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Abstract
Today, managing, storing and analyzing data continuously in order to gain additional insight is
becoming commonplace. Data analytics engines have been traditionally optimized for read-only
queries assuming that the main data reside on mechanical disks. The need for 24x7 operations in
global markets and the rise of online and other quickly-reacting businesses make data freshness
an additional design goal. Moreover, the increased requirements in information quality make
semantic databases a key (often represented as graphs using the RDF data representation model).
Last but not least, the performance requirements combined with the increasing amount of stored
and managed data call for high-performance yet space-efficient access methods in order to support
the desired concurrency and throughput.

Innovative data management algorithms and careful use of the underlying hardware platform help
us to address the aforementioned requirements. The volume of generated, stored and queried
data is increasing exponentially, and new workloads often are comprised of time-generated
data. At the same time the hardware is evolving with dramatic changes both in processing units
and storage devices, where solid-state storage is becoming ubiquitous. In this thesis, we build
workload-aware data access methods for data analytics - tailored for emerging time-generated
workloads - which use solid-state storage, either (i) as an additional level in the memory hierarchy
to enable real-time updates in a data analytics, or (ii) as standalone storage for applications
involving support for knowledge-based data, and support for efficiently indexing archival and
time-generated data.

Building workload-aware and hardware-aware data management systems allows to increase
their performance and to augment their functionality. The advancements in storage have led
to a variety of storage devices with different characteristics (e.g., monetary cost, access times,
durability, endurance, read performance vs. write performance), and the suitability of a method
to an application depends on how it balances the different characteristics of the storage medium it
uses. The data access methods proposed in this thesis - MaSM and BF-Tree - balance the benefits
of solid-state storage and of traditional hard disks, and are suitable for time-generated data or
datasets with similar organization, which include social, monitoring and archival applications.
The study of work sharing in the context of data analytics paves the way to integrating shared
database operators starting from shared scans to several data analytics engines, and the workload-
aware physical data organization proposed for knowledge-based datasets - RDF-tuple - enables
integration of diverse data sources into the same systems.
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Résumé
De nos jours, la gestion, le stockage et l’analyse de données en continu, afin d’obtenir des
informations supplémentaires, devient courant. Les systèmes d’analyse de données ont été tra-
ditionnellement optimisés pour des requêtes en lecture seule en supposant que les données
principales résidaient sur des disques mécaniques. Le besoin d’opérer 24 heures sur 24, 7 jours
sur 7 dans le contexte de marchés globaux et suite à l’accroissement des activités commerciales en
ligne ont fait de la « fraîcheur des données » un objectif supplémentaire. En outre, les exigences
accrues en matière de qualité de l’information rendent les bases de données sémantiques clés
(souvent représentées comme des graphes utilisant le modèle de représentation de données RDF).
Finalement, les contraintes de performances combinées avec l’augmentation du volume des
données stockées et gérées nécessitent des méthodes d’accès performantes mais efficaces en
termes de stockage afin de garantir le niveau de concurrence et de débit souhaité.

Des algorithmes de gestion de données innovants et l’utilisation attentive de la plateforme
matérielle sous-jacente nous aident à répondre aux exigences citées. Le volume des données
générées, stockées et demandées augmente exponentiellement et les nouvelles charges de travail
contiennent souvent des données temporelles. En même temps, le matériel informatique évolue
avec des changements drastiques autant dans les unités de traitement que dans le stockage où les
lecteurs à état solide deviennent omniprésents. Dans cette thèse, nous construisons des méthodes
d’accès s’adaptant aux charges de travail d’analyse de données. Elles sont faites sur mesure
pour les données temporelles qui utilisent le stockage à l’état solide soit (i) comme un niveau
supplémentaire dans la hiérarchie de stockage permettant des mises à jour en temps réel des
analyses de données ou (ii) comme stockage indépendant pour des applications nécessitant le
support de données basées sur la connaissance et le soutient pour l’indexation efficace de données
d’archive.

Les systèmes de gestion de données utilisant la connaissance de la charge de travail et de
la plateforme matérielle sous-jacente peuvent augmenter leurs performances et fonctionnalités.
L’avance dans le domaine des périphériques de stockage a mené au développement d’une va-
riété de caractéristiques différentes (par exemple : coûts monétaires, temps d’accès, durabilité,
endurance, performance de lecture contre écriture, etc.). L’efficacité d’une méthode d’accès pour
une application donnée dépend de comment ces caractéristiques sont conciliées. Les méthodes
d’accès proposées dans cette thèse, MaSM et BF-Tree, équilibrent les gains du stockage à l’état
solide avec le stockage sur disques durs traditionnels et sont appropriées pour les données tem-
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porelles ou avec une structure similaire. Ceci comprend les applications sociales, de contrôle
ou d’archivage. L’étude du partage du travail dans le contexte des analyses de données ouvre
la voie à l’intégration d’opérateurs de bases de données partagés à partir de scans communs
à plusieurs systèmes d’analyse de données et avec l’organisation physique des données basée
sur les charges de travail et les ensembles de données liées à des connaissances (RDF-tuple)
permettent l’intégration de plusieurs sources de données dans un même système.

Mots-clés : bases de données, analyse de données, stockage à l’état solide, fraîcheur des données,
partage du travail, méthodes d’accès
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1 Introduction

1.1 The Information Age

The saying "Knowledge is power"1, lays the groundwork for how the era we live in, the Infor-
mation Age, is affecting humanity. The Information Age is characterized by the growing need
to gather, manage, access and analyze information to support the operation of any commercial,
research or government organization. It is based upon the digital revolution - also known as the
third industrial revolution. In turn the digital revolution is based on the enormous and contin-
uous advancements in technology which allows us to create digital circuits capable of storing,
processing, exchanging, analyzing and generating exponentially more digital data every year.

Information and data management, however, is not a recent discipline. Centuries before the digi-
talization of data, businesses and governments used centralized data repositories to keep financial,
managerial and organizational information. Such applications required functionality guarantees;
namely, correctness, consistency and permanence of the information. The growing need to store
and manage data combined with the technological advancements led to the development of data
management systems as a result of both research efforts and commercial applications.

1.2 Data Management

The need to store data in order to facilitate governmental organization and business transactions
was met when technology started offering ways to automate such processes. In fact, this need
fueled the explosion of research and development in computer-based systems to centrally maintain
bank, business and governmental information which started in the 1950s when the notion of
electronic computers became reality. In a few years time a new market had been created and
already by the 1960s companies were working on building complex software systems on top of
expensive computers to store, manage and query data: the data managements systems market had
been created.

1"Scientia potentia est" in Latin, attributed to Sir Francis Bacon
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One of the first widely used database management system was IBM’s IMS (Information Man-
agement System), initially designed for the 1966 Apollo Program. IMS used a hierarchical
conceptual model where data were organized in a tree-structure which is capable of representing
parent-child relationships: one parent may have many children, but each child has one parent.
Apart from supporting travel in space, IMS was widely used in the banking sector supporting
every-day transactions by banks and bank customers. In 1970s Edgar Codd introduced the
Relational Model (Codd, 1970) which shaped how the majority of the systems to follow represent
and store data. The Relational Model, which is based on first-order logic, represents data using
tuples which, when grouped, form relations. In the Relational Model the logical organization
of the data (tuples and relations) is decoupled from the physical organization of the data. This
flexibility and the clarity of representing information lead to a wide adoption of the Relational
Model which became the standard way to represent information in database systems.

Following the development of the Relational Model, several relational database management
systems (RDBMS) were developed either as research prototypes or as commercial products. The
evolution of the database market led to the development of a query language which today is
known as SQL. While the initial domain of application for database systems was mostly the
governmental and the banking applications, the development of the Internet since the mid-1990s
caused an exponential growth of the database market. The ease in connectivity led to the creation
of numerous client-server applications that required database support, and at the same time, more
and more data were generated. The trend of increasing data generation and, consequently, the
need to store it and manage it, is still growing at exponential rates.

Soon after the first simple web applications, the data generated by users of online services, by
customers of online and offline shops, and in general by any user of any digitalized service was
stored to ensure the correct operation of all these businesses and services. At the same time,
archived data can reveal additional information if one has the means to analyze it efficiently.
Starting from the late 1990s an increasing number of database systems vendors started focusing on
building systems to efficiently manage and analyze enormous amounts of data. Initially, database
management systems vendors needed to address the requirements of two major application genres.
First, to keep safely the accurate and up-to-date information of transactions between businesses
and people leading to the development of On-line Transactional Processing (OLTP). Second,
to manage and analyze huge and increasing quantities of data resulting in the development of
On-line Analytical Processing (OLAP). These two main categories shaped the database systems
scenery in terms of what each system is addressing and what type of optimizations - and research
in order to achieve them - are necessary for each category.

The crystallization of the goals of database systems had a very important implication. The design
of database systems as software systems rapidly evolved to a standardized architecture (Hellerstein
et al., 2007), which then allowed the researchers and the database systems developers to speak a
common language. They were able to devise techniques that could be used in different systems
because they were using the same high-level constructs despite having different implementations.
This ease of interaction sped up the progress and the evolution of database systems and helped to

2



1.3. Data Analytics

build a large community and a large market with a variety of solutions optimized for different
applications and use cases.

The architecture of a typical database system includes (1) the parser, (2) the optimizer, (3) the
query engine, and (4) the storage manager. In a modern database system, the parser is responsible
to parse a SQL query and analyze it syntactically, making sure it is consistent with the data at
hand, and then, to forward it to the optimizer. The optimizer, in turn, evaluates what are the
possible ways to execute the given query, and tries to find the fastest way (optimal query plan) to
execute it.2 After the query optimization phase, the query engine activates the chosen algorithms
to execute the query and, when needed, it requests the data from the storage manager, which
retrieves data from the memory and storage components.

The standardized architecture of database systems at the high-level enabled deep research for each
and every module. Research on database systems covers query optimization, query execution, data
access, but also transaction execution, security and distributed processing. The work presented
in this thesis is related with query execution and techniques to access the data from the storage
manager. A key observation is that the largest bulk of research on the internal modules of a
database system is based on the assumption that the system uses hard disk drives as permanent
storage. While there are approaches making different assumptions (e.g., in-memory databases
with redundancy) the common denominator between most of the existing approaches is the
presence of hard disks at some level to ensure durability of the data. Below we discuss how the
trends in what data we generate and we analyze create new requirements for the internal modules
of database systems motivating the research path taken.

1.3 Data Analytics

OLAP applications have been popular and crucial to business operation since the 1980s, however,
the recent trends in the pace of data generation and the consequent needs for storing and analyzing
data created a new set of requirements. Today, data have the following five key characteristics: (i)
the data volume itself is large and growing exponentially, (ii) the data are constantly evolving
and new information or updates are constantly generated, leading to high data velocity, (iii) a
large variety of data sources include useful information for any given application making it very
important to integrate diverse sources, (iv) as the data and the number of sources grow it is crucial
to ensure the veracity of the data in order to have meaningful insights and (v) produce high
value analysis which can help the scientific, business or organizational goals of the data analysis
performed. Below we focus on the characteristics of volume, velocity, variety and value of data,
to introduce data analytics requirements and the challenges that are addressed in this thesis.

2The optimizer is not always able to find the optimal query plan because it uses heuristics when searching for the
appropriate combination of algorithms to minimize its response time.
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1.3.1 Data Analytics Challenges

The above characteristics - volume, velocity, variety, veracity and value - are known as the 5 V’s
of Big Data. "Knowledge is power", however, only when we know how to extract knowledge.
Hence, the above characteristics combined with data analytics requirements create research
challenges, which research on data analytics systems is attempting to address.

The sheer volume of the data and its velocity creates the data freshness requirement. The data
management challenge is how to use the most recent version of the data when executing data
analysis queries. Data freshness is a challenge because updating data and running analytical
queries at the same time typically causes workload interference, mainly as a result of the disruption
of analytical query access patterns (involving sequential scans of the hard disks) by scattered
updates.

Velocity and value show that the value of our insights drops precipitously as the analysis queries
are delayed. Hence, it is important to optimize for query response time and at the same time,
transform the destructive interference to collaborative execution when possible.

Combining volume and velocity a new challenge is raised: how to efficiently index, and conse-
quently access, continuously generated data - one very common use case. This challenge stems
from the fact that traditional indexing techniques are built assuming no knowledge of the data
attributes (e.g., distribution) since they mostly target data with no apriori knowledge or uniform
distribution of the indexed values. Real-time data typically has a time dimension, on which it
shows implicit clustering (Moerkotte, 1998), something that can be used to offer indexing with
high performance and smaller size.

Variety surfaces the need to use and perform data analytics on data from diverse data sources
including as much knowledge as possible for the question at hand. Knowledge-based datasets
have been generated and are maintained in the context of the efforts of the semantic web.
Typically, knowledge is represented using the Resource Description Framework (RDF) (RDf,
2013). Integrating the knowledge from RDF data in data analytics increases the value of the
generated insights, however, the different way to represent information in RDF compared to the
relational model makes it hard (i) to integrate RDF in the physical layer, and (ii) to exploit the
research that has already been done on database system engines to execute RDF queries.

Before exploring the approaches taken to address these challenges we will dive in more details
into which parts of the DBMS architectures play a key role in the aforementioned challenges.

