

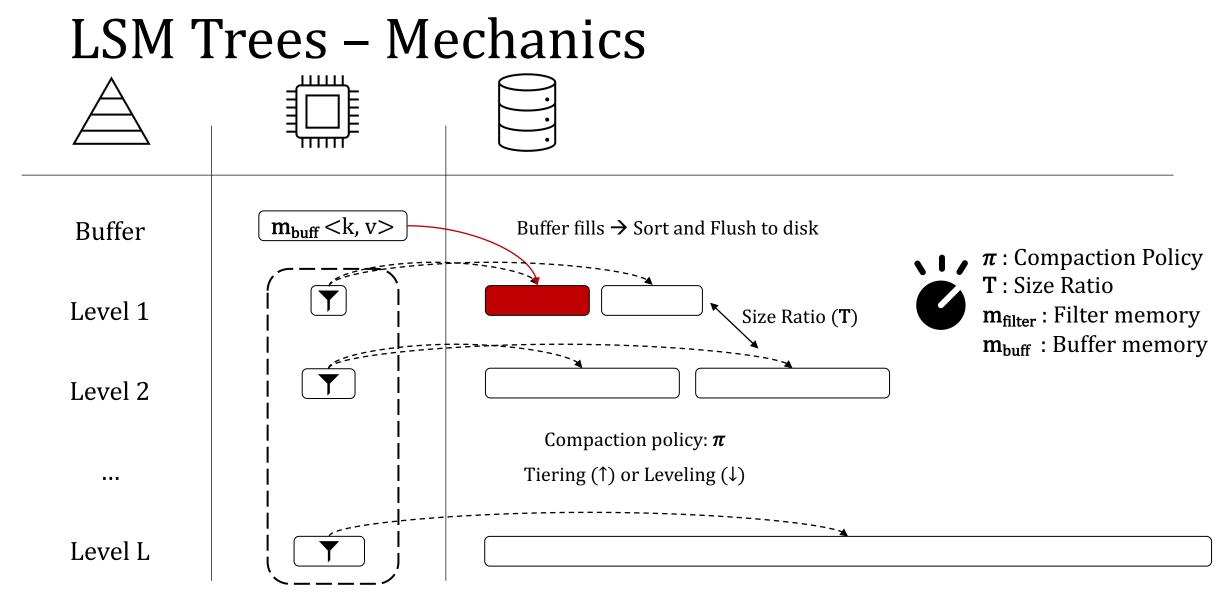
ENDURE: A Robust Tuning Paradigm for LSM Trees Under Workload Uncertainty

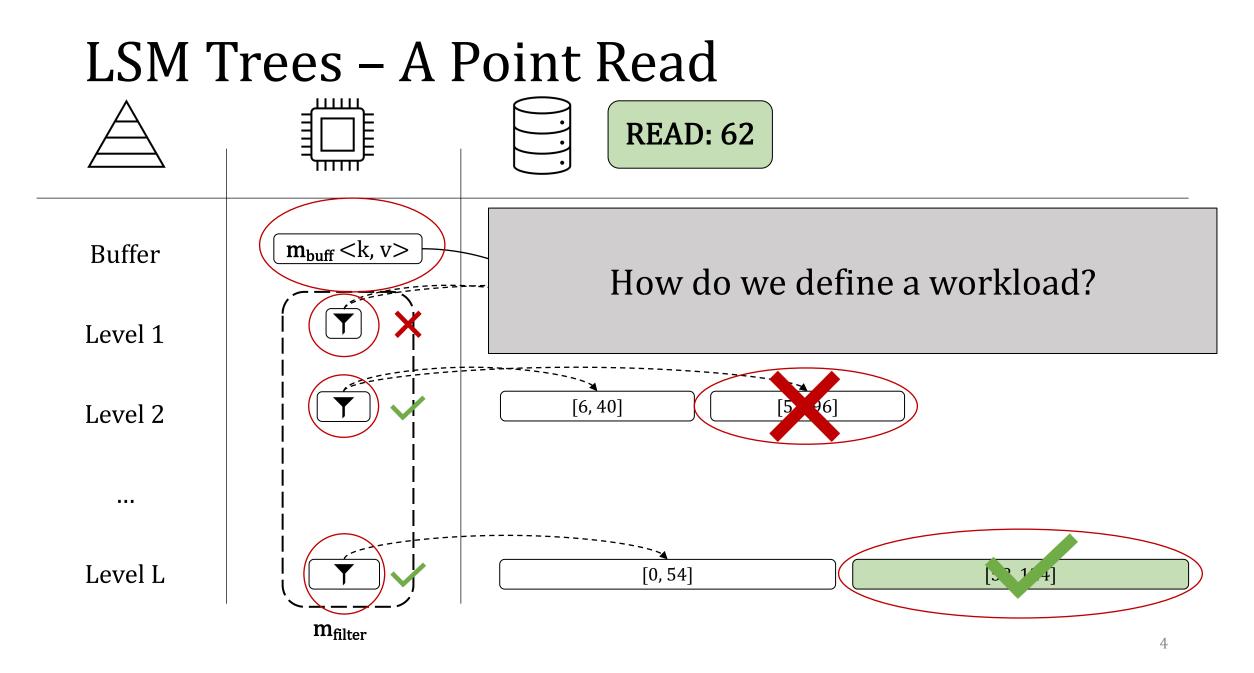
Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, Manos Athanassoulis

