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Age	of	Log-Structured	Merge-Trees
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How	do	we	go	about	tuning	these	knobs?

Flexibility	for	applications

Compaction Buffer	size Size	ratio

High	impact	tuning	knobs



LSM	Trees	– Mechanics

mbuff<k,	v>

Size	Ratio	(T)

mfilter

Buffer	fills	à Sort	and	Flush	to	disk

3

Compaction	policy:	𝜋

Tiering	(↑)	or	Leveling	(↓)

Buffer

Level	1

Level	2

…

Level	L

𝜋 :	Compaction	Policy
T	:	Size	Ratio
mfilter :	Filter	memory
mbuff :	Buffer	memory



LSM	Trees	– A	Point	Read

mbuff<k,	v>

[2,	20]

mfilter 4

[6,	40] [52,	96]

[0,	54]

[23,	70]

Buffer

Level	1

Level	2

…

Level	L [58,	124]

READ:	62

How	do	we	define	a	workload?



Query	Types

Empty	Reads	:	z0 Non-Empty	Reads	:	z1

Range	Reads:	q Writes	:	w
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Cool!	How	do	we	go	about	tuning?

Workload	:	(z0,	z1,	q,	w)



The	LSM-Tuning	Problem
𝒘 :	Workload				(z0,	z1,	q,	w)
Φ :	LSM	Tree	Design				(𝑚ABCC , 𝑚CDEFGH , 𝑇, 𝜋)
𝐶 :	Cost

Φ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛J 𝐶(𝒘,Φ)
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The	LSM-Tuning	Problem
𝒘 :	Workload				(z0,	z1,	q,	w)
Φ :	LSM	Tree	Design				(𝑚ABCC , 𝑚CDEFGH , 𝑇, 𝜋)
𝐶 :	Cost	(I/O)

Φ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛J 𝐶(𝒘,Φ)
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Define	our	cost	function



Tuning	Problems
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Optimal	configuration	for	the	workload

Optimal	tuning	depends	on	workload

Workload	uncertainty	leads	to	
sub-optimal tuning

𝐰𝟎 :	Workload				(z0,	z1,	q,	w)



ENDURE	So	Far
Introduction

LSM	Trees	Notation

Nominally	Tuning	LSM	Trees

ENDURE:	Robustly	Tuning	LSM	Trees

The	ENDURE	Pipeline

ENDURE	Evaluation
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𝑈P
Q :	Uncertainty	Neighborhood	of	Workloads

𝜌 :	Size	of	this	neighborhood

The	LSM-Tuning	Problem
𝐰 :	Workload				(z0,	z1,	q,	w)
Φ :	LSM	Tree	Design				(𝑚ABCC , 𝑚CDEFGH , 𝑇, 𝜋)
𝐶 :	Cost	(I/O)

Φ∗ = argminJ 𝐶(𝒘,Φ)

Φ∗ = argminJ 𝐶 \𝒘,Φ

𝑠. 𝑡., \𝒘 ∈ 𝑈R
Q

Nominal

Robust
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Robust	Tuning
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Optimal	configuration	for	
the	workload

Robust	configuration	for	the	
workload	neighborhood

𝐰𝟎 :	Workload				(z0,	z1,	q,	w)
Φ∗ = argminJ 𝐶 \𝒘,Φ

𝑠. 𝑡., \𝒘 ∈ 𝑈R
Q



Uncertainty	Neighborhood
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𝐼$% G𝑤,𝑤 =J
&'(
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G𝑤& ⋅ log
G𝑤&
𝑤&

Neighborhood	of	workloads	(𝜌)	via	the	KL-divergence

𝑈C
D :	Uncertainty	Neighborhood	of	Workloads

𝜌 :	Size	of	this	neighborhood

𝑈*
+

Workload	Characteristic

𝑈*
+ Expected	𝜌?

Historical	workloads
maximum/average	uncertainty	among	workload	pairings
User	provided	workload	uncertainty



ENDURE	Pipeline
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Workload	Characteristic System	Information
Page	Size
Memory	Budget

ENDURE
Solves	the	

Robust	Problem

Expected	performance

RocksDB Configuration



Testing	Suite
ENDURE	in	Python,	implemented	in	tandem	with	RocksDB

Uncertainty	benchmark
• 15	expected	workloads
• 10K	randomly	sampled	workloads	as	a	test-set

Normalized	delta	throughput

Nominal	vs	Robust:	>	0	is	better
1	means	2x	speedup
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Relationship	of	Expected	and	Observed	𝜌
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Highest	throughput	when	observed	and	expected	𝜌 match

Lowest	throughput	when	𝜌 is	mismatched

Expected 𝜌:	workload	given	to	tuner

Observed	𝜌:	distance	from	executed	
workload	to	expected	workload		



Workload	Sequence	on	RocksDB
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oRocksDB instance	setup	with	10	million	unique	key-value	pairs	of	size	1KB

oEach	observation	period	is	200K	queries,	with	5	observations	per	session	6	
million	queries	to	the	DB

oWrites	are	unique,	range	queries	average	1-2	pages	per	level



Workload	Sequence
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Workload	Sequence

18

120%	⬆



Workload	Sequence
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120%	⬆

Small	subset	of	results!	Take	a	look	at	the	paper	for	a	more	detailed	analysis



Thanks!
Workload	uncertainty	creates	suboptimal	tunings

ENDURE:	robust	tuning	using	neighborhood	of	workloads

Deployed	ENDURE	on	RocksDB

Check	out	our	poster	tonight	for	more	info!	

disc.bu.edu/
www.ndhuynh.com/

@nd_huynh
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https://disc.bu.edu/
http://www.ndhuynh.com/