1.4 Implications on the DBMS architecture

As we discussed in Section 1.2 the four layers of a DBMS are (i) the parser, (ii) the optimizer, (iii)
the query engine, and (iv) the storage manager. Only the storage manager is copying data back
and forth to its physical storage, typically hard disk drives (HDD). Nevertheless, the underlying
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assumption that data are ultimately stored on HDD plays a key role in the design of the optimizer
and the query engine, in addition to the storage manager.

In particular, the query engine is equipped with algorithms implementing database operators -
such as projection, selection, join, aggregates and so on - that are optimized for data residing on
HDD. In turn, the optimizer selects the optimal variant of an algorithm using the cost assumptions
of a HDD-equipped storage manager. The disk page assumption had to be maintained even
when specialized algorithmic optimizations were proposed. For example, cache-conscious
optimizations, like both the PAX data layout (Ailamaki et al., 2001) where a database disk page
is internally organized in per-attribute minipages, and the Fractal B+-Trees (Chen et al., 2002)
where cache-optimized trees were embedded in disk-optimized trees, were optimized for cache
performance, maintaining, however, the HDD page assumption. Moreover, even fundamental
changes in the query engine architecture such as the design of pure column-store systems (Abadi,
2008; Boncz, 2002) are motivated by the characteristics of the memory hierarchy including both
main memory and secondary storage. While HDD is the most commonly used technology for
secondary storage, a wealth of new storage technologies has been under development (Freitas,
2009) the last few years creating new storage devices - Solid State Drives (SSD) - with different
characteristics (more details in Section 2.1). By re-designing DBMS so as to exploit SSD we have
the opportunity to augment their functionality and their capabilities to address the aforementioned
data analytics challenges.

In fact, the data analytics challenges presented in Section 1.3.1 are connected very well with
the storage layers used by DBMS. Data freshness hurts query response time because of the
interference between the sequential reads of range scans and the random updates. Recent
approaches that have been proposed to address this problem either increase the memory overhead
of the system, or they cannot offer competitive performance (more details in Section 2.2.1).
Supporting analytical queries with high concurrency can easily create contention of the resources
of the storage layer. Tree indexing structures have been traditionally designed assuming that they
will be stored on HDD, which have large and cheap capacity and slow random access performance.
Finally, RDF management systems have been battling between an application-tailored storage
solution and a DBMS backed-up storage solution. The first can offer typically better performance
for a specific application, while the latter offers compatibility with other applications and uses
the benefits of several decades of research on the storage layer and the query engine.

1.5 Solid-State Storage and Work Sharing for Efficient Scaleup Data
Analytics

In this thesis we study the evolving requirements of data analytics engines and identify how
new non-volatile solid state storage and query execution run-time optimizations help addressing
these requirements. We outline the differences between traditional and solid-state storage and
propose new algorithms, data organizations and indexing structures, that are solid-state aware.
Furthermore, we study existing run-time optimizations based on work sharing, and we compare,
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integrate and redesign work sharing techniques.

To query and analyze data efficiently there have been two fundamental approaches: (i) distribution
of the work in embarrassingly parallel tasks (when possible), and (ii) aggressive internal redesign
of query engines. We extend these two approaches by adding in the equation the need of
hardware-aware and, in particular, solid-state storage aware redesign of query engines focusing
on optimizing the performance of a single node. The shared-nothing approach of finding
embarrassingly parallel tasks was largely-based on the fact that in order to increase the processing
power and the storage performance one would need the aggregate performance of multiple nodes.
For example, parallelism was achieved by using several single-core machines and I/O bandwidth
was achieved by huge arrays of disks or aggregate bandwidth of disks in different machines. The
recent advancements of hardware, however, change these trends drastically. The evolution of
solid-state storage with flash-based devices as the most popular example allows us to use a single
solid-state device to achieve the same bandwidth as multiple disks and, at the same time, the
trend towards multi-core and many-core processors gives huge processing power to a single node.
Thus, we propose techniques to optimize the behavior of our systems in the single-node case - as
an orthogonal direction of distributing the work to multiple nodes - by building hardware-aware,
storage-aware and workload-aware query engines.

Using solid-state storage as an additional level in the memory hierarchy, combined with
intelligent data sharing, we enable data analytics engines to improve throughput and response
times, while maintaining data freshness.

1.5.1 Evolution of the storage hierarchy

The placement of solid-state storage in the memory hierarchy is an evolving research problem
since the available technologies themselves are evolving. While the first widespread solid-state
storage technology is flash, today a wealth of technologies is under research and development (Fre-
itas, 2009), with Memristor and Phase Change Memory (PCM) being two of the most researched
technologies. Flash-based SSD have been used either as a layer in between main memory and
secondary storage or as alternative secondary storage. Future research of solid-state storage
includes, however, studying the implication of using non-volatile main memory either exclusively
or side-by-side with (volatile) main memory. Solid-state storage characteristics are different than
HDD and main memory, nevertheless there exist partial commonalities. Therefore, integrating
solid-state storage in the DBMS hierarchy requires designing new algorithms as well as reusing
algorithms that were initially developed for other purposes.

The first step to understand how to integrate new storage technologies in a DBMS is to place
these in the memory hierarchy. Traditionally, the top part of the memory hierarchy consists of
the CPU registers and the cache memories, while moving towards its bottom part there is main
memory, and various layers of secondary storage. The fundamental tradeoff between different
levels of the memory hierarchy is capacity vs. access latency. The higher levels have small access
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latency while the lower levels have larger capacity. Contrary to the aforementioned memory
hierarchy levels, solid-state storage equipped devices have asymmetric read and write latency.
The asymmetry makes it unclear whether such devices should be yet another level of the hierarchy
- in-between main memory and secondary storage - or they should be used side by side with main
memory or secondary storage depending on the application.

In this thesis we synthesize the benefits of solid-state storage with the benefits of the other levels
of the memory hierarchy. To that end, we use solid-state storage to exploit its fast random read
performance and we complement the large capacity offered by hard disks. Moreover, we identify
the need to redesign data structures and algorithms in order to take advantage the benefits of
solid-state storage to offer to enhance data analytics performance, applicability and functionality.

We build hardware-aware data structures by studying the changes of the available storage
technologies and by integrating efficiently to the existing systems. Furthermore, we build
workload-aware algorithms which are capable of supporting the requirements of data analytics
applications; data freshness and concurrency.

1.5.2 Summary and Contributions

Databases systems today are used for workloads with ever evolving requirements and character-
istics. As more and more applications use the power of data analytics in their operations, data
analytics systems face new challenges regarding the volume, the velocity, and the variety of data.
We find that the new data analytics challenges can be addressed by careful integration of new
solid-state storage technologies in the system.

This thesis makes the following key technical contributions:

1. Efficient on-line updates in analytical queries. We exploit fast random reads from SSDs
and introduce the MaSM algorithms to support high-update rate with near-zero overhead in
concurrent analytical queries. MaSM scales for different data sizes and delivers the same
response time benefits for a variety of different storage configurations.

2. Quantify the benefits of work sharing in data analytics. We show that work sharing
in the query engine of a data analytics system offers increased throughput and minimal
latency overhead. As the number of concurrent queries in today’s analytics applications
increases, there are more opportunities to exploit work sharing to offer higher throughput
with small latency overhead and sublinear increase in processing and storage resources.

3. Competitive, space efficient approximate tree indexing. We combine pre-existing work-
load knowledge of archival, social or monitoring data with probabilistic data structures to
offer tailored indexing with smaller size footprint by one order of magnitude or more than
traditional index structures, yet with competitive search performance.

4. Data page layout for knowledge-based data. We propose a new data layout for knowledge-
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based data (using the RDF data model), which offers (i) increased locality for the properties
of each subject, and (ii) low overhead for linkage queries. This approach outperforms the
state-of-the-art for queries over a popular RDF datasets.

The work presented in this thesis, leading to the aforementioned technical contributions, serve as
a platform to show the following key insights:

1. Solid-state storage helps us to offer increased functionality by complementing traditional
hard disk drives with fast random reads and supporting reading sequential streams. The
augmented functionality mitigates workload interference and changes the optimization
goals since random reads are not the major bottleneck anymore.

2. Using solid-state storage devices as drop-in replacements of traditional storage does not
lead to the desired benefits. On the contrary, successfully integrating solid-state storage
devices in DBMS requires to (i) respect their limitations - e.g., avoid excessive number of
writes and minimize random writes - and to (ii) use solid-state devices in tandem with hard
disks using the strong points of both.

3. Sharing work amongst queries that have commonalities in their respective query plans is
key to offering judicious resource utilization for workloads with increasing concurrency.
We show that both (i) ad-hoc sharing, and (ii) batching queries using global query plans,
offer stable performance with lower resource utilization than traditional query-centric
execution.

This work paves the way for databases engines to address the requirements of emerging workloads
by carefully integrating emerging storage technologies and redesigning execution algorithms.
Furthermore, we believe that the methodology and the principles used generalize to other systems
and applications that face the challenge to integrate new storage hardware in their stack.

1.5.3 Published papers

The material in this thesis has been the basis for a number of publications in major international
refereed venues in the area of databases and database management systems.

1. M. Athanassoulis, A. Ailamaki, S. Chen, P. Gibbons and R. Stoica. Flash in a DBMS:
Where and How?, in IEEE Data Engineering Bulletin, vol. 33, num. 4, 2010.

2. M. Athanassoulis, S. Chen, A. Ailamaki, P. Gibbons and R. Stoica. MaSM: Efficient Online
Updates in Data Warehouses. ACM SIGMOD International Conference on Management
of Data, Athens, Greece, 2011.

3. M. Athanassoulis, B. Bhattacharjee, M. Canim and K. A. Ross. Path Processing using Solid
State Storage. 3rd International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures (ADMS), Istanbul, Turkey, 2012.
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4. I. Psaroudakis, M. Athanassoulis and A. Ailamaki. Sharing Data and Work Across Concur-
rent Analytical Queries. 39th International Conference on Very Large Data Bases (VLDB),
2013.

5. M. Athanassoulis and A. Ailamaki. BF-Tree: Approximate Tree Indexing. Submitted for
publication.

6. M. Athanassoulis, S. Chen, A. Ailamaki, P. Gibbons and R. Stoica. Online Updates on
Data Warehouses via Judicious Use of Solid-State Storage. Submitted for publication.

1.6 Outline (How to read this thesis)

The rest of the thesis is organized as follows. Chapter 2 discusses previous research on data
analytics engines, storing and managing RDF data, and work sharing. Moreover, Chapter 2 details
key hardware and storage trends that drive design decision in database systems. Regarding data
freshness in analytical queries, we discuss relevant work which inspired the proposed algorithms,
and its shortcomings when it comes to offering the necessary design guarantees for solid-state
storage. In Chapter 2 we further discuss indexing techniques for archival data and indexing
techniques for data stored on solid-state storage and we outline how the proposed approximate
indexing combines the best of both words. Finally, Chapter 2 discusses the state-of-the-art for
storing and managing RDF data and for implementing work-sharing in query engines.

After reading Chapter 2, Chapters 3-6 can be read independently. Chapter 3 shows how to exploit
the fast random reads of solid-state disks in order to support high-update rate and concurrent
analytical queries with near-zero overhead. We introduce MaSM, a set of algorithms to organize
data on SSDs and merge them efficiently combining SSDs random read performance, and HDD
sequential scan performance with an efficient external merging scheme. We use a solid-state
storage cache to store the incoming updates, which are organized in sorted runs, similar to the
sort order of the main data. Any query that needs to use some of the cached updates merges at
run-time the updates with main data. We model this merge as an external merge-sort join. We
show that the proposed techniques achieve negligible overhead in the query execution time and
increase the sustained update rate by orders of magnitude when compared with in-place updates.

Chapter 4 discusses how existing work-sharing techniques for analytical query engines can be
used to use the available resources efficiently in the presence of analytical workloads with high
number of concurrent queries. We compare the two main categories of work-sharing, we integrate
them and propose a different approach of ad-hoc work-sharing which make work-sharing always
beneficial. We find that existing approaches for ad-hoc sharing are based on the assumption of
uni-core processors, hence failing to deliver performance benefits in the multi-core case.

Chapter 5 shows how the combination of workload knowledge and probabilistic data structures
enables us to build a space efficient, yet competitive tree index tailored for solid-state storage.
The proposed index, BF-Tree, departs from both paradigms of indexes for archival data and
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solid-state aware indexes and addresses the union of the requirements of the two. The proposed
tree structure exploits the implicit clustering or ordering of archival data and stores location
information with high granularity, using a probabilistic data structure (Bloom filters). This results
in a small increase in number of unnecessary reads which can be tolerated either if the underlying
storage does not suffer from random access interference (i.e., if it is solid-state storage), or if the
false positives are very low and on average do not hurt performance. We show that on average
the proposed tree structure can achieve competitive search times, with smaller index size, when
compared with traditional indexing techniques.