Age of Log-Structured Merge-Trees

88 <u>@</u> DiSC

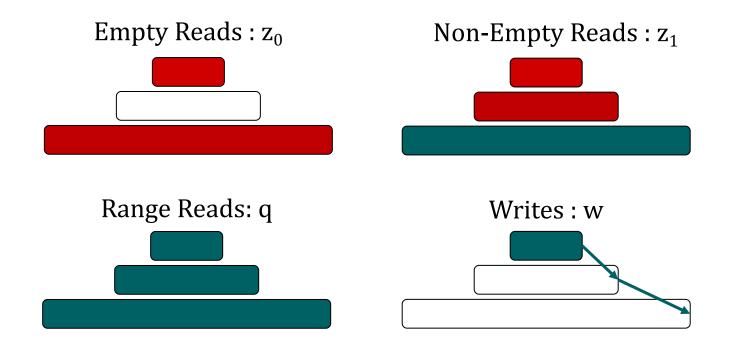
How do we go about tuning these knobs?





Query Types

Workload : (z_0, z_1, q, w)



Cool! How do we go about tuning?

The LSM-Tuning Problem

lab Sada DSiO

w: Workload (z_0, z_1, q, w) Φ : LSM Tree Design $(m_{buff}, m_{filter}, T, \pi)$ *C*: Cost

 $\Phi^* = argmin_{\Phi} C(\boldsymbol{w}, \Phi)$

The LSM-Tuning Problem

w: Workload (z₀, z₁, q, w) $\Phi: LSM Tree Design (m_{buff}, m_{filter}, T, \pi)$ C: Cost (I/O)

$$\Phi^* = argmin_{\Phi} C(\boldsymbol{w}, \Phi)$$

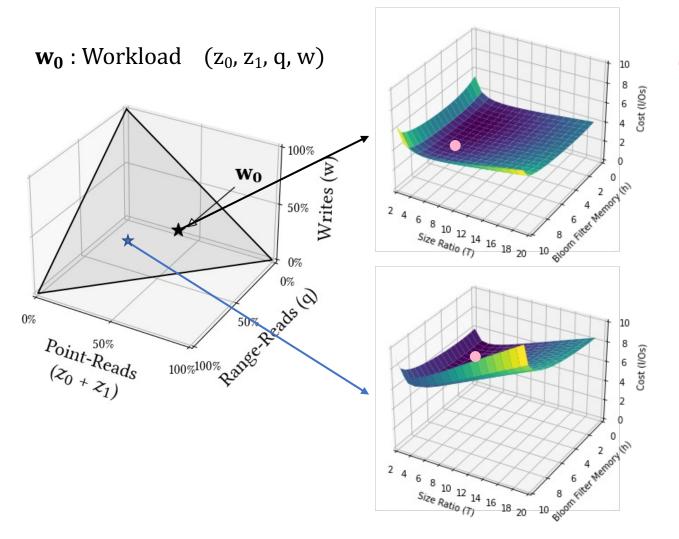
Define our cost function

ि DiSC

$$C(\hat{\mathbf{w}}, \Phi) = \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{c}(\Phi) = z_0 \cdot Z_0(\Phi) + z_1 \cdot Z_1(\Phi) + q \cdot Q(\Phi) + w \cdot W(\Phi)$$

