A thread scheduling technique for avoiding
page-thrashing

Summary of Master’s Thesis defended by ManoussosiGathanassoulis on March 2008

Abstract—Page thrashing is the process utilization collapsdue to increase of the multiprogramming level. Seral papers have
discussed this matter up to know, focusing on spdici aspects of the phenomenon in order to addrest As a result the effect of such
techniques depends on the type of the processortsal. There two main issues in addressing page-thi@isg: time scheduling (process
and thread scheduling) and memory management. In th text a distributed thread scheduling techniques designed. The proposed
technique is based on decisions made by each praeeghen scheduling the contained threads, utilizindata that a process has already
available. The proposed thread scheduling techniquie simulated using a discrete time simulator syste.

|. INTRODUCTION

Page thrashing is the result of the increase of iproljramming level without having the necessary
resources to support it. This phenomenon can happ@&very computer and it causes very bad user

experience and utilization of the computer resairce

In this text, a new thread scheduling mechanismintasduced, implemented and studied. The proposed
interprocess mechanism assigns a utility at evengat of each process every time the parent prosess
scheduled, and the subsequent thread-schedulingiateés based upon the assigned utilities. Thityuti
value is based on the contribution of each threathe increase or the decrease of the system’stmond
metrics (processor utilization and page fault raB®pending on the system’s conditions either tead
that maximizes or the thread that minimizes thityitralue is chosen to be executed. The core igda
schedule threads that cause low page fault rattsigh processor utilization when the system’s otk
are hard and the opposite when the system’s condiire normal.

The designed mechanism is a distributed paradigthreéd scheduling technique aiming at the redactio
of page-thrashing. In the end of the thesis, sitrarlaresults are presented, where it is shown tiat
proposed mechanism increases the processor utihzad reduces the average turnaround time.

II. PRIOR AND RELATED WORK

In the literature one can find several papers aiing the problem of page-thrashing by proposititeei
different time scheduling techniques or differemory management algorithms.

In [5] a balancing mechanism between the interf&vo consecutive page faults and the serving tfne
a page fault in order to achieve higher processbrzation. Load control policy is technique to reduce the
intensity of page thrashing by select for execupoocesses, for which the resident set is almosigaas
the working set. Carr proposed another approa@dddfessing the issue of page thrashing by adafiteng
clock page replacement algorithm. Carr [8] dessriagechnique that involves monitoring of the raite
which the pointer scans the circular buffer of femmAccording to this rate the level of multipragraing
is tuned aiming at the maximization of the processiization. Another family of mechanisms previegt
page-thrashing i®rocess Suspension. If the degree of multiprogramming needs to beuced a process
must be chosen according to one of the criteriee&t-priority process, faulting process, last pssce
activated, process with the smallest working sadst process and process with the largest remgaini
execution window.

Jiang and Zhang [3] designed a Linux kernel patbickvpermits a faulting process to load its working
set if the processor utilization is low and there more than one process with high page fault fidte.core
idea behind letting a faulting process to contiedecuting and loading pages is that after estabgstine
working set the process will consume CPU cyclestardsystem will start functioning at higher prosas
utilization ratio.

CPU utilization
thrashing

degree of multiprogramming

Figure 1: Qualitative graph of processor utilizatat the occurrence of page-thrashing

[1l. THREAD SCHEDULING

In this thesis a thread scheduling mechanism wapagsed, designed and simulated. This mechanism
utilizes data which each process has already dbaila order to perform priority scheduling of ttheeads
contained by each process. A two-level schedubngupposed: process scheduling using Round-Robin or
Multi-Level Feedback Queues and thread schedulegopmed by each process. This is a scheduling
paradigm that is encountered in Unix-type operatiygfems, where threads are implemented in usel-lev
by packages like pthread.

Thread scheduling is performed each time a proseabout to be executed. If a process has more than
one thread, then &hread Priority Function (TPF) gives each ready thread an arithmetic vakipriority
and the thread which has maximum priority (thusimum arithmetic value, like in Unix) is chosen te b
executed.

A. Thread Priority Function

The arithmetic value of a thread’s priority givem BPF is computed based on the contribution of the
current thread on the metrics describing the camdtof the system.