Chapter 6 introduces a new data page organization, RDF-tuple, in order to allow knowledge-
based data, stored as RDF data, to be compatible with traditional data analytics systems. RDF-
tuple offers better performance by increasing locality and minimizing unnecessary reads when
traversing the data. We build a prototype repository which used the proposed data layout. We
show that it offers competitive performance in a set of experiments against the research state-of-
the-art system and, further, investigate the impact of the proposed data layout when used on top
of novel storage such as flash-based and PCM-based 3 solid-state drives.

Chapter 7 discusses some of the future research goals regarding integrating solid-state storage
and building run-time optimizations in data analytics engines. We discuss the forthcoming
changes in terms of the storage hierarchy and their impact in data analysis systems design. We
outline research directions based on deeper integration of solid-state storage in the DBMS stack.
Moreover, we observe the similar pattern of challenges that computer systems will face when
persistent main memory becomes available, and we outline the parallel between DBMS and
persistent storage, and operating systems and persistent main memory. Then, we discuss how
work sharing techniques can be used in the context of column-stores or hybrid (between row and
column oriented storage) data analysis systems. Last but not least, we discuss the benefits of
integrating solid-state storage in the storage hierarchy used in the context of systems employing
work sharing.

3See Chapter 2 for more details on the storage technologies under development.
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2 Related Work and Background

In this thesis we highlight the importance of understanding the characteristics and the requirements
of the workloads before we decide how to best exploit solid-state storage. There has been a
lot of related work regarding the usage of flash as caching layers and regarding specialized
optimizations in accessing data (e.g. flash-aware indexing structures). Our study works towards
the thesis that the variability of storage technologies – and hence of the behavior of storage
devices – leads to the necessity to assess how solid-state storage can address the requirements of
each workload and we present four studies for workloads with different characteristics.

2.1 Hardware Trends in Storage

2.1.1 Fifty years of hard disks

For the past fifty years, hard disk drives (HDDs) have been the building blocks of storage
systems. They have been the slowest component of many computer systems, because of long data
access times as well as limitations to the maximum bandwidth offered. HDDs have the slowest
increase in performance compared to main memory and CPU, and the gap widens with every
hardware generation. Since the 1980s, HDD’s access time is almost the same and bandwidth
lags behind capacity growth (in 1980, reading an entire disk took about a minute; the same
operation takes four hours today as shown in Table 2.1). CPU power increased dramatically by
orders of magnitude, memory size and memory bandwidth grew exponentially, and larger and
deeper cache hierarchies are increasingly successful in hiding main memory latency. The reasons
behind this trend lie deeply in the physical limitations of HDDs where moving parts put a hard
constraint on how fast data can be accessed and retrieved (HDD’s performance is dictated by
the seek time due to the movement of the arm and the rotational delay due to the rotation of the
platter (Ramakrishnan and Gehrke, 2002, Chapter 9.1.1)).

Figure 2.1 shows in more detail the evolution of hard disks over the last fifty years. In the figure
we can see the evolution of five metrics throughout time, from 1956 where IBM introduced the
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Figure 2.1: Fifty years of HDD

first hard disk until the devices that are available today in the 2010s. Note that the x-axis of
the figure is time in terms of years and the y-axis is a logarithmic axis for every metric. The
first line (light blue) corresponds to the price per storage capacity which we quantify as US
dollars per gigabyte. Extrapolating the price of the 1956 IBM disk, which could hold about
3.5MB, the price per GB was 15.3M USD/GB. Today, the price has dropped by eight orders
of magnitude to 0.08$/GB. The second line (orange) shows the trend in terms of the rotational
speed. We observe that there has been a slow but steady increase from 1.2K rotations per minute
(RPM) in 1956 to 15K RPM in 2000. Since then, however, the rotational speed stagnated due
to practical reasons (friction and power consumption) and today’s disks typically have between
7.2K RPM and 10K RPM, mainly because having more has too high power consumption. The
third line (dark blue) shows how latency evolved from 250ms for the 1956 device to 2-8ms for
the latest devices. Latency is a function of rotational speed, hence, since 2000 there has been
no significant improvement, other than building devices with smaller form factor which require
smaller movements. The fourth line (gray) shows the time needed to perform a full sequential
scan over a device with the representative size of its time. Essentially, this line shows that hard
disks performance, contrary to their capacity, stopped scaling. While in the 1980s an entire hard
disk needed only eight second to be read, today we would require anywhere between two and
four hours. The fifth and final line (medium darkness blue) shows the evolution of the density of
the devices for the last two decades that there is accurate information. This trend corroborates
that device capacity still scales: from 1990s until today the density has increased about four
orders of magnitude from 0.1GB/in2 to 800GB/in2.

2.1.2 From hard disks to solid-state storage

Today it is clear that HDD technology does not provide the improvement needed to pace with
increasing compute power, and rotating drives will be eventually replaced by other technologies.
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The best candidate for this task, flash memory, has been getting significant momentum over the
past few years and is becoming the de facto storage medium for increasingly more applications.
Flash memory started as a storage solution for small consumer devices two decades ago and has
evolved into high-end storage for performance sensitive enterprise applications. Flash promises
to fill in the performance gap created by HDD and also has several side benefits such as lower
power consumption and better mechanical reliability. A comparison of several characteristics of a
state-of-the-art flash device of the 2010s with traditional hard disk devices from the 1980s and the
2010s is presented in Table 2.1. Flash is perhaps the best known HDD challenger as a pervasive
storage technology but there are also other competing technologies like phase-change memory
(PCM) developed by IBM, memristor developed by HP, and others yet immature technologies
backed by the biggest hardware manufactures worldwide (Burr et al., 2008).

Device Capacity Seq. BW Rnd acc. Rnd acc. Ratio Seq. Scan Cost Cost
(MB) (MB/s) (ms) (MB/s) (s) ($/MB) ($)

HDD 1980 100 1.2 28.3 0.28 1:4.35 83 200 20000
HDD 2010 1000000 80 8 0.98 1:81.92 12500 0.0003 300
Flash 2010 100000 700 0.026 300 1:2.33 143 0.02 2000

Table 2.1: HDD trends compared and flash characteristics

As solid-state devices (SSD) become increasingly adopted by several applications – including
data analytics (Barroso, 2010) – the sheer amount of data stored on SSD increases exponentially
thus, creating the need to create appropriate techniques to store, manage, retrieve and process
data from SSD.

2.1.3 Flash-based solid-state storage

Since the introduction of flash memory in the early 90’s, flash storage devices have gradually
spread to more and more applications and are now a standard storage solution in embedded
devices, laptops and even desktop PCs. This trend is driven by the exponential growth of flash
chip capacity (flash chips follow Moore’s law as they are manufactured using the same techniques
and equipment as integrated circuits), which drives down exponentially their price per GB.

Flash devices have fundamental differences compared with hard disks. First, flash devices have
no moving parts and random accesses are not penalized by long seek times or rotational delays,
so sequential read accesses are no longer necessary. Second, asymmetric performance between
reads and writes arises because NAND memory cells cannot be written directly (updated in place)
but instead require slow and costly erase-then-write operations. In addition, NAND cell erasure
must be performed for a large number of flash pages (typical values today are 64-256 pages of
512B-4KiB each), while pages can be read individually. Whenever a page is written its physical
neighbors must be moved elsewhere to allow the erase operations, causing additional data copies
and exacerbating the performance asymmetry between reads and writes. Third, because of the
elevated voltage required by an erase operation, NAND cells can only tolerate a limited number
of erasures. To prolong the life of flash chips, the firmware must spread erase operations evenly to
avoid wearing out individual areas and use error correction codes (ECCs) to ensure data integrity.
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Flash device manufacturers try to hide the aforementioned issues behind a dedicated controller
embedded in the flash drive. This abstraction layer, called the Flash Translation Layer (FTL),
deals with the technological differences and presents a generic block device to the host OS.
The main advantage of an FTL is that it helps to maintain backward compatibility, under the
assumption that the generic block device is the prevailing abstraction at the application level. In
practice, however, most performance-critical applications developed over the last 30 years are
heavily optimized around the model of a rotating disk. As a result, simply replacing a magnetic
disk with a flash device does not yield optimal device or DBMS performance, and query optimizer
decisions based on HDD behavior become irrelevant for flash devices. Moreover, the complex
and history-dependent nature of the interposed layer affects predictability.

2.1.4 Phase Change Memory

PCM stores information using resistance in different states of phase change materials: amorphous
and crystalline. The resistance in the amorphous state is about five orders of magnitude higher than
the crystalline state, and it differentiates between 0 (high resistance) and 1 (low resistance) (Chen
et al., 2011; Papandreou et al., 2011). Storing information on PCM is performed through
two operations: set and reset. During the set operation, current is applied on the device for a
sufficiently long period to crystallize the material. During the reset operation higher current is
applied for shorter duration in order to melt the material and then cool it abruptly, leaving the
material in the amorphous state. Unlike flash, PCM does not need the time consuming erase
operation to write the new value. PCM devices can employ a simpler driver than the complex
FTL that flash devices use to address the wear leveling and performance issues (Akel et al., 2011).
In the recent literature there is already a discussion about how to place PCM in the existing
memory hierarchy. While proposed ideas (Chen et al., 2011) include placing PCM side-by-side
DRAM as an alternative non-volatile main memory, or even using PCM as the main memory of
the system, current prototype approaches consider PCM as a secondary storage device providing
PCIe connectivity. There are three main reasons why this happens: (i) the endurance of each PCM
cell is typically 106–108, which is higher than flash (104–105 with a decreasing trend (Abraham,
2010)) but still not enough for a main memory device, (ii) the only available interface to date is
PCIe, and (iii) the PCM technology is new, so the processors and the memory hierarchy do not
yet have the appropriate interfaces for it.

The Moneta system is a hardware-implemented PCIe storage device with PCM emulation by
DRAM (Caulfield et al., 2010, 2012). Performance studies on this emulation platform have
highlighted the need for improved software I/O latency in the operating system and file system.
The Onyx system (Akel et al., 2011) replaces the DRAM chips of Moneta with first-generation
PCM chips,1 yielding a total capacity of 10 GB. Onyx is capable of performing a 4KB random
read in 38µs and a 4KB write request2 in 179µs. For a hash-table based workload, Onyx

1The PCM chips used by Onyx are the same as those used in our profiled device, but the devices themselves are
different.

2The write numbers for Onyx use early completion, in which completion is signaled when the internal buffers have
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performed 21% better than an ioDrive, while the ioDrive performed 48% better than Onyx for a
B-Tree based workload (Akel et al., 2011).

The software latency (as a result of operating system and file system overheads) is measured to
be about 17µs (Akel et al., 2011). On the other hand, the hardware latency for fetching a 4K
page from a hard disk is on the order of milliseconds and for a high-end flash device is about
50µs. Early PCM prototypes need as little as 20µs to read a 4K page increasing the software
contribution in relative latency from 25% (17µs out of 67µs) for a flash device like FusionIO, to
46% (17µs out of 37µs) for a PCM prototype. Minimizing the impact of software latency is a
relatively new research problem acknowledged by the community (Akel et al., 2011). Caulfield
et al. (Caulfield et al., 2012) point out this problem and propose a storage hardware and software
architecture to mitigate the overheads to take better advantage of low latency devices such as
PCM. The architecture provides a private, virtualized interface for each process and moves file
system protection checks into hardware. As a result, applications can access file data without
operating system intervention, eliminating OS and file system costs entirely for most accesses.
The experiments show that the new interface improves latency and bandwidth for 4K writes by
60% and 7.2x respectively, OLTP database transaction throughput by up to 2.0x, and Berkeley-DB
throughput by up to 5.7x (Caulfield et al., 2012).

Jung et al. (Jung et al., 2011) ran the fio profiler over the same Micron PCM prototype available
to us and a popular flash device (OCZ Revodrive), showing qualitative differences between the
PCM device and the flash device. The PCM device, unlike the flash device, shows no difference
between latency for random and sequential accesses for different values of IO depth (number of
concurrent outstanding requests) or page sizes.

Lee et al. (Lee et al., 2010) introduce a new In-Page Logging (IPL) design that uses PCRAM
as a storage device for log records. They claim that the low latency and byte addressability of
PCRAM can allow one to avoid the limitations of flash-only IPL. Papandreou et al. (Papandreou
et al., 2011) present various programming schemes for multilevel storage in PCM. The proposed
schemes are based on iterative write-and-verify algorithms that exploit the unique programming
characteristics of PCM in order to achieve significant improvements in resistance-level packing
density, robustness to cell variability, programming latency, energy per-bit and cell storage
capacity. They present experimental results from PCM test-arrays to validate the proposed
programming schemes. In addition, the reliability issues of multilevel PCM in terms of resistance
drift and read noise are discussed.

2.1.5 Flash vs. PCM

In this section we perform a head-to-head comparison between a state-of-the-art PCI-based
FusionIO flash device and an early PCI-based PCM-based prototype. This comparison provides

enough information to complete the write, but before the data is physically in the PCM. Early completion is also used
by SSD devices, supported by large capacitors to ensure that the writes actually happen in case of a power failure.
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(a) (b)

Figure 2.2: Read latency for (a) flash (zoomed in the most relevant part) and (b) PCM

some early insights about what PCM-based devices can offer when compared with existing
flash-based devices and as a roadmap of what we can expect from future PCM-based devices.