Tuning Problems

Bb Bb DSiO



Optimal configuration for the workload

Optimal tuning depends on workload

Workload uncertainty leads to <u>sub-optimal</u> tuning

ENDURE So Far

Introduction

Bb da Iab **OSiO**

LSM Trees Notation

Nominally Tuning LSM Trees

ENDURE: Robustly Tuning LSM Trees

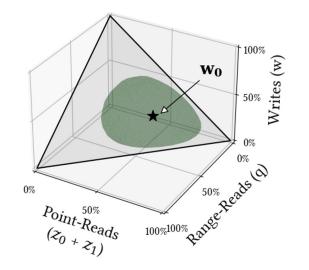
The ENDURE Pipeline

ENDURE Evaluation

The LSM-Tuning Problem

명 역 DiSC

w : Workload (z_0, z_1, q, w) Φ : LSM Tree Design $(m_{buff}, m_{filter}, T, \pi)$ C: Cost(I/O)

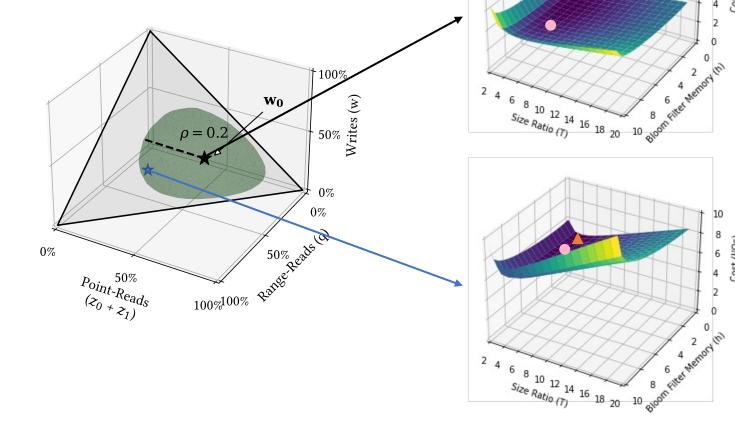


	$\Phi^* = ar$	$\operatorname{gmin}_{\Phi} \mathcal{C}(\boldsymbol{w}, \Phi)$	Nominal
$U_{\rm w}^{\rho}$: Uncertainty Neight ρ : Size of this neighbor	Robust		
	s.t.,	$\widehat{\boldsymbol{w}} \in U_w^\rho$	

Robust Tuning

Bb Bb DSiO

 $\mathbf{w_0}$: Workload (z_0 , z_1 , q, w)



 $\Phi^* = \operatorname{argmin}_{\Phi} \mathcal{C}(\widehat{\boldsymbol{w}}, \Phi)$ s.t., $\widehat{\boldsymbol{w}} \in U_w^{\rho}$

8

6 4

8

6 4

Cost (I/Os)

Cost (I/Os)

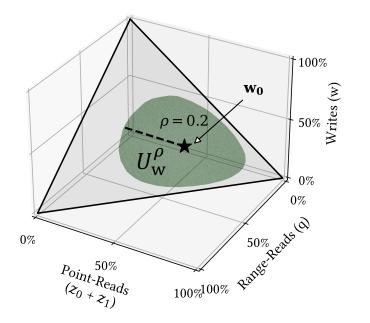
Optimal configuration for the workload

Robust configuration for the workload neighborhood

Uncertainty Neighborhood

Workload Characteristic

BS de DiSC



Neighborhood of workloads (ρ) via the KL-divergence

$$I_{KL}(\widehat{w}, w) = \sum_{i=1}^{m} \widehat{w}_i \cdot \log\left(\frac{\widehat{w}_i}{w_i}\right)$$

Expected ρ ?