These metrics are process utilization, which wéllrbpresented as CPU and page fault rate, whitHevil
represented as PFR. Depending on the exact valineséd two metrics the system can be eitharoomal
conditions orhard conditions. The condition for determining the systcondition is the “violation” of two
thresholds: CPU_LOWER_BOUND and PFR_UPPER_BOUND.

normal, PFR >PFR_UPPER_BOUND and CPU<CPU_LOWER UB{@D

System Conditions%)
hard, otherwise

The reason that both thresholds have to be violsteétat the violation of only one threshold cannot
ensure that the system faces page-thrashing. La@eeps utilization can be the result of having no
processes ready to consume CPU cycles either ledhasexisting processes are not CPU bound, or
because there no ready processes. On the otherltighgage fault rate can be the result of a nexegss
being loaded. In both cases the system did notreqae page-thrashing but one condition could Heaen
violated. Only if both thresholds are violated onay assume that page-thrashing occurs.

Before describing the way of computing the valu@BF, the contribution of a threadt timei in the

variation of processor utilization (typed as CClgan the variation of page fault rate (typed afRP
must be defined.
Thus, CCU is the mean proportional of the changb®fCPU utilization at each quantum of execution:

ccu(t,i)=a-ccu(t,i —1)+(1—a)'(CPU (i)-CPU (i-]))

where CPU (i) is processor utilization at the end of currentrqum and CPU (i —1) is processor

utilization at the end of the previous quantumspgetively, CPFR is the mean proportional of thenge
of the PFR at each quantum of execution:

cpfr (t,i) = a-cpfr (t,i — 1)+ (1-a)-(PFR(i) - PFR(i - 1)

where PFR(i) is page fault rate at the end of current quantach BFR(i —1) is page fault rate at the
end of the previous quantum. The correspondingicsetf the processpfr (p,i) are ccu(p,i) computed

in order to normalize the values cdu(t,i) andcpfr (t,i).
The computation of Thread Priority Function isegioy:

L ccu(t,i) cpf (t.i) san(sc) = +1,sc = normal
tpf(nu)—sgn(sc»(vw —wz-cpf(p,i)j,w»o n(s)-{ 2o

ccu(p,i)
Sign function sign(sc) is equal to -1 or +1 depending on the system ¢mmdi. This function is
necessary because the value of the equation

[Wl. cu(t,i) - opf (t,i)j

ccu(p,i) 2 cpf (p.i)

represents the contribution of thredup to now, to the system conditions. As gredtes value is, so
better is the contribution to the metrics’ valuesl,aas a result, to the system conditions. The fsigation

is used in order to promote threads with bad douation in case of normal system conditions. This is
important in order to achieve fairness betweersatiiseand to avoid starvation.

V. SIMULATION OF THE PROPOSEDIHREAD SCHEDULING MECHANISM

The proposed mechanism was simulated using a thstnee simulating system. The system at every
given step can:
e Beidle (Idle)
e Execute a thread (CPU)
e Switch to another thread (Context Switch)
e Schedule Input/Output (Doing 1/O)

In the following figure, the aforementioned statdeng with some major actions are depicted. The
rectangles represent the states and the shapesmiabth or no edges, represents actions that kea ta
between state transitions. At each minimum time étéhich is called “tick”) a single transition froone
state two another can take place.

— —nothread———__

IDLE |- N
./ schedule schedule
F aprocess / '\ athread /| CPYU [~ endor | CONTEXT
\ ; —J aenm | swiTCH

no process

inside quantum |
|

page in memeory

look for page |~

Figure 2: Simulation States

page fault—
/

N2

—— DOING I/0

The actions “schedule a process” and “schedulereadt show the fact that two-level scheduling is
performed by the proposed system. Action “lookdqgrage” tries to retrieve a page from main memady a
if the page is not yet loaded, a page fault occlinen, the page is being loaded, but the thread &sma
result the process) is swapped out.

During the simulation, a different procedure ispassible for creating new threads and processes. Th
intercreation time between two threads is computgiding a random variable distributed accordioghe
exponential probability distribution function. Tlke&ecution duration of each thread and the proaeesrs
pages are two more parameters of the conductedaioruwhich values are random variables that are
distributed according to the exponential distribnti

The mechanism computing the reference string dreatl is also based on the exponential distribution
Suppose that a process hapages, then for each thread, these n pages ad listorder. Using the

exponential distribution with meam , a number between 1 ands picked. The page at that point is the

next page in the reference string. The selected gamoved at the beginning of the list and thedesd
algorithm is repeated in order to form the redhefreference string.