Experimental methodology. The experimental setup is the same as described in Section 6.2.
We show that PCM technology has already an important advantage for read-only workloads.
We present several experiments comparing the read latency of the aforementioned devices.
In particular, we measure the latency for direct access to the devices bypassing any caching
(operating system or file system) using the O_DIRECT and O_SYNC flags in a custom C
implementation.

Read latency. The first experiment measures the read latency per 4K I/O request using flash and
PCM. We perform ten thousand random reads directly to the device. In the flash case, there are a
few outliers with orders of magnitude higher latency, a behavior encountered in related literature
as well (Bouganim et al., 2009; Chen, 2009). Figure 2.2(a) is in fact a zoomed in version of the
overall data points (excluding outliers) in order to show the most interesting part of the graph;
there is some variation between 65µs and 90µs. The average read latency for 4K I/Os using flash
is 72µs. The standard deviation of the read latency in flash is 60% of the average read latency.
The PCM device, however, behaves differently both qualitatively and quantitatively. Firstly,
there are no outliers with orders of magnitude higher read latency. The values are distributed
between 34µs and 95µs with the vast majority (99%) focused in the area 34–40µs (Figure 2.2(b)),
averaging 36µs. Secondly, the standard deviation in terms of a percentage of the average is much
smaller compared with flash, only 3%. The first two experiments show clearly that the very
first PCM devices will already be competitive for latency-bound read-intensive workloads both
because of the average performance and the increased stability and predictability of performance.

Write latency. For write intensive workloads the available PCM prototype performs worse than
the popular flash representative device, but it is still more stable. In particular, the PCM device
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(a) (b)

Figure 2.3: Write latency for (a) flash (zoomed in the most relevant part) and (b) PCM

has average write latency 386µs with 11% standard deviation while the flash device has average
write latency 241µs with 21% standard deviation, which is depicted in Figures 2.3(a) and (b).
On the other hand, the basic PCM firmware can support only 40MB/s writes. This prototype
limitation in write performance is attributed to the fact that it was designed with read performance
in mind. Newer PCM chips, however, are expected to increase write speed significantly over
time, consistent with the raw capability of the technology, bridging the gap in write performance
at the device level. Note that the flash device uses a complex driver (the result of 3 or more years
of optimizations and market feedback) while the PCM prototype uses a naive driver that provides
basic functionality.

The measured read and write latency numbers are consistent with numbers from Onyx (Akel
et al., 2011), except that write latency is higher because the PCM device at hand does not use
early completion.

Discussion. PCM is becoming extensively prototyped and tested as a candidate for either main
memory or flash replacement. The characteristics of PCM are expected to match main memory in
terms of access latency and density, however, the initial applications for PCM have been targeting
techniques to replace flash. PCM, like flash, is non volatile and future research questions include
how to exploit non volatile main memory.

2.1.6 More solid-state storage technologies

While flash and PCM are two of the most researched and developed solid-state storage technolo-
gies, there is a plethora of other technologies that are being pursued. A few examples include
variations of flash (SONOS and TANOS flash), ferroelectric RAM, magnetic RAM, resistive
RAM and more (Burr et al., 2008; Freitas, 2009). Another solid-state storage technology under
development is Memristor which is based on circuits that have variable resistance (Strukov et al.,
2008).
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2.1.7 Sequential Reads and Random Writes in Storage Systems

Concurrently with this thesis, Schindler et al. (Schindler et al., 2011) proposed exploiting
flash as a non-volatile write cache in storage systems for efficient servicing of I/O patterns
that mix sequential reads and random writes. Compared to the online update problem in data
warehouses, the settings in storage systems are significantly simplified: (i) an “update record”
in storage systems is (a new version of) an entire I/O page and (ii) ACID is not supported for
accessing multiple pages. As a result, the proposal employs a simple update management scheme:
modifying the I/O mapping table to point to the latest version of pages. Interestingly, the proposal
exploits a disk access pattern, called Proximal I/O, for migrating updates that write to only 1% of
all disk pages.

2.2 Data Analysis Systems

Data analytics provides business and research insight from a massive collection of data being
continuously augmented. Historically, however, updates to the data were performed offline using
bulk insert/update features – executed mainly during extensive idle-times (e.g., at night). The
quick reacting, 24x7 nature of business today cannot tolerate long delays in updates, because the
value of the insights gained drops fast when the data used are stale (Inmon et al., 2003). Thus,
data analysis systems supporting efficient real-time updates have been the goal of recent research
and business efforts (Becla and Lim, 2008; Oracle, 2004, 2013; White, 2002; Polyzotis et al.,
2008). State-of-the-art data analysis systems, however, today often fail to support fast analysis
queries over fresh data.

A demanding data-intensive application is the utilization of systematically organized knowledge
to increase the quality of the performed analysis. The semantic web (Shadbolt et al., 2006)
is an effort to allow storing, managing and searching machine readable information using the
Resource Description Framework (RDF) (RDf, 2013) model to represent the data. Several
applications, including scientific (Apweiler et al., 2004), business and governmental (Data.gov,
2013; Data.gov.uk, 2013), use this data representation model, a trend which is strengthened by
efforts like Linked Open Data (LOD) (Bizer et al., 2009a). LOD, to date, consists of more than
25 billion RDF triples collecting data from more than 200 data sources. Data analytics engines
recently started considering semantic RDF databases as sources for their analysis. A celebrated
example of the combination of traditional data analytics, knowledge representation and reasoning
and other techniques (e.g., machine learning) is the IBM Watson Computer (Ferrucci et al., 2010)
which participated successfully in the knowledge game "Jeopardy!". Querying RDF datasets,
however, poses a new challenge for data analytics engines: efficiently querying semantic data
that form graphs which have edges for both semantic and relational connections.

The majority of data stored and used by data analytics engines are stored based on a specific
dimension, often a time one. Accessing ordered, or partitioned, data efficiently by data analytics
engines is already a design goal by the Netezza (Francisco, 2011) engine. Moreover, the advent of
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solid-state storage results in storing more and more data on such devices. The capacity, however,
is much more expensive in terms of $ per GB compared with that of traditional hard disks. Hence,
a key problem is indexing data with small capacity requirements taking into account that this
data are often sorted or partitioned.

2.2.1 High-Throughput Updates and Data Analysis

The need to augment the functionality of analysis systems with high-throughput update capability
has been recognized in the literature.

In-Memory and External Data Structures. In Chapter 3 we present MaSM, a novel approach
to offer online updates in data analytics with the usage of solid-state storage. MaSM extends
prior work on in-memory differential updates (Héman et al., 2010; Stonebraker et al., 2005) to
overcome the limitation on high migration costs vs. large memory footprint. We assume I/O to be
the main bottleneck for data warehousing queries and therefore the focus of our design is mainly
on the I/O behaviors. On the other hand, prior differential update approaches propose efficient
in-memory data structures, which is orthogonal to the MaSM design, and may be applied to
MaSM to improve CPU performance for CPU-intensive workloads.

Handling Updates with Stacked Tree Structures. The state-of-the-art approach to support
online updates with minimal overhead is differential updates. Positional delta trees (Héman
et al., 2010) provide efficient maintenance and ease in merging differential updates in column
stores. They defer touching the read-optimized image of the data as long as possible and buffer
differential updates in a separate write-store. The updates from the write-store are merged with
the main data during the column scans in order to present to the user an up-to-date version of
the data. O’Neil et al. (1996) proposed log-structured merge tree (LSM) which is organized as
a collection of trees (two or more) stacked vertically, supporting high update rate of indexing
structures of a database, like B-trees. The first level of LSM is always in-memory and the last
on disk. The updates are initially saved in the first level and they are consequently moved to the
next levels (in batches) in order to reach the last level. Searching using LSM requires to traverse
all stacked trees as each one is not inclusive of the subsequent trees. While LSM is capable of
sustaining a high update rate, and – if tuned appropriately – delivering good read performance, it
applies more writes per update than MaSM as we detail in Chapter 3 (Section 3.4.5).

LSM has inspired other approaches that maintain, index and query data. FD-Tree (Li et al.,
2010) is a tree-structure which extends LSM by reducing the read overhead and by allowing
flash-friendly writes. The key ideas are to limit random writes to a small part of the index and
to transform random writes to sequential writes. FD-Tree assumes a fixed ratio between two
consecutive levels in order to offer the best insertion cost amortization, which is the optimal case
for LSM as well. As we discuss in Chapter 3 (Sections 3.2.3 and 3.4.5), this setup incurs an
increased number of writes per update since every update is propagated a number of times.
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The stepped-merge algorithm (Jagadish et al., 1997) stores updates lazily in a B+-Tree organiza-
tion by first maintaining updates in memory in sorted runs and, eventually, form a B+-Tree of
these updates using an external merge-sort. The stepped-merge approach aims at minimizing ran-
dom I/O requests. On the other hand, MaSM focuses on minimizing main memory consumption
and the unnecessary writes on the flash device at the expense of more, yet efficient, random read
I/O requests.

The quadtree-based storage algorithm (McCarthy and He, 2011) was proposed concurrently and
independently of the MaSM algorithms presented in Chapter 3. It uses in-memory ∆-quadtrees to
organize incoming updates for a data cube. The ∆-quadtrees are used to support the computation
of specific operations like SUM, COUNT and AVG over a predefined data cube. When the
available memory is exhausted, the ∆-quadtrees are flushed to an SSD. Subsequent range queries
are answered by merging the ∆-quadtrees in memory, the ∆-quadtrees on flash, and the main
data in the data cube. Contrary to the quadtree-based storage algorithm, MaSM is not part of the
aggregate calculation allowing for a general purpose solution to handle incoming updates in a
DW.

Extraction-Transformation-Loading for Data Warehouses. We focus on supporting efficient
query processing given online, well-formed updates. An orthogonal problem is an efficient
ETL (Extraction-Transformation-Loading) process for data warehouses (Oracle, 2013; Polyzotis
et al., 2008). ETL is often performed at a data integration engine outside the data warehouse
to incorporate changes from front-end operational data sources. Streamlining the ETL process
has been both a research topic (Polyzotis et al., 2008; Simitsis et al., 2009) and a focus of a
data warehouse product (Oracle, 2013). These ETL solutions can be employed to generate the
well-formed updates to be applied to the data warehouse.

2.2.2 Adaptive organization of data and updates

Database cracking and adaptive indexing. There is a wealth of differential approaches to
maintain indexes and other data structures in order to enhance query performance. Database
cracking (Idreos et al., 2007) reorganizes the data in memory to match how queries access data.
Adaptive indexing (Graefe and Kuno, 2010; Graefe et al., 2012) follows the same principle
as database cracking by focusing the index optimization on key ranges used in actual queries.
Their hybrids for column stores (Idreos et al., 2011) take the best of the two worlds. Contrary
to MaSM, database cracking, adaptive index, and their hybrids focus on static data which are
dynamically reorganized (or the corresponding indexes optimized) according to the incoming
queries. The MaSM algorithms enable long running queries to see no performance penalty by
allowing concurrent updates.

Partitioned B-trees. Graefe proposed partitioned B-trees (Graefe, 2003) in order to offer efficient
resource allocation during index creation, or data loading into an already indexed database. The
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core idea is to maintain an artificial leading key column to a B-tree index. If each value of this
column has cardinality greater than one, the index entries are effectively partitioned. Such an
indexing structure (i) permits storing all runs of an external sort together, (ii) reduces substantially
the wait time until a newly created index is available and (iii) solves the dilemma whether one
should drop the existing index or update the existing index one-record-at-a-time when large
amount of data is added to an already indexed large data warehouse. Partitioned B-trees can work
in parallel with MaSM in order to offer efficient updating of the main data as well as efficient
indexing in data warehouses.

2.2.3 Orthogonal Uses of SSDs for Data Warehouses

Orthogonal to the research presented in this thesis, previous studies have investigated placing
objects (such as data and indexes) on SSDs vs. disks (Canim et al., 2009; Koltsidas and Viglas,
2008; Ozmen et al., 2010), including SSDs as a caching layer between main memory and
disks (Canim et al., 2010b), and as temporary storage for enhancing performance of non-blocking
joins (Chen et al., 2010).

2.3 Optimizing Data Analysis Queries Using Work-Sharing

In this section, we provide the necessary background on work sharing techniques in the literature.
We start by shortly reviewing related work, and continue to extensively review work related to
Simultaneous Pipelining (SP) and Global Query Plans (GQP), which compose our main area of
interest. In Table 2.2, we summarize the sharing methodologies used by traditional query-centric
systems and the research prototypes we examine.

System
Traditional

query-centric
model

QPipe CJOIN DataPath SharedDB

Sharing in
the

execution
engine

Query Caching,
Materialized
Views, MQO

Simultaneous
Pipelining

Global Query
Plan

(joins of Star
Queries)

Global Query
Plan

Global Query Plan
(with Batched

Execution)

Sharing in
the

I/O layer

Buffer pool
management
techniques

Circular scan
of

each table

Circular scan of
the fact table

Asynchronous
linear scan of

each disk

Circular scan of
in-memory table

partitions

Storage
Manager

Any Any Any

Special I/O
Subsystem
(read-only
requests)

Crescando
(read and update

requests)

Table 2.2: Sharing methodologies employed by query-centric models and the research prototypes
we examine.
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2.3.1 Sharing in the I/O layer and in the execution engine

Sharing in the I/O layer. By sharing data, we refer to techniques that coordinate and share the
accesses of queries in the I/O layer. The typical query-centric database management system
(DBMS) incorporates a buffer pool and employs eviction policies (Chou and DeWitt, 1985;
Johnson and Shasha, 1994; Megiddo and Modha, 2003; O’Neil et al., 1993). Queries, however,
communicate with the buffer pool manager on a per-page basis, thus it is difficult to analyze their
access patterns. Additionally, if multiple queries start scanning the same table at different times,
scanned pages may not be re-used.