Historical workloads

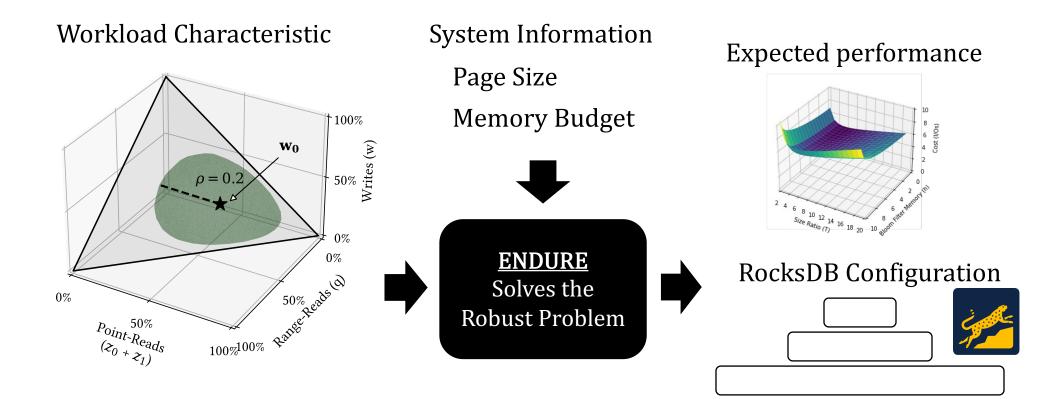
maximum/average uncertainty among workload pairings

User provided workload uncertainty

 $U_{\rm w}^{
ho}$: Uncertainty Neighborhood of Workloads ho: Size of this neighborhood

ENDURE Pipeline

Bb Bb DSiO



Testing Suite

BS de DiSC

ENDURE in Python, implemented in tandem with RocksDB

<u>Uncertainty benchmark</u>

- 15 expected workloads
- 10K randomly sampled workloads as a test-set

Normalized delta throughput

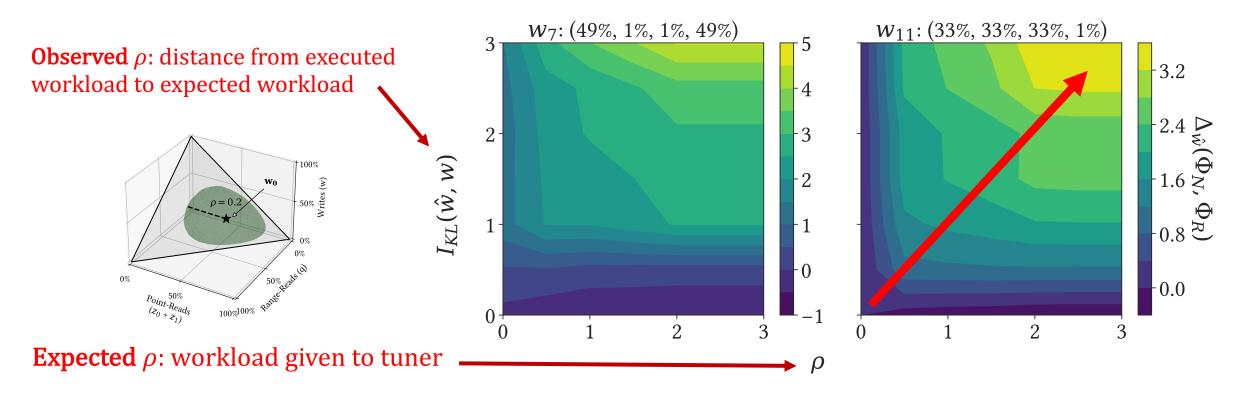
$$\Delta_{\mathbf{w}}(\Phi_1, \Phi_2) = \frac{1/C(\mathbf{w}, \Phi_2) - 1/C(\mathbf{w}, \Phi_1)}{1/C(\mathbf{w}, \Phi_1)}$$

Nominal vs Robust: > 0 is better

1 means 2x speedup

Index		(z_0, z_1)	, q, w)	Туре	
0	25%	25%	25%	25% Uniform	2
1	97%	1%	1%	1% Unimodal	
2	1%	97%	1%	1%	
3	1%	1%	97%	1%	
4	1%	1%	1%	97%	
5	49%	49%	1%	1% Bimodal	>
6	49%	1%	49%	1%	
7	49%	1%	1%	49%	
8	1%	49%	49%	1%	
9	1%	49%	1%	49%	
10	1%	1%	49%	49%	
11	33%	33%	33%	1% Trimodal	-
12	33%	33%	1%	33%	
13	33%	1%	33%	33%	
14	1%	33%	33%	33%	