V. RESULTS- CONCLUSIONS

The described simulation was used for a seriexpéraments. More than eight different processor and
workload setups were simulated. The work load weeeecreated at the beginning of the simulation or
created both at the beginning and during the simauma The chosen values of the parameters of the
simulation created page-thrashing and, as a rékalproposed thread scheduling technique wagedilby
the simulation system. The average processor atittiz measured at the experiments using the prdpose
technique compared to the average processor tibizeneasured using round-robin thread scheduliag w
increased by 5% to 22% and, respectively, the dseref page fault ratio varied between 6% and 26%.
Thread penalty ratio was always decreased wheprtdposed mechanism was utilized.

Very interesting results provides the experimemtrduwhich the time-series of the values of thaeys
metrics where stored and the execution of the edeabrkload was simulated until the end of all psses.

As the reader can see in Figure 3, the utilizabbrihe proposed scheme resulted in higher processor
utilization, lower page fault ratio, as well aswkr average response time. The red lines are tiecmef

the system when the proposed thread schedulingitpethwas used and with blue lines the metrichef t
system when round-robin thread scheduling was chase depicted. Another very important result & th
proposed mechanism is the reduction of the odoitiatof the system performance.

_—

|
A
|
L L n L L L L L - L L L L L L L 1
2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

PFRRR
———PFROS| |

I
—cpurr| |
———cpuos

|
I AANN Al . . L1l
8000 10000 12000 14000 16000 18000

L L L L L L L L A WY
2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000

Figure 3: Average and current processor utilizatind page fault ratio

VI. FUTUREWORK

In this text | presented a distributed paradignthofad scheduling addressing the page-thrashing.ifts
is interesting to use a theoretic tool to modelghgposed technique. Game Theory is a classicaldtie
tool for modeling resource sharing techniques. Adek-dove game described in [15] is a possiblyasilet
game in which each player shows either a more agige strategy or a more submissive strategy ierord
to finally use the shared resource.

Moreover, it would be very interesting to combire tproposed thread scheduling technique with a
different page replacement policy than LRU. The LREmMory management algorithm is often used but it
is also a not so good strategy to address pagshinga The combination of a different page replaaam
policy (perhaps an adaptive one) with the propasedhanism may lead to better results.

Finally, it is very interesting to implement theepented scheme in a user-level package implementing
thread in order to see the implications and thelte®f utilizing this mechanism upon real workloaaid
system conditions.

REFERENCES

[1] stallings William, “Operating Systems: Internal a@Design Principles”, 5th edition, Prentice Hall 020

[2] Sudo Y., Suzuki S. and Shibayama S., “Distributbéde@d Scheduling Methods for Reducing Page-ThrgshidPDC
1997: 356-364

[3] Jiang S. and Zhang X., “Adaptive Page Replacemer®rbtect Thrashing in Linux”, 5th Annual Linux Stcase &
Conference, November 2001

[4] Jiang S. and Zhang X., “TPF: a dynamic system tingsprotection facility”, In Software - Practice Bxperience, 32 (3):
295-318, March 2002

[5] Finkel Raphael, “An Operating Systems Vade Mecupr&ntice Hall, 1986

[6] Denning P., “Working Sets Past and Present”, IEEdh3actions on Software Engineering, January 1980

[7] Leroudier J. and Potier D., “Principles of Optintalfor Multiprogramming, Proceedings”, Internatior&mposium on
Computer Performance Modeling, Measurement, antlBtian, March 1976

[8] Carr R., “Virtual Memory Management”, Ann Arbor, MUMI Research Press, 1984

[9] Baer J., “Computer System Architecture”, Rockvil&D): Computer Science Press, 1980

[10]Belady L., “A Study of Replacement Algorithms foWatual Storage Computer”, IBM Systems Journal, Rd.966

[11]Duda K. and Cheriton D., “Borrowed-Virtual-Time (BY scheduling: supporting latency-sensitive threeda general-
purpose scheduler”, SOSP 1999: 261-276

[12]Jain Rah, “Art of Computer Systems Performance ysialTechniques For Experimental Design Measuresn@mulation
And Modeling”, Wiley Computer Publishing, 1991

[13]Fortier P. and Michel H., “Computer Systems Perfanoe Evaluation and Prediction”, Digital Press,200

[14]Saucier Richard, “Computer Generation of Statisiatributions”, Army Research Laboratory, 2000

[15]Hargreaves-Heap S. and Varoufakis Y., “Game Thed@ritical Introduction”, Routledge, 1995

