
CAVE: Concurrency-Aware Graph

Processing System for SSD

Tarikul Islam Papon Taishan Chen Shuo Zhang Manos Athanassoulis

1

Rise of Large Graphs

Graphs are everywhere!

Social Network
Transportation

Network
Physical Science Machine Learning

Real-world graphs often have more than a billion nodes
2

Processing Large Graphs

Distributed Systems
Single-node

in-memory systems
Single-node

out-of-core systems

3

SOA Out of Core Systems

Designed for HDDs

Data partitioning
Improve memory

& disk locality
Reduce random I/O

“Tape is Dead. Disk is Tape. Flash is Disk.” - Jim Gray

4

electronic device

fast random access

write latency > read latency

concurrent I/Os

Solid State Drives

5

Parallelism at different levels

SSD Concurrency

6

7

0

80

160

240

320

400

0 1000 2000 3000

L
at

en
cy

 (
μ

s)

Bandwidth (MB/s)

4K RR (w/o FS)

Device
PCIe SSD - P4510 (1TB)

Impact of Concurrency
DaMoN@SIGMOD 2021

1 3 5 7 9 19

Optimal read
concurrency (kr) = 20

No latency penalty for
~20 concurrent I/Os

8

0

80

160

240

320

400

0 1000 2000 3000

L
at

en
cy

 (
μ

s)

Bandwidth (MB/s)

4K RR (w/o FS)

4K RR (w FS)

Device
PCIe SSD - P4510 (1TB)

Impact of Concurrency
DaMoN@SIGMOD 2021

1 3 5 7 9 19

1 5 11
21

31

81

Optimal read
concurrency (kr) = 80

Can SSD-based Graph

Systems Exploit This?

Parallelizing Graph Traversal
Intra-Subgraph Parallelization Inter-Subgraph Parallelization

process in parallel up to kr nodes/subgraphs

Our Goal

Optimize for storage-
based graph workloads

Focus on traversal
operations

Utilize SSD
Concurrency

Maintain core
algorithm properties

Concurrency-Aware Graph (V, E) Manager

CAVE
10

CAVE Architecture

Metadata

VB0

VB1

EB0

EB1

EB2

EB3

0

degree eb_addr

…

degree eb_addr

degree eb_addr degree eb_addr

e0 e1 e2 e3

…

e1020 e1021 e1022 e1023
EB4

EB5

4KB

8KB

4B 8B 12B

reserved space

|EB||V| |B| |VB|

0
File on SSD

Block Structure

Cache
BlocksGlobal

Lock

Concurrent Cache Pool

Concurrent Graph Algorithms

12

Parallel BFS Parallel DFS Parallel WCC
Parallel
Random Walk

Parallel PageRank

Parallel BFS

A

D

B

C

E

F H

G

processed nodes processing in progress yet to be processed

13

Each iteration involves

1. processing kr vertices concurrently from

a list of vertices (frontier)

2. accessing neighbors of each vertex

3. updating vertex values

4. determining next frontier

Parallel BFS

A

D

B

C

E

F H

G

processed nodes processing in progress yet to be processed

Each iteration involves

1. processing kr vertices concurrently from

a list of vertices (frontier)

2. accessing neighbors of each vertex

3. updating vertex values

4. determining next frontier

14

Parallel BFS

A

D

B

C

E

F H

G

processed nodes processing in progress yet to be processed

frontier = {B, D, E, F}
15

Each iteration involves

1. processing kr vertices concurrently from

a list of vertices (frontier)

2. accessing neighbors of each vertex

3. updating vertex values

4. determining next frontier

Parallel pseudo DFS

A1

Time
Thread #1

A

B

D

C

E

F

J

G H

I

K

processed nodes processing in progress yet to be processed

16

Parallel pseudo DFS

A

C

1

2

Thread #1

A

B

D

C

E

F

J

G H

I

K

processed nodes processing in progress yet to be processed

Time

17

Parallel pseudo DFS

A

C

1

2

Thread #1

A

B

D

C

E

F

J

G H

I

K

processed nodes processing in progress yet to be processed

Time

B D E F
3

18

Parallel pseudo DFS

A

C

B D E F

B D E F

1

2

3

Thread #1

#2

A

B

D

C

E

F

J

G H

I

K

processed nodes processing in progress yet to be processed

Time

19

Parallel pseudo DFS

A

C

B D E F

B D E F

1

2

3

Thread #1

#2

A

B

D

C

E

F

J

G H

I

K

processed nodes processing in progress yet to be processed

Time

B G H I

Split

4

20

Parallel pseudo DFS

A

C

B D E F

B D E F

1

2

3

Thread #1

#2

A

B

D

C

E

F

J

G H

I

K

processed nodes processing in progress yet to be processed

Time

B G H I

B G H I

#3

4

21

Parallel pseudo DFS

A

C

B D E F

B D E F

1

2

3

B G H E JI

B G H I
4

Thread #1

#2

#3

K

E J K

A

B

D

C

E

F

J

G H

I

K

Split

Split

processed nodes processing in progress yet to be processed

Time

22

Up to kr stacks!

Experimental Evaluation
6 datasets

3 devices

Optane SSD (kr = 6)
PCIe SSD (kr = 80)
SATA SSD (kr = 25)

Approaches Used:

GraphChi, GridGraph, Mosaic, CAVE, CAVE_blocked

23

Preprocessing Time and Space Requirement

CAVE has low preprocessing time and low file size
24

Evaluation: Parallel BFS

Dataset: FS

(0.4%) (50%)

25

Dataset: FS

(0.4%) (50%)

26

Evaluation: Parallel BFS

Dataset: FS

Both CAVE implementations outperforms GridGraph, Mosaic and GraphChi

CAVE’s Speedup

(0.4%) (50%)

7x 5x
3.3x

27

Evaluation: Parallel BFS

28

Summary

SSD concurrency can
accelerate graph traversal

Intra- and inter-subgraph parallelization

Concurrency-Aware Graph (V, E) Manager

CAVE

CAVE implementations
outperform SOA systems

Thank You!

cs-people.bu.edu/papon

disc.bu.edu/papers/sigmod24-cave

29

30

Lock Waiting Time is Low

CAVE is I/O Bound

31

32

CAVE Performs Well for PWCC

CAVE Utilizes Concurrent I/O
Dataset: FS

PDFS SATA SSD (kr = 25)

PCIe SSD (kr = 80)

Optane SSD (kr = 6)

33

CAVE Utilizes Concurrent I/O
Dataset: FS

Device gets saturated at optimal concurrency

PDFS SATA SSD (kr = 25)

PCIe SSD (kr = 80)

Optane SSD (kr = 6)

34

	Slide 1: CAVE: Concurrency-Aware Graph Processing System for SSD
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