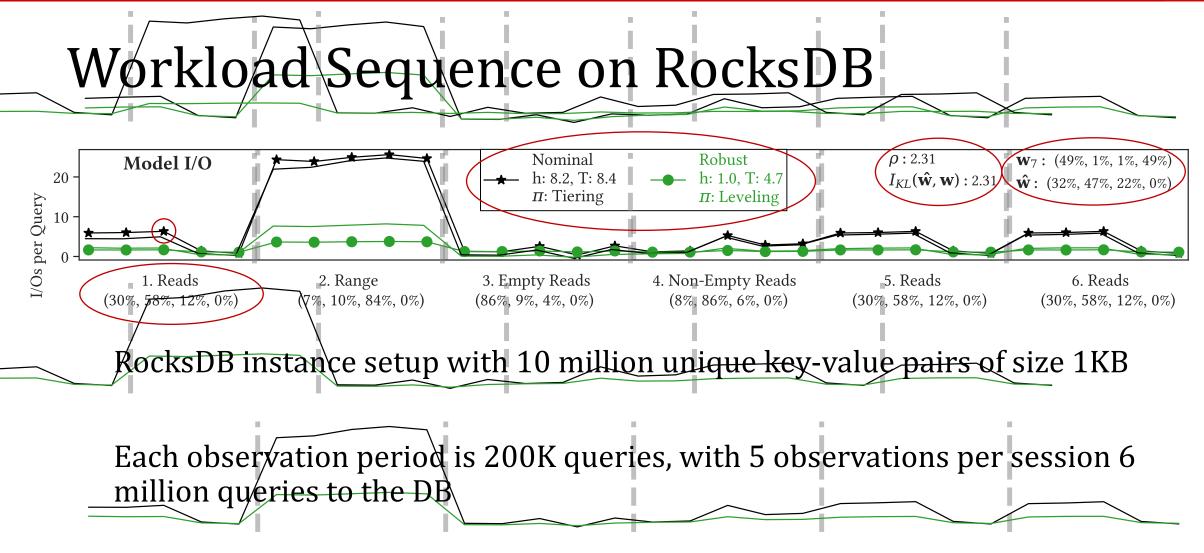
Relationship of Expected and Observed ρ



Highest throughput when observed and expected ρ match

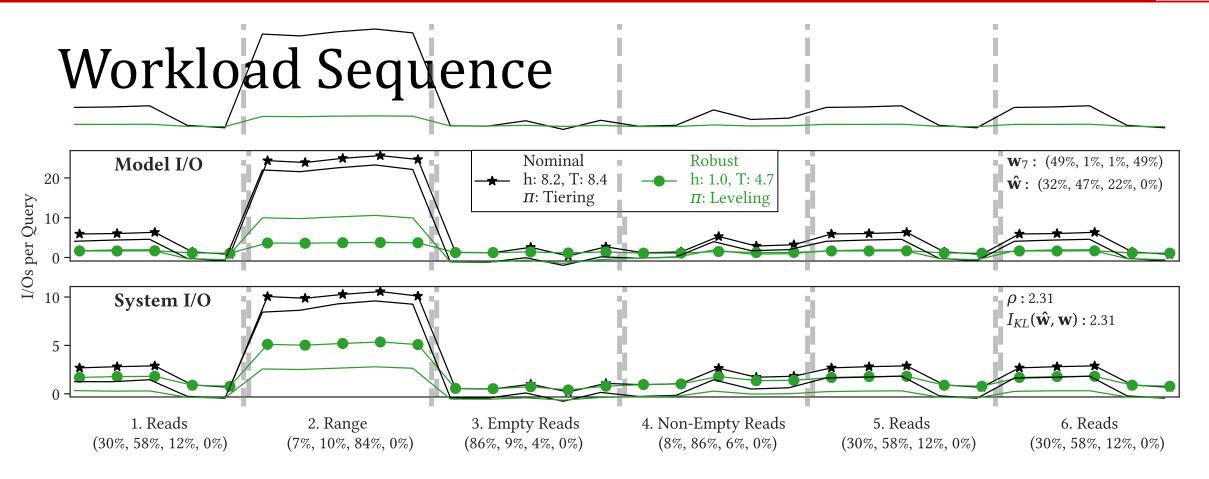
Lowest throughput when ρ is mismatched

명 역 DiSC



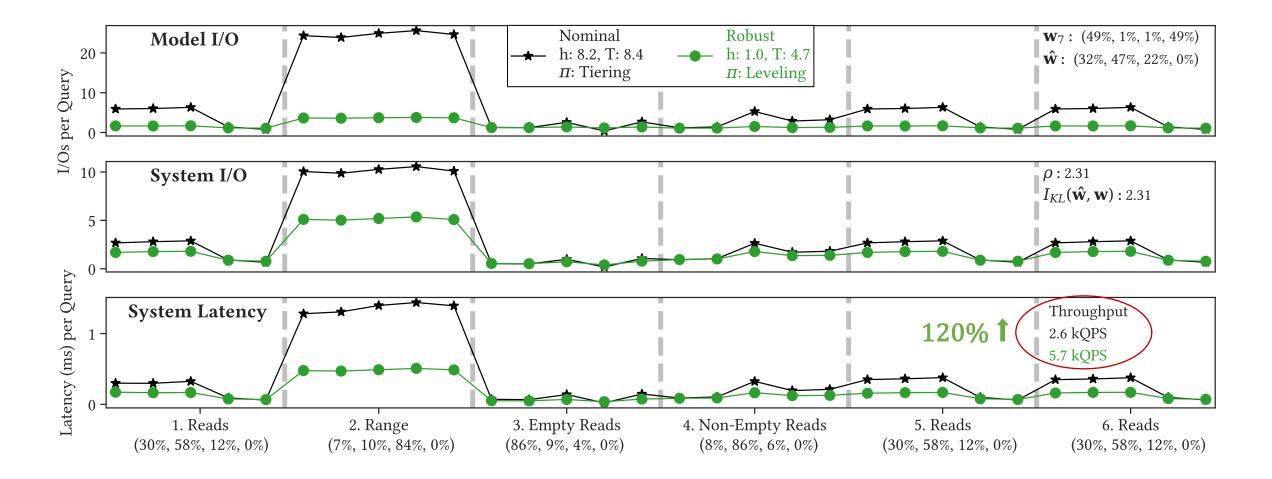
Writes are unique, range queries average 1-2 pages per level

명 요 DiSC