For this reason, shared scans have been proposed. Circular scans (Colby et al., 1998; Cook, 2001;
Morri, 2002; Harizopoulos et al., 2005) are a form of shared scans. They can handle a large
number of concurrent scan-heavy analytical queries as they reduce contention for the buffer pool
and the number of I/O requests to the underlying storage devices. Furthermore, more elaborate
shared scans can be developed for servicing different fragments of the same table or different
groups of queries depending on their speed (Lang et al., 2007; Zukowski et al., 2007), and for
main-memory shared scans (Qiao et al., 2008).

Shared scans can be used to handle a large number of concurrent updates as well. The Crescando
(Unterbrunner et al., 2009) storage manager uses a circular scan of in-memory table partitions,
interleaving the reads and updates of a batch of queries along the way. The scan first executes the
update requests of the batch for a scanned tuple in their arrival order, and then the read requests.

Shared scans, however, are not immediately translated to a fast linear scan of a disk. The
DataPath system (Arumugam et al., 2010) uses an array of disks and stores relations column-by-
column by randomly hashing pages to the disks. During execution, it reads pages from the disks
asynchronously and in order, thus aggregating the throughput of the linear scan of each disk.

Sharing in the execution engine. By sharing work among queries, we refer to techniques that
avoid redundant computations inside the execution engine. A traditional query-centric DBMS
typically uses query caching (Shim et al., 1999) and materialized views (Roussopoulos, 1982).
Both, however, do not exploit sharing opportunities among in-progress queries.

Multi-Query Optimization (MQO) techniques (Roy et al., 2000; Sellis, 1988) are an important
step towards more sophisticated sharing methodologies. MQO detects and re-uses common
sub-expressions among queries. The disadvantages of classic MQO are that it operates on batches
of queries only during optimization, and that it depends on costly materializations of the common
intermediate results. This cost can be alleviated by using pipelining (Dalvi et al., 2003), which
additionally exploits the parallelization provided by multicore processors. The query plan is
divided into sub-plans and operators are evaluated in parallel.

Both SP and GQP leverage forms of pipelined execution and sharing methodologies which bear
some superficial similarities with MQO. These techniques, however, provide deeper and more
dynamic forms of sharing, at run-time, among in-progress queries. In the rest of this section, we
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Figure 2.4: (a) SP example with two queries having a common sub-plan below the join operator.
(b) A step and a linear WoP.

provide an extended overview of both SP and GQP, and the systems that introduce them: QPipe
(Harizopoulos et al., 2005) and CJOIN (Candea et al., 2009, 2011) respectively. We also mention
how more recent research prototypes advanced the GQP technique.

2.3.2 Simultaneous Pipelining

SP identifies identical sub-plans among concurrent queries at run-time, evaluates only one and
pipelines the results to the rest simultaneously (Harizopoulos et al., 2005). We depict in Figure
2.4a an example of two queries that share a common sub-plan below the join operator (along with
any selection and join predicates), but have a different aggregation operator above the join. SP
evaluates only one of them, and pipelines the results to the other aggregation operator.

Fully sharing common sub-plans is possible if the queries arrive at the same time. Else, sharing
opportunities may be restricted. The amount of results that a newly submitted Q2 can re-use from
the pivot operator (the top operator of the common sub-plan) of the in-progress Q1, depends
on the type of the pivot operator and the arrival of Q2 during Q1’s execution. This relation is
expressed as a Window of Opportunity (WoP) for each relational operator (following the original
acronym (Harizopoulos et al., 2005)). In Figure 2.4b, we depict two common WoP, a step and a
linear WoP.

A step WoP expresses that Q2 can re-use the full results of Q1 if it arrives before the first output
tuple of the pivot operator. Joins and aggregations have a step WoP. A linear WoP signifies that
Q2 can re-use the results of Q1 from the moment it arrives up until the pivot operator finishes.
Then, Q2 needs to re-issue the operation in order to compute the results that it missed before it
arrived. Sorts and table scans have a linear WoP. In fact, the linear WoP of the table scan operator
is translated into a circular scan of each table.

2.3.3 The QPipe execution engine

QPipe (Harizopoulos et al., 2005) is a relational execution engine that supports SP at execution
time. QPipe is based on the paradigms of staged databases (Harizopoulos and Ailamaki, 2003).
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Figure 2.5: Example of shared selection and hash-join operators.

Each relational operator is encapsulated into a self-contained module called a stage. Each stage
has a queue for work requests and employs a local thread pool for processing the requests.

An incoming query execution plan is converted to a series of inter-dependent packets. Each packet
is dispatched to the relevant stage for evaluation. Data flow between packets is implemented
through FIFO (first-in, first-out) buffers and page-based exchange, following a push-only model
with pipelined execution. The buffers also regulate differently-paced actors: a parent packet may
need to wait for incoming pages of a child and, conversely, a child packet may wait for a parent
packet to consume its pages.

This design allows each stage to monitor only its packets for detecting sharing opportunities
efficiently. If it finds an identical packet, and their inter-arrival delay is inside the WoP of the
pivot operator, it attaches the new packet (satellite packet) to it (host packet). While it evaluates
the host packet, SP copies the results of the host packet to the output FIFO buffer of the satellite
packet.

2.3.4 Global Query Plans with shared operators

SP is limited to common sub-plans. If two queries have similar sub-plans but with different
selection predicates for the involved tables, SP is not able to share them. Nevertheless, the two
queries still share a similar plan that exposes sharing opportunities. It is possible to employ
shared operators, where a single shared operator can evaluate both queries simultaneously. The
basic technique for enabling them is sharing tuples among queries and correlating each tuple to
the queries, e.g. by annotating tuples with a bitmap, whose bits signify if the tuple is relevant to
one of the queries.

The simplest shared operator is a shared selection, that can evaluate multiple queries that select
tuples from the same relation. For each received tuple, it toggles the bits of its attached bitmap
according to the selection predicates of the queries. A hash-join can also be easily shared by
queries that share the same equi-join predicate. In Figure 2.5, we show a conceptual example
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of how a single shared hash-join is able to evaluate two queries. It starts with the build phase
by receiving tuples from the shared selection operator of the inner relation. Then, the probe
phase begins by receiving tuples from the shared selection operator of the outer relation. The
hash-join proceeds as normal, by additionally performing a bit-wise AND between the bitmaps
of the joined tuples.

The most significant advantage is that a single shared operator can evaluate many more similar
queries. For example, a shared hash-join can evaluate many queries having the same equi-join
predicate, and possibly different selection predicates. In the worst case, the union of the selection
predicates may force it to join the whole two relations. The disadvantage of a shared operator
in comparison to a query-centric one is that it reduces parallelism in order to gain throughput,
entailing increased book-keeping. For example, a shared hash-join maintains a hash table for the
union of the tuples of the inner relation selected by all queries, and performs bit-wise operations
between the bitmaps of the joined tuples. For low concurrency, as shown by our experiments (see
Section 4.5), query-centric operators outperform shared operators. A similar tradeoff is found for
the specific case of shared aggregations on CMP (Cieslewicz and Ross, 2007).

By using shared scans and shared operators, a GQP can be built for evaluating all concurrent
queries. GQP are introduced by CJOIN (Candea et al., 2009, 2011), an operator based on shared
selections and shared hash-joins for evaluating the joins of star queries (Kimball and Ross, 2002).
GQP are advanced by the DataPath system (Arumugam et al., 2010) for more general schemas,
by tackling the issues of routing and optimizing the GQP for a newly incoming query. DataPath
also adds support for a shared aggregate operator, that calculates a running sum for each group
and query.

Both CJOIN and DataPath handle new queries immediately when they arrive. This is feasible
due to the nature of the supported shared operators: selections, hash-joins and aggregates. Some
operators, however, cannot be easily shared. For example, a sort operator cannot easily handle
new queries that select more tuples than the ones being sorted (Arumugam et al., 2010). To
overcome this limitation, SharedDB (Giannikis et al., 2012) batches queries for every shared
operator. Batching allows standard algorithms to be easily extended to support shared operators,
as they work on a fixed set of tuples and queries. SharedDB supports shared sorts and various
shared join algorithms, not being restricted only to equi-joins. Nevertheless, batched execution
has drawbacks: A new query may suffer increased latency, and the latency of a batch is dominated
by the longest-running query.

2.3.5 The CJOIN operator

The selection of CJOIN (Candea et al., 2009, 2011) for our analysis is based on the facts that
it introduced GQP, and that it is optimized for the simple case of star queries. Without loss of
generality, we restrict our evaluation to star schemas, and correlate our observations to more
general schemas (used, e.g., by DataPath (Arumugam et al., 2010) or SharedDB (Giannikis et al.,
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Figure 2.6: CJOIN evaluates a GQP for star queries.

2012)).

Star schemas are very common for organizing data in relational DW. They allow for numerous
performance enhancements (Kimball and Ross, 2002). A star schema consists of a large fact
table, that stores the measured information, and is linked through foreign-key constraints to
smaller dimension tables. A star query is an analytical query over a star schema. It typically
joins the fact table with several dimension tables and performs operations such as aggregations or
sorts.

CJOIN evaluates the joins of all concurrent star queries, using a GQP with shared scans, shared
selections and shared hash-joins. In Figure 2.6, we show the GQP that CJOIN evaluates for two
star queries. CJOIN adapts the GQP with every new star query. If a new star query references
already existing dimension tables, the existing GQP can evaluate it. If a new star query joins
the fact table with a new dimension table, the GQP is extended with a new shared selection and
hash-join. Due to the semantics of star schemas, the directed acyclic graph of the GQP takes the
form of a chain.

CJOIN exploits this form to facilitate the evaluation of the GQP. It materializes the small
dimension tables and stores in-memory the selected dimension tuples in the hash tables of the
corresponding shared hash-joins. Practically, for each dimension table, it groups the shared
scan, selection and hash-join operators into an entity called filter. When a new star query is
admitted, CJOIN pauses, adds newly referenced filters, updates already existing filters, augments
the bitmaps of dimension tuples according to the selection predicates of the new star query, and
then continues.

Consequently, CJOIN is able to evaluate the GQP using a single pipeline: the preprocessor uses
a circular scan of the fact table, and flows fact tuples through the pipeline. The data flow in the
pipeline is regulated by intermediate FIFO buffers, similar to QPipe. The filters in-between are
actually the shared hash-joins that join the fact tuples with the corresponding dimension tuples
and additionally perform a bit-wise AND between their bitmaps. At the end of the pipeline, the
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distributor examines the bitmaps of the joined tuples and forwards them to the relevant queries.
For every new query, the preprocessor admits it, marking its point of entry on the circular scan
of the fact table and signifies its completion when it wraps around to its point of entry on the
circular scan.

2.3.6 Quantifying work sharing opportunities

Earlier in this section we introduced the fundamental approaches in sharing in relational database
systems, i.e., in the storage layer and in the query engine. The motivation stems from the fact that
concurrent queries access common base data and perform common database operations on the
data as pointed out by the MQO work (Sellis, 1988). In addition, as concurrency in analytical
workloads increases exponentially (Russom, 2012) the opportunities of sharing increase as
well. A fundamental question, however, is to quantify the opportunities of work sharing or
the headroom of improvement through work sharing techniques. Using the definition of work
sharing by Johnson et al. (2007) as "any operation that reduces the total amount of work in a
system by eliminating redundant computation or data accesses" the need to define a metric to
quantify the opportunity for performance or resource utilization improvement surfaces. In fact, a
principled framework for work sharing opportunities can also be the basis for a fundamentally
new multi-query optimization. In the literature to date one can find detailed experiments and
measurements on the performance benefits of specific work sharing implementations in terms
of response time, throughput or even resource utilization. Such analysis can be found for the
DataPath system (Arumugam et al., 2010), the CJOIN operator (Candea et al., 2011), the QPipe
query engine (Harizopoulos et al., 2005; Johnson et al., 2007), the integration of CJOIN into
QPipe (Psaroudakis et al., 2013) and the SharedDB query engine (Giannikis et al., 2012). A first
step to work sharing headroom quantification is the MQO and its different approaches (Sellis,
1988; Chen and Dunham, 1998), which was further advanced by a practical realization (Roy et al.,
2000). Existing work, however, does not include an analysis for what would be the maximum
possible benefit given a workload and up to what extent does each specific approach realize this
benefit.

