ef'xampieas
Partitioning : ensure local (faster) accesses
Log-Structure/Differential Updates : storage friendly updates

Buffering : exploit additional memory

43

HARVARD
v School of Engineering
and Applied Sciences

Workload-Driven Access Methods

workload-driven orthogonal to design elements

a way to incrementally reach the goal of a design element

query time _
.’ update time
o P 27
initializationtime ® ’»‘*‘ it “'4’ ,i] q
% MNOe - .
; ,‘\ . ? memory requirements
- }

/

can be a design element!

44

B-Trees & Variants
Tries & Variants
LSM-Trees & Variants
Differential Files
Membership Tests
Zonemaps &Variants
Bitmaps & Variants
Hashing

Base Data & Columns

v integral part of design

Partitioning Logarithmic
Design
range v
radix v
time v
time/range ?

— ?
range ?
range ?
hash ?

no, range ?

= optional design decision

Fractional
Cascading

4
4

~
~

Log-
Structured

~
=

?

S X

Buffering Differential

1

S N

Updates
?

?

Sparse Adaptivity
Indexing

= ?
? ?
? ?
? ?
v ?
v ?
v ?
? ?
? ?

45

Partitioning Logarithmic
Design
B-Trees & Variants range v
Tries & Variants radix v
LSM-Trees & Variants time v
Differential Files time/range ?
Membership Tests — ?
Zonemaps &Variants range ?
Bitmaps & Variants range ?
Hashing hash ?
Base Data & Columns no, range ?

[1] Adaptive Indexing (VLDB 2011)

[2] Database Cracking (CIDR 2007)

v integral part of design

= optional design decision

Fractional
Cascading

4
4

~
~

Log-
Structured

~
=

?

S X

Buffering Differential

1

S N

Updates
?

?

Sparse Adaptivity
Indexing

- [1]
? ?
? ?
? ?

v ?

4 ?

v ?
? ?
? [2]

46

Partitioning Logarithmic
Design
B-Trees & Variants range v
Tries & Variants radix v
LSM-Trees & Variants time v
Differential Files time/range ?
Membership Tests — ?
Zonemaps &Variants range ?
Bitmaps & Variants range ?
Hashing hash ?
Base Data & Columns no, range ?

[1] Adaptive Indexing (VLDB 2011)

[2] Database Cracking (CIDR 2007)

[3] UpBit: Updatable Bitmap Indexing (SIGMOD 2016)

v integral part of design

= optional design decision

Fractional
Cascading

4
4

~
~

Log-
Structured

~
=

?

S X

Buffering Differential

1

S N

Updates
?

?

Sparse Adaptivity
Indexing

- [1]
? ?
? ?
? ?

v ?

4 ?

v [3]
? ?
? [2]

47

School of Engineering
and Applied Sciences

HARVARD

Partitioning Logarithmic Fractional Log- Buffering Differential Sparse Adaptivity
Design Cascading Structured Updates Indexing
B-Trees & Variants range v (4 = = = = ~
Tries & Variants radix v v ? ? ? ? ?
LSM-Trees & Variants time v = v v ? ? ?
Differential Files time/range ? ? v v v ? ?
Membership Tests — ? ? ? ? ? 4 ?
Zonemaps &Variants range ? ? ? ? ? v ?
Bitmaps & Variants range ? ? ? ~ ~ v ~
Hashing hash ? ? ? ? ? ? ?
Base Data & Columns no, range ? ? ? ? ? ? =

map existing designs — find commonalities
propose new combinationsand predict their behavior

tune existing access methods (altering/addingindividual design elements)

48
v integral part of design = optional design decision

Jo D H S Home Research People Join us Publications Courses Contact Reading Group Blog

DATA SYSTEMS. | ASORATORY

@ Harvard School of Engineering and Applied Sciences

Designing data systems for the big data era

http://daslab.seas.harvard.edu/

thank you!