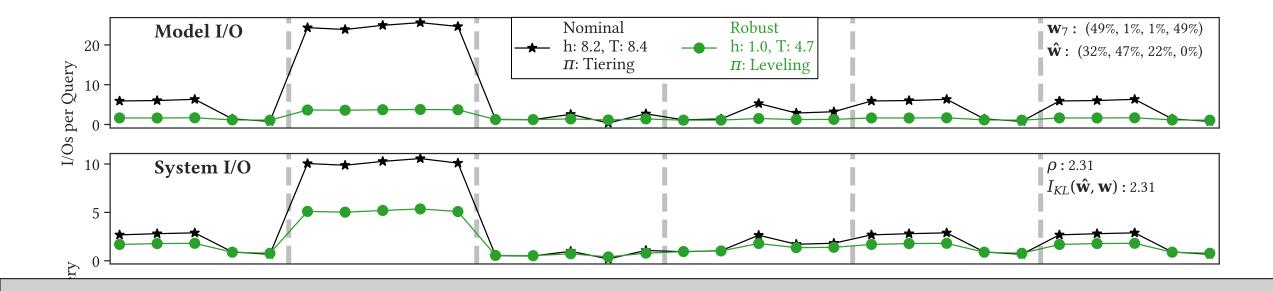


Workload Sequence

Bb Bb DSiO



Workload Sequence



Small subset of results! Take a look at the paper for a more detailed analysis

Thanks!

BS GR DiSC

Workload uncertainty creates suboptimal tunings

ENDURE: robust tuning using neighborhood of workloads

Deployed ENDURE on RocksDB

Check out our poster tonight for more info!