In addition, in the context of stream processing work sharing has been extensively studied (Chen
et al., 2000; Madden et al., 2002; Chandrasekaran et al., 2003; Agrawal et al., 2008; Liu et al.,
2008; Majumder et al., 2008). Precision sharing (Krishnamurthy et al., 2004) introduces a very
important relevant aspect: work sharing without introducing unnecessary work, which is key in
order to quantify correctly the work sharing opportunities. Similarly to work sharing literature
for database engines, existing work for work sharing in stream processing, does not include an
analysis to quantify the work sharing opportunities.
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2.4 Bloom filters

A Bloom filter (BF) (Bloom, 1970) is a space-efficient probabilistic data structure supporting
membership tests with non-zero probability for false positives (and zero probability for false
negatives). Typically in a BF one can only add new elements and never remove elements. A
deletable BF has been discussed (Rothenberg et al., 2010) but it is not generally adopted.

2.4.1 Bloom filters’ applications in data management

BFs have been extensively used in networking (Broder and Mitzenmacher, 2002; Lim and Kim,
2010) and as auxiliary data structures in database systems (Antognini, 2008; Chang et al., 2006;
Condie et al., 2010; Dean and Ghemawat, 2004; Mullin, 1990). Modern database systems utilize
BFs while implementing several algorithms, like semi-joins (Mullin, 1990), where BFs help
in implementing faster the join algorithm. Google’s Bigtable (Chang et al., 2006) uses BFs to
reduce the number of accesses to internal storage components and a study (Antognini, 2008)
shows that Oracle systems use BFs for tuple pruning, to reduce data communication between
slave processes in parallel joins and to support result caches.

2.4.2 Bloom filters for evolving workloads and storage

BFs have been used for changing workloads and different storage technologies. Scalable Bloom
Filters (Almeida et al., 2007) study how a BF can adapt dynamically to the numbers of ele-
ments stored while assuring a bound for maximum false positive probability. Buffered Bloom
filters (Canim et al., 2010a) use flash, as well, as a cheaper alternative to main memory. The BF
is allocated in blocks equal to the typical block size of the storage device and both reads and
writes are buffered in memory to improve locality during the build and the probe phase. The
forest-structured Bloom filter (Lu et al., 2011) aims at designing an efficient flash-based BF by
using the memory to capture the frequent updates. Memory is used to capture the updates and
hide them from the flash storage and, on flash, the BF is organized in a forest-structure in order
to improve the lookup performance. Bender et al. (Bender et al., 2012) propose three variations
of BFs: the quotient filter, the buffered quotient filter and the cascade filter. The first uses more
space than traditional BF but shows better insert/lookup performance and supports deletes. The
last two variations are designed on top of quotient filter supporting larger workloads, serving, as
well, as alternatives of BF for SSD.

In Chapter 5 we extend the usage of BFs in DBMS by proposing BF-Tree, an indexing tree
structure which uses BFs to trade off capacity for indexing accuracy by applying approximate
indexing. BF-Tree is orthogonal to the optimizations described above. In fact, a BF-Tree can
take advantage of such optimizations in order to fine-tune its performance.
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2.5 Indexing for Data Analysis

Both analytical workloads and storage technologies evolve, and as a result an increasing amount
of data is stored on SSDs. In Chapter 5 we propose an SSD-aware indexing for analytical
workloads which departs from the traditional SSD-aware index structure. We do so by creating a
new tree index structures which is tailored for SSD by understanding that SSD is the diametrical
opposite than HDD in two aspects: random access performance and capacity price. The proposed
structure combines capacity and performance optimizations of different prior approaches.

2.5.1 SSD-aware indexing

We find that approximate indexing is suitable for modern storage devices (e.g. flash or PCM-
based) because of their principal difference compared to traditional disks: random accesses
perform virtually the same as sequential accesses3. Since the rise of flash as an important
competitor of disks for non-volatile storage (Gray, 2007) there have been several efforts in
creating a flash-friendly indexing structure (often a flash-aware version of a B+-Tree). LA-
Tree (Agrawal et al., 2009) uses lazy updates, adaptive buffering and memory optimizations
to minimize the overhead of updating flash. In µ-Tree (Kang et al., 2007) the nodes along the
path from the root to the leaf are stored in a single flash memory page in order to minimize the
number of flash write operations during the update of a leaf node. IPLB+-tree (Na et al., 2011)
avoids costly erase operations - often caused by small random write requests common in database
applications - in order to improve the overall write performance. SILT (Lim et al., 2011) is a
flash-based memory-efficient key-value store based on cuckoo hashing and tries, which offers
fast search performance using minimal amount of main memory.

What SSD-aware indexing does not do. Related work focuses, mostly, on optimizing for
specific flash characteristics (read/write asymmetry, lifetime) maintaining the same high-level
indexing structure and does not address the shifting trade-off in terms of capacity. The BF-trees
we present in this thesis, orthogonally to flash optimizations, trade off capacity for indexing
accuracy.

2.5.2 Specialized optimizations for tree indexing

SB-Tree (O’Neil, 1992) is designed to support high-performance sequential disk access for
long range retrievals. It is designed assuming an array of disks from which it retrieves data
or intermediate nodes should they not be in memory, by employing multi-page reads during
sequential access to any node level below the root. Moreover, SB-Tree and B+-Tree have
similar capacity requirements. On the contrary, BF-Tree aims at indexing partitioned data, at
decreasing the size of the index, and at taking advantage of the characteristics of SSD. Litwin and

3In early flash devices random reads were one order of magnitude faster than random writes (Bouganim et al.,
2009; Stoica et al., 2009), but later devices are more balanced.
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Lomet (Litwin and Lomet, 1986) introduce a generic framework for index methods called the
bounded disorder access method. The method, similarly to BF-Trees, aims at increasing the ratio
of file size to index size (i.e., to decrease the size of the index) by using hashing for distributing
the keys in a multi-bucket node. The bounded disorder access method does not decrease the index
size aggressively for good reason, since by doing that it would cause more random accesses on
the storage medium which is assumed to be traditional hard disks. On the contrary, BF-Trees
propose aggressive reduction of the index size by utilizing a probabilistic membership-testing data
structure as a form of compression. The performance of such an approach is competitive because
the SSD can sustain several concurrent read requests with zero or small penalty (Athanassoulis
et al., 2012; Roh et al., 2011) and the penalty of (randomly) reading pages due to a false positive
is lower on SSD compared with HDD.

2.5.3 Indexing for data warehousing

Efficiently indexing of ordered data having small space requirements is recognized as a desired
feature by commercial systems. Typically data warehousing systems use some form of sparse
indexes to fulfill this requirement. The Netezza data warehousing appliance uses ZoneMap
acceleration (Francisco, 2011), a lightweight method to maintain a coarse-index, to avoid scanning
rows that are irrelevant to the analytic workload, by exploiting the natural ordering of rows in
a data warehouse. Netezza’s ZoneMap indexing structure is based on the Small Materialized
Aggregates (SMA) earlier proposed by Moerkotte (Moerkotte, 1998). SMA is a generalized
version of a Projection Index (O’Neil and Quass, 1997). A Projection Index is an auxiliary data
structure containing an entire column - similar to how column-store systems (MonetDB, 2013;
Vertica, 2013) today physically store data. Instead of saving the entire column, SMA store an
aggregate per group of contiguous rows or pages, thus, enhancing queries calculating aggregates
than can be inferred by the stored aggregate. In addition to primary indexes or indexes on the
order attribute, secondary, hardware-conscious data warehouse indexes have been designed to
limit access to slow IO devices (Sidirourgos and Kersten, 2013).

2.6 Knowledge-based Data Analysis

In this section we present related work in terms of representing knowledge-based data using the
Resource Description Framework (RDF) data model, as well as relevant benchmarks and the
systems that are typically used to store, manage and query RDF data.

2.6.1 RDF datasets and benchmarks

The wide adoption of RDF format has led to the design of numerous benchmarks and datasets (Duan
et al., 2011) each one focusing on the different usage scenarios of RDF data. Benchmarks include:
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• LUBM (Guo et al., 2005): a benchmark consisting of university data.

• BSBM (Bizer and Schultz, 2009): a benchmark built around an e-commerce data use case
that models the search and navigation pattern of a consumer looking for a product.

• SP2Bench (Schmidt et al., 2009): a benchmark based on the DBLP database of article
publications, modelling several search patterns.

• Yago2 (Hoffart et al., 2011, 2013): data from Wikipedia, WordNet and GeoNames.

• UniProt (Apweiler et al., 2004): a comprehensive, high-quality and freely accessible
database comprised of protein sequences.

• DBpedia (Bizer et al., 2009b): a dataset consisting of data extracted from Wikipedia and
structured in order to make them easily accessible.

Several of the aforementioned benchmarks and workloads include path processing queries that
could be inefficiently evaluated if the graph-like form of data is not taken into account. Viewing
RDF data as relational data may make it more difficult to apply optimizations for graph-like data
access patterns such as search. While each triple can conceptually be represented as a row, it has
more information than a single row since it signifies a relation between two nodes of a graph.
Two neighboring nodes may end up in the same search very often (a simple locality case) or
nodes connected with two neighboring nodes may end up in the same search often. Moreover, a
specific path between two nodes can be the core of the query. In this case, and especially if there
are few or no branches in the path, evaluating a path of length k as k −1 joins can substantially
increase the cost of answering one such query.

2.6.2 Storing RDF data

RDF data are comprised by statements, each represented as a triple of the form <Subject, Predi-
cate, Object>. Each triple forms a statement which represents information about the Sub j ect .
In particular, Sub j ect is connected to the Ob j ect using a specific Pr edi cate modelling either
a connection4 between the Sub j ect and the Ob j ect or the value of a property of the Sub j ect .5

In fact, in RDF triples, sometimes, the Pr edi cate is called Pr oper t y and the Ob j ect is called
V alue. We will maintain the terminology <Subject, Predicate, Object>.

RDF data form naturally sparse graphs but the underlying storage model in existing systems is
not always tailored for graph processing (Hassanzadeh et al., 2011). There are two trends as
far as how to physically store RDF data: (i) using as underlying storage a relational database
system (either a row-store (Alexander et al., 2005; Neumann and Weikum, 2008) or a column

4 For example, the triple <Alice, isFriendWith, Bob> shows that a friendship connection between Ali ce and Bob
exists.

5 For example, the triple <Alice, birthday, 01/04/1980> shows that the property bi r thd ay of Ali ce has value
01/04/1980.
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store (Abadi et al., 2007)) or (ii) design a native store (Virtuoso, 2011; Wilkinson, 2006), a
storage system designed particularly for RDF data which can be tailored to the needs of a specific
workload. Support for RDF storage and processing assuming an underlying relational data
management system is proposed from the industrial perspective (Bhattacharjee et al., 2011) as
well.

The RDF data layout we present in this thesis is different in three ways. First, it does not assume
a traditional relational data layout but only the notion of variable sized tuples (having in effect
a variable number of columns). Second, while our approach resembles prior art (Bhattacharjee
et al., 2011) as far as storing several triples with the same Sub j ect (or Ob j ect ) physically close
by, it is not bound by the limitations of relational storage, and it avoids repetition of information
(e.g., for the Ob j ect s that are connected to a specific Sub j ect with the same Pr oper t y the
identifier of the Pr oper t y is stored only once). Third, we depart from the relational execution
model, which is vital because graph traversals using relational storage lead to repetitive self-joins.
We can support optimized graph-traversal algorithms without paying the overheads that come
with relational query evaluation.

2.7 Summary

In this chapter we briefly discussed very interesting research and technological advancements
that promoted solid-state storage to a key player in the memory hierarchy research, which in
turn is tightly connected with the design and the characteristics of data management and data
analytics systems.

In the path to efficiently integrate solid-state storage in data analytics systems we present our
contributions in a storage-aware, workload-aware system. In the next Chapters we present in
detail our approaches towards ensuring data freshness, supporting concurrency and new archival
workloads, and integrating diverse data sources.

In the last chapter, we discuss the role of storage in data management and data analytics systems.
We attempt to lay the groundwork of future research directions that will become necessary to
pursue in order to exploit what the future technologies offer to meet what the future applications
need.
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3 Online Updates for Data Analytics
using Solid-State Storage1

3.1 Introduction

Data warehouses (DW) are typically designed for efficient processing of read-only analysis
queries over large data. Historically, updates to the data were performed using bulk insert/update
features that executed offline—mainly during extensive idle-times (e.g., at night). Two important
trends lead to a need for a tighter interleaving of analysis queries and updates. First, the
globalization of business enterprises means that analysis queries are executed round-the-clock,
eliminating any idle-time window that could be dedicated to updates. Second, the rise of online
and other quickly-reacting businesses means that it is no longer acceptable to delay updates
for hours, as older systems did: the business value of the answer often drops precipitously as
the underlying data becomes more out of date (Inmon et al., 2003; White, 2002). In response
to these trends, data warehouses must now support a much tighter interleaving of analysis
queries and updates, so that analysis queries can occur 24/7 and take into account very recent
data updates (Becla and Lim, 2008). The large influx of data is recognized as one of the key
characteristics of modern workloads, often referred to as Velocity of data (Zikopoulos et al., 2012).
Thus, Active (or Real-Time) Data Warehousing has emerged as both a research topic (Polyzotis
et al., 2008) and a business objective (Oracle, 2013; White, 2002; IBM, 2013; Russom, 2012)
aiming to meet the increasing demands of applications for the latest version of data. Unfortunately,
state-of-the-art data warehouse management systems fall short of the business goal of fast analysis
queries over fresh data. A key unsolved problem is how to efficiently execute analysis queries in
the presence of online updates that are needed to preserve data freshness.

