
NOCAP: Near-Optimal Correlation-
Aware Partitioning for Joins

Zichen Zhu Xiao Hu    Manos Athanassoulis



Dynamic Hybrid Hash Join (DHH)
State of the art DBs (e.g., PostgreSQL and AsterixDB) employ DHH to implement storage-based equii-joins.

Disk Partitions for R

𝑃4

𝑃5

𝑃7

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦  𝑚𝑜𝑑 8 + 1

0 0 0 1 1 0 1 0

𝑃1

𝑃2

𝑃3

𝑃4 𝑃5

𝑃6

𝑃8

𝑃7

Input 𝑹

Partition R

0 0 0 1 1 0 1 0

𝐻𝑇

Input 𝑺

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦  𝑚𝑜𝑑 8 + 1

Disk Partitions for S

𝑃4

𝑃5

𝑃7

Partition S

YES

2



Dynamic Hybrid Hash Join (DHH)
State of the art DBs (e.g., PostgreSQL and AsterixDB) employ DHH to implement storage-based equii-joins.

Disk Partitions for R

𝑃4

𝑃5

𝑃7

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦  𝑚𝑜𝑑 8 + 1

0 0 0 1 1 0 1 0

𝑃1

𝑃2

𝑃3

𝑃4 𝑃5

𝑃6

𝑃8

𝑃7

Input 𝑹

Shared Buffer

MCVs in S

𝐻𝑇′ for MCVs

YES NO

Partition R

0 0 0 1 1 0 1 0

𝐻𝑇

Input 𝑺

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦  𝑚𝑜𝑑 8 + 1

Disk Partitions for S

𝑃4

𝑃5

𝑃7

Partition S

𝐻𝑇′ for MCVs

YES NO

YES

Key Frequency 

key1 1000

… …

keyn 500

Correlation Table (CT)

3Skew Optimization



B (Memory budget) [Log scale]

I/
O

 c
os

t (
N

o 
O

ut
pu

t)

𝐹 ⋅ ||𝑅||𝐹 ⋅ ||𝑅||/2 𝐹 ⋅ ||𝑅||

3 ⋅ (||𝑅|| + ||𝑆||)

||𝑅|| + ||𝑆||

2 ⋅ 𝐹 ⋅ ||𝑅||

DHH w/o skew optimization

Much lower I/Os when correlation is more skewed

DHH w/ skew optimization

Skew optimization reduces the number of I/Os when the matching exhibits skew
4

Skew Optimization in DHH



Problems

5

Disk Partitions for R

𝑃4

𝑃5

𝑃7

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦  𝑚𝑜𝑑 8 + 1

0 0 0 1 1 0 1 0

𝑃1

𝑃2

𝑃3

𝑃4 𝑃5

𝑃6

𝑃8

𝑃7

Input 𝑹

Shared Buffer

MCVs in S

𝐻𝑇′ for MCVs

YES NO

Partition R

0 0 0 1 1 0 1 0

𝐻𝑇

Input 𝑺

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦  𝑚𝑜𝑑 8 + 1

Disk Partitions for S

𝑃4

𝑃5

𝑃7

Partition S

𝐻𝑇′ for MCVs

YES NO

YES

Q1: How much should ||𝐻𝑇′|| be?

Q2: When should we trigger skew optimization?



𝑂(𝑛2 ⋅ Τlog 𝐵 𝐵) for PK-FK joins 

OCAP (Optimal Correlation-Aware Partitioning)

7

𝑎𝑟𝑔 min
𝑃,𝑚

෍

𝑗=2

𝑚+1

𝐶𝑜𝑠𝑡(||𝑅𝑗||, ||𝑆𝑗||)

s.t.  ∀𝑖 ∈ 𝑛 , σ𝑗=1
𝑚+1 𝑃𝑖,𝑗 = 1

 ||𝑅1|| +  𝑚 + 2 ≤ 𝐵

 𝑃𝑖,𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝑛 , ∀𝑗 ∈ [𝑚 + 1]

