UpBit: Scalable In-Memory
Updatable Bitmap Indexing

Manos Athanassoulis? Zheng Yan? Stratos ldreos!

lHarvard University  2University of Maryland

L2y HARVARD
UNIVERSITY




HARVARD
v School of Engineering
and Applied Sciences

Indexing for Analytical Workloads

Specialized indexing
Column A A=10 A=20 A=30

? Y ) fT\ C] Compact representation of query result
20 1 ) Query result is readily available
30 1
10 1 .
Bitvectors
20 1
10 1 C] Can leverage fast Boolean operators
30 1 v . . .
50 . ] Bitwise AND/OR/NOT faster than looping over meta data

| — T e



HARVARD
v School of Engineering
and Applied Sciences

Bitmap Indexing Limitations

Column A A=10
) )
30
20
30
10 1
20
10 1
30
20
N— N—

X Updating encoded bitvectors is very inefficient

A=20

A=30

Index Size

xSpace-inefﬁcient for large domains
C] Addressed by bitvector encoding/compression

coreidea: run-length encoding in prior work

but ...



HARVARD
v School of Engineering
and Applied Sciences

decode flip bit

Update?
re-encode
encode / 10 zeros
O —
13 zeros
d 1
-
——> _ ——> ——> 8
1 \ 1 \
di tt
=naing patterm 1 1 ending pattern
1 1 1
1 1 1 A




HARVARD
v School of Engineering
and Applied Sciences

Goal

Bitmap Indexing with efficient Reads & Updates



HARVARD
v School of Engineering
and Applied Sciences

Prior Work: Bitmap Indexing and Deletes

Update Conscious Bitmaps (UCB), SSDBM 2007 EfﬁCie nt deletes by inva“dation
A=10  A=20  A=30 EB existence bitvector (EB)
)Y () (1] (1)

1 1
1 1
1 1
1 1
1 1
1 1
o) L




HARVARD
v School of Engineering
and Applied Sciences

Prior Work: Bitmap Indexing and Deletes

Update Conscious Bitmaps (UCB), SSDBM 2007 efficient deletes by invalidation
AZ10 A0 A=30 B existence bitvector (EB)
1 1 A=20 EB
! reads? 1
1 ' 1 bitwise AND with EB : :
1 1 1
1 . updates? 11
1 1 delete-then-append 1
1 1 1
T T T T 1 1




HARVARD
v School of Engineering
and Applied Sciences

Prior Work: Limitations

n=100M tuples, d=100 domain values, 50% updates / 50% reads

B read cost increases with #updates
401 Decode VB mmmm ]
Update and Encode EB [
3510 Decode EB
30| e 1 why?
25 f y

. bitwise AND with EB is the bottleneck
U U bk ek vtk e update EB is costly for >> #updates

UCB performance does not scale with #updates

single auxiliary bitvector repetitive bitwise operations



HARVARD
v School of Engineering
and Applied Sciences

Bitmap Indexing for Reads & Updates

“ distribute update cost

efficient random accesses in compressed bitvectors

query-driven re-use results of bitwise operations




HARVA
v School of Engineering
and Applied Sciences

Design Element 1: update bitvectors

A=10

uB

one per value of the domain
initialized to Os

the current value is the XOR

> every update flips a bit on UB

10



HARVARD
v School of Engineering
and Applied Sciences

Design Element 1: update bitvectors

one per value of the domain
initialized to Os

A=10 s

the current value is the XOR

0 <\ ,> every update flipsa bit on UB

... distribute the update burden



HARVARD
v School of Engineering
and Applied Sciences

Updating UpBit ...

...row 2to 10

A=10 s A=20 us A=30 us

12



HARVARD
v School of Engineering
and Applied Sciences

Updating UpBit ...

...row 2 to 10
1. find old value of row 2 (A=20)

A=10 s A=20 us A=30 us

1
1
1
1
1
1
\_ J \1) . J

13



HARVARD
v School of Engineering
and Applied Sciences

Updating UpBit ...