1The material of this chapter has been the basis for the IEEE Data Engineering Bulletin paper "Flash in a DBMS :
Where and How ?" (Athanassoulis et al., 2010), the ACM SIGMOD 2011 paper "MaSM : Efficient Online Updates in
Data Warehouses" (Athanassoulis et al., 2011), and for a paper submitted for publication entitled "Online Updates on
Data Warehouses via Judicious Use of Solid-State Storage" (Athanassoulis et al., 2013).
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3.1.1 Efficient Online Updates for DW: Limitations of Prior Approaches

While updates can proceed concurrently with analysis queries using concurrency control schemes
such as snapshot isolation (Berenson et al., 1995), the main limiting factor is the physical
interference between concurrent queries and updates. We consider the two known approaches
for supporting online updates2, in-place updates and differential updates, and discuss their
limitations.

In-Place Updates Double Query Time. A traditional approach, used in OLTP systems, is to
update in place, i.e., to store the new value in the same physical location as the previous one.
However, as shown in Section 3.2.2, in-place updates can dramatically slow down data warehous-
ing queries. Mixing random in-place updates with TPC-H queries increases the execution time,
on average, by 2.2x on a commercial row-store data warehouse and by 2.6x on a commercial
column-store data warehouse. In the worst case, the execution time is 4x longer. Besides having
to service a second workload (i.e., the updates), the I/O sub-system suffers from the interference
between the two workloads: the disk-friendly sequential scan patterns of the queries are disrupted
by the online random updates. This factor alone accounts for 1.6x slowdown on average in the
row-store DW.

Figure 3.1: An analysis of migration overheads for
differential updates as a function of the memory buffer
size. Overhead is normalized to the prior state-of-the-
art using 16GB memory.

Differential Updates Limited by In-
Memory Buffer. Recently, differen-
tial updates have been proposed as a
means to enable efficient online updates
in column-store data warehouse (Hé-
man et al., 2010; Stonebraker et al.,
2005), following the principle of dif-
ferential files (Severance and Lohman,
1976). The basic idea is to (i) cache in-
coming updates in an in-memory buffer,
(ii) take the cached updates into account
on-the-fly during query processing, so
that queries see fresh data, and (iii) mi-
grate the cached updates to the main data
whenever the buffer is full. While these
proposals significantly improve query and update performance, their reliance on an in-memory
buffer for the cached updates poses a fundamental trade-off between migration overhead and
memory footprint, as illustrated by the “state-of-the-art” curve in Figure 3.1 (note: log-log scale,
the lower the better). In order to halve the migration costs, one must double the in-memory
buffer size so that migrations occur (roughly) half as frequently. The updates that are typically
distributed to the entire file, hence, a large buffer would cache updates corresponding to virtually

2 We focus on online updates for real-time analytics, hence, we do not consider solutions designed for offline
updates such as master and transactional tapes.
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the entire data warehouse. Each migration is expensive, incurring the cost of scanning the entire
data warehouse, applying the updates and writing back the results (Stonebraker et al., 2005;
Héman et al., 2010). However, dedicating a significant fraction of the system memory solely to
buffering updates degrades query operator performance as less memory is available for caching
frequently accessed data structures (e.g., indexes) and storing intermediate results (e.g., in sorting,
hash-joins). Moreover, in case of a crash, the large buffer of updates in memory is lost, prolonging
crash recovery.

Caching updates on HDD. Apart from caching updates in-memory, one can use HDD to cache
updates. Fundamentally, DW updates can be maintained on HDD using several approaches based
on differentials file and log-structure organizations (Severance and Lohman, 1976; Jagadish et al.,
1997; O’Neil et al., 1996; Graefe, 2003, 2006b; Graefe and Kuno, 2010). Any approach to store
updates on HDD will suffer from the performance limitations of HDDs. A key factor is the
performance of the disk caching the updates compared with the performance of the disk storing
the main data. If main data and cached updates reside on the same physical device, we will
observe workload interference similar to what happens for the in-place updates in Section 3.2.2.
If updates are cached on a separate HDD, its capabilities cannot support both high update rate
and good query response times, since the incoming updates will interfere with the updates to be
read for answering the queries. A third design is to use a separate high-end storage solution, such
as an expensive disk array, for caching updates. Such a storage setup is able to offer very good
read and write performance, but is also quite expensive. The introduction of flash-based Solid
State Drive (SSD) presents a new design point. SSD is much less expensive than HDD based
storage for achieving the same level of random read performance. In the following, we exploit
SSDs for caching updates, aiming to achieve online updates with negligible overhead on query
performance. In Section 3.1.2 we outline our approach.

3.1.2 Our Solution: Cache Updates in SSDs for online updates in DWs

We exploit the recent trend towards including a small amount of (SSDs) in mainly HDD-based
computer systems (Barroso, 2010). Our approach follows the idea of differential updates dis-
cussed above, but instead of being limited to an in-memory buffer, makes judicious use of SSDs
to cache incoming updates. Figure 3.2 presents the high-level framework. Updates are stored in
an SSD-based update cache, which is 1%–10% of the main data size. When a query reads data,
the relevant updates on SSDs are located, read, and merged with the bulk of the data coming
from disks. A small in-memory buffer is used as a staging area for the efficient processing of
queries and incoming updates. The updates are migrated to disks only when the system load is
low or when updates reach a certain threshold (e.g., 90%) of the SSD size.

Design Goals. We aim to achieve the following five design goals:

1. Low query overhead with small memory footprint: This addresses the main limitations of
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prior approaches.

2. No random SSD writes: While SSDs have excellent sequential read/write and random read
performance, random writes perform poorly because they often incur expensive erase and
wear-leveling operations (Bouganim et al., 2009). Moreover, frequent random writes can
transition an SSD into sub-optimal states where even the well-supported operations suffer
from degraded performance (Bouganim et al., 2009; Stoica et al., 2009).

3. Low total SSD writes per update: A NAND flash cell can endure only a limited number of
writes (e.g., 105 writes for enterprise SSDs). Therefore, the SSDs’ lifetime is maximized if
we minimize the amount of SSD writes per incoming update.

4. Efficient migration: Migrations should occur infrequently while supporting high sustained
update rate. A naive approach is to migrate updates to a new copy of the data warehouse
and swap it in after migration completes, essentially doubling the disk capacity requirement.
We want to remove such requirement by migrating to the main data in place.

5. Correct ACID support: We must guarantee that traditional concurrency control and crash
recovery techniques still work.

Prior differential update approaches (Stonebraker et al., 2005; Héman et al., 2010) maintain
indexes on the cached updates in memory, which we call Indexed Updates (IU). We find that
naïvely extending IU to SSDs incurs up to 3.8x query slowdowns (Section 3.2.3 and 3.5.2). While
employing log structured merge-trees (LSM) (O’Neil et al., 1996) can address many of IU’s
performance problems, LSM incurs a large number of writes per update, significantly reducing
the SSDs’ lifetime (Section 3.2.3).

At a high level, our framework is similar to the way many popular key-value store implementations
(e.g., Bigtable (Chang et al., 2006), HBase (HBase, 2013), and Cassandra (Lakshman and Malik,
2010)) handle incoming updates by caching them in HDDs and merging related updates into
query responses. In fact, their design follows the principle of LSM. However, the design of
these key-value stores is focused on neither low overhead for data warehousing queries with
small memory footprint, using SSDs and minimizing SSD writes, nor correct ACID support
for multi-row transactions. Using SSDs instead of HDDs for the update cache is crucial to our
design, as it reduces range scan query overhead by orders of magnitude for small ranges.

Using SSDs to support online updates: MaSM. We use MaSM (materialized sort-merge)
algorithms that achieve the five design goals with the following techniques.

First, we observe that the “Merge” component in Figure 3.2 is essentially an outer join between
the main data on disks and the updates cached on SSDs. Among various join algorithms, we
find that sort-merge joins fit the current context well: cached updates are sorted according to
the layout order of the main data and then merged with the main data. MaSM exploits external
sorting algorithms both to achieve small memory footprint and to avoid random writes to SSDs.
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To sort ‖SSD‖ pages of cached updates on SSD, two-pass external sorting requires M =p‖SSD‖
pages of memory. The number of passes is limited to two because one of the design goals is to
minimize the amount of writes our algorithms perform on the SSDs. Compared with differential
updates limited to an in-memory update cache, the MaSM approach can effectively use a small
memory footprint, and exploits the larger on-SSD cache to greatly reduce migration frequency,
as shown in the “our approach” curve in Figure 3.1.

Figure 3.2: Framework for SSD-based differential up-
dates.

Second, we optimize the two passes
of the “Merge” operation: generating
sorted runs and merging sorted runs.
For the former, because a query should
see all the updates that an earlier query
has seen, we materialize and reuse
sorted runs, amortizing run generation
costs across many queries. For the lat-
ter, we build simple read-only indexes
on materialized runs in order to reduce
the SSD read I/Os for a query. Com-
bined with the excellent sequential/ran-
dom read performance of SSDs, this
technique successfully achieves low
query overhead (at most only 7% slow-
downs in our experimental evaluation).

Third, we consider the trade-off between memory footprint and SSD writes. The problem is
complicated because allocated memory is used for processing both incoming updates and queries.
We first present a MaSM-2M algorithm, which achieves the minimal SSD writes per update,
but allocates M memory for incoming updates and M memory for query processing. Then, we
present a more sophisticated MaSM-M algorithm that reduces memory footprint to M but incurs
extra SSD writes. We select optimal algorithm parameters to minimize SSD writes for MaSM-M.
After that, we generalize the two algorithms into a MaSM-αM algorithm. By varying α, we can
obtain a spectrum of algorithms with different trade-offs between memory footprint and SSD
writes.

Fourth, in order to support in-place migration and ACID properties, we propose to attach
timestamps to updates, data pages, and queries. That is, there is a timestamp per update when it
is cached on SSDs, a timestamp per data page in the main data, and a timestamp for every query.
Using timestamps, MaSM can determine whether or not a particular update has been applied to
a data page, thereby enabling concurrent queries during in-place migration. Moreover, MaSM
guarantees serializability in the timestamp order among individual queries and updates. This can
be easily extended to support two-phase locking and snapshot isolation for general transactions
involving both queries and updates. Furthermore, crash recovery can use the timestamps to
determine and recover only the updates in the memory buffer (updates on SSDs survive the
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crash).

Finally, we minimize the impact of MaSM on the DBMS code in order to reduce the development
effort to adopt the solution. Specifically, MaSM can be implemented in the storage manager
(with minor changes to the transaction manager if general transactions are to be supported). It
does not require modification to the buffer manager, query processor or query optimizer.

3.1.3 Contributions

This chapter makes the following contributions:

• First, to our knowledge, this is the first effort to exploits SSDs for efficient online updates
in data warehouses. We propose a high-level framework and identify five design goals for
a good SSD-based solution.

• Second, we propose the family of MaSM algorithms that exploits a set of techniques to
successfully achieve the five design goals.

• Third, we study the trade-off between memory footprint and SSD writes with MaSM-2M,
MaSM-M, and MaSM-αM.

• Fourth, we study the trade-off between memory footprint and short range query perfor-
mance for all MaSM algorithms. We provide a detailed model to predict MaSM query
performance for a variety of different system setups.

• Fifth, we present an experimental study of MaSM’s performance.

Our results show that MaSM incurs only up to 7% overhead both on range scans over synthetic
data (varying range size from 4KB to 100GB) and in a TPC-H query replay study, while also
increasing the sustained update throughput by orders of magnitude. Finally, we discuss various
DW-related aspects, including shared nothing architectures, Extract-Transform-Load (ETL)
processes, secondary indexes, and materialized views.

Outline. Section 3.2 sets the stage for our study. Section 3.3 presents the proposed MaSM design.
Section 3.4 presents the proofs of the performance guarantees and analytical modelling of the
proposed techniques. Section 3.5 presents the experimental evaluation. Section 3.6 discusses
DW-related issues. Section 3.7 concludes the chapter.

3.2 Efficient Online Updates and Range Scans in Data Warehouses

In this section, we first describe the basic concepts and clarify the focus of our study. As in most
optimization problems, we would like to achieve good performance for the frequent use cases,
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while providing correct functional support in general. After that, we analyze limitations of prior
approaches for handling online updates.

3.2.1 Basic Concepts and Focus of the Study

Data Warehouse. Our study is motivated by large analytical data warehouses such as those
characterized in the XLDB’07 report (Becla and Lim, 2008). There is typically a front-end
operational (e.g., OLTP) system that produces the updates for the back-end analytical data
warehouse. The data warehouse can be very large (e.g., petabytes), and does not fit in main
memory.

Query Pattern. Large analytical data warehouses often observe “highly unpredictable query
loads”, as described in (Becla and Lim, 2008). Most queries involve “summary or aggregative
queries spanning large fractions of the database”. As a result, table range scans are frequently used
in the queries. Therefore, we focus on table range scans as the optimization target: preserving
the nice sequential data access patterns of table range scans in the face of online updates. The
evaluation uses the TPC-H benchmark, which is a decision support benchmark with emphasis on
ad-hoc queries.