Define an 𝑛 × (𝑚 + 1) Boolean matrix 𝑃 to 
represent the partitioning assignment

Notation Meaning

𝑛 (𝑛𝑅) The number of tuples in relation R

𝑚 The number of partitions on disk

𝑃 =
0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0 𝑛×(𝑚+1)

A Boolean matrix P where 𝑃𝑖,𝑗 = 1 

represents the 𝑖𝑡ℎ record belongs to 
the 𝑗𝑡ℎ partition

𝑅1 A partition cached in memory

𝐶𝑜𝑠𝑡(||𝑅𝑗||, ||𝑆𝑗||)
The write cost of 𝑅𝑗 , 𝑆𝑗  plus the join 

cost between 𝑅𝑗 , 𝑆𝑗

Index 𝒊 Frequency in S

1 1

… ...

n-1 77

n 100

||𝑅𝑗|| = ෍

𝑖=1

𝑛

𝑃𝑖,𝑗 /𝑏𝑅

||𝑆𝑗|| = ෍

𝑖=1

𝑛

𝑃𝑖,𝑗 ⋅ 𝐶𝑇[𝑖] /𝑏𝑆

Correlation Table (CT)

Exponential searching space ! 



Practical Challenges for OCAP

1. We cannot have the whole CT in practice 

2. Partitioning assignment also occupies memory

Index 𝒊 Frequency in S

1 1

… ...

10M 1000

𝑃 =
0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0 𝑛×(𝑚+1)

8



Observations from OCAP

9

O1: MCVs can be prioritized in two ways: build an in-memory hash table (if 
B is large) or assign them into a small partition on disk (if B is small)

O2: We should ensure on-disk partitions fully fill 𝑧 ⋅ (𝐵 − 2) pages (𝑧 ∈ 𝑍+)



Divisibility when Partitioning Data on Disk

10

18-page input data from 𝑅

Output buffer page for a partition A full-filled page in disk A half-filled page in disk

uniform
Partition 1 Partition 2 Partition 3 Partition 4

𝑃𝑎𝑟𝑡𝐼𝐷 = ℎ 𝑘  𝑚𝑜𝑑 4

non-uniform
Partition 1 Partition 2 Partition 3 Partition 4

𝑃𝑎𝑟𝑡𝐼𝐷 = (ℎ 𝑘  𝑚𝑜𝑑 6) 𝑚𝑜𝑑 4

𝑩 = 𝟓

6 = ||𝑅|| / (𝐵 − 2)

||𝑆1|| = 9 ||𝑆2|| = 10 ||𝑆3|| = 10 ||𝑆4|| = 8

||𝑆1|| = 12 ||𝑆2|| = 13 ||𝑆3|| = 7 ||𝑆4|| = 5

9 + 10 + 10 + 8 ⋅ 2

= 𝟕𝟒

12 + 13 ⋅ 2 + 7 + 5

= 𝟔𝟐



Prioritizing MCVs with Constrained Memory
Index 𝒊 Frequency in S

1 1

… …

n-k+1 73

n-k+2 73

… …

n-1 100

n 100

Run OCAP for top-𝑘′ MCVs 
with memory budget 𝑚 =

𝐵 − 2 − 𝑚𝑟𝑒𝑠𝑡

Run augmented DHH with 
memory budget 𝑚𝑟𝑒𝑠𝑡 

We only have top-𝒌 
frequent keys (MCVs)

11

A hash set for keys that 
are staged in memory

A hash table to store the 
whole record of the hash 

set

A hash map for keys to 
be partitioned

Several write-buffer 
pages for partitioning

𝐻𝑆

𝐻𝑇

𝑓

𝑚𝑑𝑖𝑠𝑘
𝑚𝑖𝑛𝐶𝑜𝑠𝑡 ← ∞, 𝐻𝑆 ←  ∅, 𝑓 ← ∅

 𝑓𝑜𝑟 𝑘′ ∈ 0, 𝑘
     𝑓𝑜𝑟 𝑚 ∈ [0, 𝐵 − 2]
         𝐻𝑆, 𝑓 ← 𝑂𝐶𝐴𝑃 𝑘′, 𝑚, 𝑀𝐶𝑉
         𝑖𝑓 the estimated I/O cost is smaller
               update 𝑚𝑖𝑛𝐶𝑜𝑠𝑡, 𝐻𝑆, 𝑓
return 𝐻𝑆, 𝑓

