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Rise of Large Graphs

Graphs are everywhere!

Social Network
Transportation 

Network
Physical Science Machine Learning

Real-world graphs often have more than a billion nodes
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Processing Large Graphs

Distributed Systems
Single-node

in-memory systems
Single-node

out-of-core systems
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SOA Out of Core Systems

Designed for HDDs

Data partitioning
Improve memory 

& disk locality
Reduce random I/O

“Tape is Dead. Disk is Tape. Flash is Disk.”    - Jim Gray
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electronic device

fast random access

write latency > read latency

concurrent I/Os

Solid State Drives
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Parallelism at different levels

SSD Concurrency
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Parallelizing Graph Traversal
Intra-Subgraph Parallelization Inter-Subgraph Parallelization

process in parallel up to kr nodes/subgraphs



Our Goal

Optimize for storage-
based graph workloads

Focus on traversal 
operations

Utilize SSD 
Concurrency

Maintain core 
algorithm properties

Concurrency-Aware Graph (V, E) Manager

CAVE
10



CAVE Architecture
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Concurrent Graph Algorithms
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Parallel BFS Parallel DFS Parallel WCC
Parallel 
Random Walk

Parallel PageRank



Parallel BFS
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Each iteration involves 

1. processing kr vertices concurrently from 

a list of vertices (frontier)

2. accessing neighbors of each vertex

3. updating vertex values

4. determining next frontier
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Parallel BFS
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Each iteration involves 

1. processing kr vertices concurrently from 

a list of vertices (frontier)

2. accessing neighbors of each vertex

3. updating vertex values

4. determining next frontier



Parallel pseudo DFS
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Parallel pseudo DFS
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Parallel pseudo DFS
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Parallel pseudo DFS
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Parallel pseudo DFS
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Parallel pseudo DFS
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Up to kr stacks!



Experimental Evaluation
6 datasets

3 devices

Optane SSD (kr = 6)
PCIe SSD (kr = 80)
SATA SSD (kr = 25)

Approaches Used: 

GraphChi, GridGraph, Mosaic, CAVE, CAVE_blocked
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Preprocessing Time and Space Requirement 

CAVE has low preprocessing time and low file size
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Evaluation: Parallel BFS

Dataset: FS

(0.4%) (50%)
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Dataset: FS

(0.4%) (50%)
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Evaluation: Parallel BFS



Dataset: FS

Both CAVE implementations outperforms GridGraph, Mosaic and GraphChi

CAVE’s Speedup

(0.4%) (50%)

7x 5x
3.3x
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Evaluation: Parallel BFS
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Summary

SSD concurrency can 
accelerate graph traversal

Intra- and inter-subgraph parallelization

Concurrency-Aware Graph (V, E) Manager

CAVE

CAVE implementations 
outperform SOA systems



Thank You!

cs-people.bu.edu/papon

disc.bu.edu/papers/sigmod24-cave
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Lock Waiting Time is Low



CAVE is I/O Bound
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CAVE Performs Well for PWCC



CAVE Utilizes Concurrent I/O
Dataset: FS

PDFS SATA SSD (kr = 25) 

PCIe SSD (kr = 80)

Optane SSD (kr = 6)
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CAVE Utilizes Concurrent I/O
Dataset: FS

Device gets saturated at optimal concurrency

PDFS SATA SSD (kr = 25) 

PCIe SSD (kr = 80)

Optane SSD (kr = 6)
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