...row 2 to 10
1. find old value of row 2 (A=20)

A=10 s A=20 us A=30 us

O
1
1
1
1
1
\_ J \1) \_ J

14



HARVA
v School of Engineering
and Applied Sciences

Updating UpBit ...

...row 2 to 10
1. find old value of row 2 (A=20)

A=10 s A=20 s A=30 s 2. flip bit of row 2 of UB of A=20
1 (1)
1
1
1
1
1
1

15



HARVARD
v School of Engineering
and Applied Sciences

Updating UpBit ...

...row 2 to 10
1. find old value of row 2 (A=20)

A=10 s A=20 s A=30 s 2. flip bit of row 2 of UB of A=20
oLl o [ 3. flip bit of row 2 of UB of A=10
() |
1
1
1
1
1
\_ J J \_ 1 J J \ J

can we speed up step 1?



HARVARD
v School of Engineering
and Applied Sciences

@ Design Element 2: fence pointers

efficient access of compressed bitvectors
fence pointers

1 4

_— row 3

/ row 6

17



HARVARD
v School of Engineering
and Applied Sciences

Updating UpBit ...

...row 2 to 10
1. find old value of row 2 (A=20)

A=10 s A=20 us A=30 us

1
1
1
1
1
1
\_ J \1) . J

18



Updating UpBit (with fence pointers)...

A=10 s

uB

A=30 us

() )8

row 2

...row 2 to 10
1. find old value of row 2 (A=20)

using fence pointers

19



ol of Engineering

and Applied Sciences

Querying

20



HARVARD
v School of Engineering
and Applied Sciences

Querying UpBit ...

..A=20
Return the XOR of A=20 and UB

A=10 s A=20 us A=30 us

1 1| |1
1
1
1
1
1
\_ J \1) \_ J

21



Querying UpBit ...

A=20

uB

Vs

~\ s

..A=20
Return the XOR of A=20 and UB

A=20

can we re-use the result?

HARVARD
v School of Engineering
and Applied Sciences




HARVARD
v School of Engineering
and Applied Sciences

Design Element 3: query-driven merging

maintain high compressibility of UB
query-driven merging

A=20

uB

on query
A=20

>

A=20

uB

23



HARVARD
v School of Engineering
and Applied Sciences

UpBit supports very efficient updates

n=100M tuples, d=100 domain values
100k queries (varying % of updates)

35

w
(6

In-place 7 Read-optimized ]
30 - UCB 3 - 30 | UCB 1 -
y - UpBit — UpBit
E 25+ ] 1 g 25| _ -
> = ) | "R
S 20 - o 20
S 2
z') 15 S 15 ¢
5 = | l
'8_107 ] o 10 _—_ - -3 e —
S o
5 7 H H H | 5 7 |
0 —_— — e 0

1% update 5% update 10% update 1% update 5% update 10% update

updates: 15-29x faster than UCB only 8% read overhead over optimal
51-115x faster than in-place 3x faster reads than UCB



UpBit offers robust reads

ol
o O

‘» 35

Read Latency (ms
- = N N W
o 01 O 01 O O1 O

50%/50% update/read queries

HARVARD
School of Engineering

ol of Engin
and Applied Sciences

n=100M tuples, d=100 domain values

ucB —o—

UpBit —<—

|

|

| | |

|deal

| |

0 50

100

150 200 250
# updates (thousands)

300 350

400



HARVARD
v School of Engineering
and Applied Sciences

More in the paper ...

Tuning: how frequent to merge UB to the index?
Tuning: what is the optimal granularity of fence pointers?
Optimizations: multi-threaded reads and updates

Performance: full query analysis (scientific data and TPCH)



HARVARD
v School of Engineering
and Applied Sciences

UpBit: achieving scalable updates

«“ distribute the update burden
""""""" update bitvectors

Thanks!
DASIab

@ efficient bitvector accesses
fence pointers

‘ﬂ avoid redundant bitwise operations

query-driven merging of UB

http://daslab.seas.harvard.edu/rum/

27