Only takes ≈ 1 second for 50K MCVs



NOCAP

12

Input 𝑹

Input 𝑺

Probe Hash Function ℎ𝑝𝑟𝑜𝑏𝑒 

Partitioning 
Phase of 𝑹

Partitioning 
Phase of 𝑺

Probe In-memory Hash Table 

Staged Partition

Disk-resident Partition

Total Available Memory

𝐻𝑇𝑚𝑒𝑚

Disk Partitions for S

𝑃1

𝑃4

𝑃2

𝑃7

Input Page

Join Output Page

useless
Call DHH with 𝑚𝑟 pages  

𝑟 ∈ 𝐻𝑆 ?

𝐘𝐄𝐒

𝑟 ∈ 𝑓 ?

𝐍𝐎

𝐘𝐄𝐒
𝑃1 𝑃2𝐍𝐎

Split Hash Function ℎ𝑠𝑝𝑙𝑖𝑡

0 1 0 0 1 0 0 0

𝑃4 𝑃7

Split Hash Function ℎ𝑠𝑝𝑙𝑖𝑡

0 1 0 0 1 0 0 0

𝐘𝐄𝐒

𝐍𝐎

𝑟 ∈ 𝑓 ?

𝐘𝐄𝐒 𝑃1 𝑃2
𝐍𝐎

𝑃4 𝑃7

Disk Partitions for R

𝑃1

𝑃4

𝑃2

𝑃7

Partitioning Workflow:

OCAP for top-𝑘′ frequent keys

DHH to partition the rest



Experiment Setup

Storage: PCIe NVM SSD (15 𝜇𝑠 for reading a 4KB page)

Measured read/write symmetry:

    random_write_latency/sequential_read_latency = 3.3

    sequential_write_latency/sequential_read_latency = 3.2

PK-FK join input size: 1M #records join with 8M #records

Record size: 1KB per record

Page size: 4KB   
13



Selected Experimental Results

Zipfian (𝛼 = 1.3) Uniform

Correlation-aware joins (DHH and NOCAP) can adaptively reduce I/O 
cost when it comes to a skew distribution. 

Note: OCAP only represents a lower bound, not a practical algorithm 14



Varying skew

While DHH helps reduce #I/Os, NOCAP can better exploit the correlation 
skew to achieve even lower I/O cost.

15

Zipfian (𝛼 = 1.3) Zipfian (𝛼 = 1.0) Zipfian (𝛼 = 0.7)

Low skewHigh skew



Summary of NOCAP

NOCAP join outperforms DHH by up to 30%, and the textbook 
GHJ by up to 4X. Even for uniform distribution, NOCAP 
outperforms DHH by up to 10%!  

17B (Memory budget) [Log scale]

I/
O

 c
os

t 
(N

o 
O

ut
pu

t)

𝐹 ⋅ ||𝑅||𝐹 ⋅ ||𝑅||/2 𝐹 ⋅ ||𝑅||

3 ⋅ (||𝑅|| + ||𝑆||)

||𝑅|| + ||𝑆||

2 ⋅ 𝐹 ⋅ ||𝑅||

DHH NOCAP (Ours) 



Thanks
Q&A


	Slide 1: NOCAP: Near-Optimal Correlation-Aware Partitioning for Joins
	Slide 2: Dynamic Hybrid Hash Join (DHH)
	Slide 3: Dynamic Hybrid Hash Join (DHH)
	Slide 4: Skew Optimization in DHH
	Slide 5: Problems
	Slide 7: OCAP (Optimal Correlation-Aware Partitioning)
	Slide 8: Practical Challenges for OCAP
	Slide 9: Observations from OCAP
	Slide 10: Divisibility when Partitioning Data on Disk
	Slide 11: Prioritizing MCVs with Constrained Memory
	Slide 12: NOCAP
	Slide 13: Experiment Setup
	Slide 14: Selected Experimental Results
	Slide 15: Varying skew
	Slide 17: Summary of NOCAP
	Slide 18: Thanks