Record Order. In row stores, records are often stored in primary key order (with clustered
indexes). In addition, in DW applications, records are often generated ordered by the primary
key. This property, called implicit clustering, allows to build access methods with specialized
optimizations (Jagadish et al., 1997; Moerkotte, 1998). In column stores (that support online
updates), the attributes of a record are aligned in separate columns allowing retrieval using a
position value (RID) (Héman et al., 2010).3 We assume that range scans provide data in the order
of primary keys in row stores, and in the order of RIDs in column stores. Whenever primary keys
in row stores and RIDs in column stores can be handled similarly, we use “key” to mean both.

Updates. Following prior work on differential updates (Héman et al., 2010), we optimize for
incoming updates of the following forms: (i) inserting a record given its key; (ii) deleting a
record given its key; or (iii) modifying the field(s) of a record to specified new value(s) given
its key.4,5 We call these updates well-formed updates. Data in large analytical data warehouses
are often "write-once, read-many" (Becla and Lim, 2008), a special case of well-formed updates.
Note that well-formed updates do not require reading existing data warehouse data. This type
of updates is typical for Key-Value stores as well, where data are organized based on the key

3Following prior work (Héman et al., 2010), we focus on a single sort order for the columns of a table.
We discuss how to support multiple sort orders in Section 3.6.

4We follow prior work on column stores to assume that the RID of an update is provided (Héman et al.,
2010). For example, if updates contain sort keys, RIDs may be obtained by searching the (in-memory)
index on sort keys.

5A modification that changes the key is treated as a deletion given the old key followed by an insertion
given the new key.
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Figure 3.3: TPC-H queries with random
updates on a row store.
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Figure 3.4: TPC-H queries with emulated
random updates on a column store.

and the knowledge about the values is moved to the application. In such applications, most of
the updates are "well-formed" and MaSM can offer significant benefits. In contrast to "well-
formed updates", general transactions can require an arbitrary number of reads and writes. This
distinction is necessary because the reads in general transactions may inherently require I/O reads
to the main data and thus interfere with the sequential data access patterns in table range scans.
For well-formed updates, our goal is to preserve range scan performance as if there were no
online updates. For general transactions involving both reads and updates, we provide correct
functionality, while achieving comparable or better performance than conventional online update
handling, which we discuss in Section 3.5.2.

3.2.2 Conventional Approach: In-Place Updates

In order to clarify the impact of online random updates in analytic workloads, we execute TPC-H
queries on both a commercial row-store DBMS R and a commercial column-store DBMS C while
running online in-place updates.6 The TPC-H scale factor is 30. We make sure that the database
on disk is much larger than the allocated memory buffer size. We were able to perform concurrent
updates and queries on the row store. However, the column store supports only offline updates,
i.e., without concurrent queries. We recorded the I/O traces of offline updates, and when running
queries on the column store, we use a separate program to replay the I/O traces outside of the
DBMS to emulate online updates. During replay, we convert all I/O writes to I/O reads so that
we can replay the disk head movements without corrupting the database.

Figure 3.3 compares the performance of TPC-H queries with no updates (first bar) and queries
with online updates (second bar) on DBMS R. The third bar shows the sum of the first bar and the
time for applying the same updates offline. Each cluster is normalized to the execution time of the
first bar. Disk traces show sequential disk scans in all queries. As shown in Figure 3.3, queries
with online updates see 1.5–4.1x slowdowns (2.2x on average), indicating significant performance
degradation because of the random accesses of online updates. Moreover, the second bar is
significantly higher than the third bar in most queries (with an average 1.6x extra slowdown).
This shows that the increase in query response time is a result of not only having two workloads

6We were able to run 20 TPC-H queries on DBMS R and 17 TPC-H queries on DBMS C. The rest of
the queries either do not finish in 24 hours, or are not supported by the DBMS.
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Figure 3.5: Extending prior proposals of Indexed Updates (IU) to SSDs: (a) in-memory indexed
updates (PDT (Héman et al., 2010)), (b) extending IU to SSDs, and (c) applying LSM (O’Neil
et al., 1996) to IU.

executing concurrently, but also the interference between the two workloads. Figure 3.4 shows
a similar comparison for the column store DBMS C. Compared with queries with no updates,
running in-place updates online slows down the queries by 1.2–4.0x (2.6x on average).

3.2.3 Prior Proposals: Indexed Updates (IU)

Differential updates is the state-of-the-art technique for reducing the impact of online updates (Hé-
man et al., 2010; Stonebraker et al., 2005; Jagadish et al., 1997). While the basic idea is straight-
forward (as described in Section 3.1), the efforts of prior work and this chapter are on the data
structures and algorithms for efficiently implementing differential updates.

In-Memory Indexed Updates. Prior proposals maintain the cache for updates in main memory
and build indexes on the cached updates (Héman et al., 2010; Stonebraker et al., 2005), which
we call Indexed Updates (IU). Figure 3.5(a) shows the state-of-the-art IU proposal, Positional
Delta Tree (PDT) designed for column stores (Héman et al., 2010). PDT caches updates in an
insert table, a delete table, and a modify table per database attribute. It builds a positional index
on the cached updates using RID as the index key. Incoming updates are appended to the relevant
insert/delete/modify tables. During query processing, PDT looks up the index with RIDs to
retrieve relevant cached updates. Therefore, the PDT tables are accessed in a random fashion
during a range scan on the main data. Migration of the updates is handled by creating a separate
copy of the main data, then making the new copy available when migration completes. Note that
this requires twice as much data storage capacity as the main data size.

Problems of Directly Extending IU to SSDs. As discussed in Section 3.1, we aim to develop
an SSD-based differential update solution that achieves the five design goals. To start, we
consider directly extending IU to SSDs. As shown in Figure 3.5(b), the cached updates in
insert/delete/modify tables are on SSDs. In order to avoid random SSD writes, incoming updates
should be appended to these tables. For the same reason, ideally, the index is placed in memory
because it sees a lot of random writes to accommodate incoming updates. Note that the index
may consume a large amount of main memory, reducing the SSDs’ benefit of saving memory
footprint. We implemented this ideal-case IU following the above considerations (ignoring any
memory footprint requirement). However, real-machine experiments show up to 3.8x query
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slowdowns even for this ideal-case IU (Section 3.5.2). We find that the slowdown is because the
insert/delete/modify tables are randomly read during range scan operations. This is wasteful as
an entire SSD page has to be read and discarded for retrieving a single update entry.

Problems of Applying LSM to IU. The log-structured merge-tree (LSM) is a disk-based index
structure designed to support a high rate of insertions (O’Neil et al., 1996). An LSM consists of
multiple levels of trees of increasing sizes. PDT employs the idea of multiple levels of trees to
support snapshot isolation in memory (Héman et al., 2010). The stepped-merge algorithm (Ja-
gadish et al., 1997) is based, as well, on the principle of storing updates in memory and organize
them in progressively larger sorted runs, merging them eventually into a B+-Tree. Here, we
consider the feasibility of combining LSM and IU as an SSD-based solution.

As shown in Figure 3.5(c), LSM keeps the smallest C0 tree in memory, and C1, ..., Ch trees on
SSDs, where h ≥ 1. Incoming updates are first inserted into C0, then gradually propagate to
the SSD-resident trees. There are asynchronous rolling propagation processes between every
adjacent pair (Ci , Ci+1) that (repeatedly) sequentially visit the leaf nodes of Ci and Ci+1, and
move entries from Ci to Ci+1. This scheme avoids many of IU’s performance problems. Random
writes can be avoided by using large sequential I/Os during propagation. For a range scan query,
it performs corresponding index range scans on every level of LSM, thereby avoiding wasteful
random I/Os as in the above ideal-case IU.

Unfortunately, LSM incurs a large amount of writes per update entry, violating the third design
goal. The additional writes arise in two cases: (i) An update entry is copied h times from C0 to
Ch ; and (ii) the propagation process from Ci to Ci+1 rewrites the old entries in Ci+1 to SSDs once
per round of propagation. According to (O’Neil et al., 1996), in an optimal LSM, the sizes of
the trees form a geometric progression. That is, si ze(Ci+1)/si ze(Ci ) = r , where r is a constant
parameter. It can be shown that in LSM the above two cases introduce about r +1 writes per
update for levels 1, . . . ,h −1 and (r +1)/2 writes per update for level h. As an example, with
4GB SSD space and 16MB memory (which is our experimental setting in Section 3.5.1), we can
compute that a 2-level (h = 1) LSM writes every update entry ≈ 128 times. The optimal LSM
that minimizes total writes has h = 4 and it writes every update entry ≈ 17 times! In other words,
compared to a scheme that writes every update entry once, applying LSM on an SSD reduces its
lifetime 17 fold (e.g., from 3 years to 2 months). For a more detailed comparison of the amount
of writes performed by LSM and MaSM see Section 3.4.5.

3.3 MaSM Design

In this section, we propose MaSM (materialized sort-merge) algorithms for achieving the five
design goals. We start by describing the basic ideas in Section 3.3.1. Then we present two MaSM
algorithms: MaSM-2M in Section 3.3.2 and MaSM-M in Section 3.3.3. MaSM-M halves the
memory footprint of MaSM-2M but incurs extra SSD writes. In Section 3.3.4, we generalize
these two algorithms into a MaSM-αM algorithm, allowing a range of trade-offs between
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memory footprint and SSD writes by varying α. After that, we discuss a set of optimizations in
Section 3.3.5, and describe transaction support in Section 3.3.6. Finally, we analyze the MaSM
algorithms in terms of the five design goals in Section 3.3.7.

3.3.1 Basic Ideas

Consider the operation of merging a table range scan and the cached updates. For every record
retrieved by the scan, it finds and applies any matching cached updates. Records without updates
or new insertions must be returned too. Essentially, this is an outer join operation on the record
key (primary key/RID).

Among various join algorithms, we choose to employ a sort-based join that sorts the cached
updates and merges the sorted updates with the table range scan. This is because the most efficient
joins are typically sort-based or hash-based, but hash-based joins have to perform costly I/O
partitioning for the main data. The sort-based join also preserves the record order in table range
scans, which allows hiding the implementation details of the merging operation from the query
optimizer and upper-level query operators.

To reduce memory footprint, we keep the cached updates on SSDs and perform external sorting
of the updates; two-pass external sorting requires M =p‖SSD‖ pages in memory to sort ‖SSD‖
pages of cached updates on SSDs. However, external sorting may incur significant overhead
for generating sorted runs and merging them. We exploit the following two ideas to reduce
the overhead. First, we observe that a query should see all the cached updates that a previous
query has seen. Thus, we materialize sorted runs of updates, deleting the generated runs only
after update migration. This amortizes the cost of sorted run generation across many queries.
Second, we would like to prune as many irrelevant updates to the current range scan query as
possible. Because materialized runs are read-only, we can create a simple, read-only index, called
a run index. A run index is a compact tree based index which records the smallest key (primary
key/RID) for every fixed number of SSD pages in a sorted run. It is created after the sorted runs
are formed, and, hence, it does not need to support insertion/deletion. Then we can search the
query’s key range in the run index to retrieve only those SSD pages that fall in the range. We call
the algorithm combining the above ideas the Materialized Sort-Merge (MaSM) algorithm.

The picture of the above design is significantly complicated by the interactions among incoming
updates, range scans, and update migrations. For example, sharing the memory buffer between
updates and queries makes it difficult to achieve a memory footprint of M . In-place migrations
may conflict with ongoing queries. Concurrency control and crash recovery must be re-examined.
In the following, we first present a simple MaSM algorithm that requires 2M memory and a more
sophisticated algorithm that reduces the memory requirement to M , then generalize them into an
algorithm requiring αM memory. We propose a timestamp-based approach to support in-place
migrations and ACID properties.

43



Chapter 3. Online Updates for Data Analytics using Solid-State Storage

3.3.2 MaSM-2M
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Figure 3.6: Illustrating the MaSM algorithm using 2M memory.

Figure 3.6 illustrates MaSM-
2M, which allocates M pages
to cache recent updates in mem-
ory and (up to) M pages for sup-
porting a table range scan. In-
coming (well-formed) updates
are inserted into the in-memory
buffer. When the buffer is
full, MaSM-2M flushes the in-
memory updates and creates
a materialized sorted run of
size M on the SSD. There are
at most M materialized sorted
runs since the capacity of the
SSD is M 2. For a table range
scan, MaSM-2M allocates one
page in memory for scanning every materialized sorted run—up to M pages. It builds a
Volcano-style (Graefe, 1994) operator tree to merge main data and updates, replacing the origi-
nal Table_range_scan operator in query processing. We describe the detailed algorithm in
Figure 3.7.

Timestamps. We associate every incoming update with a timestamp, which represents the
commit time of the update. Every query is also assigned a timestamp. We ensure that a query
can only see earlier updates with smaller timestamps. Moreover, we store in every database page
the timestamp of the last update applied to the page, for supporting in-place migration. To do
this, we reuse the Log Sequence Number (LSN) field in the database page. This field is originally
used in recovery processing to decide whether to perform a logged redo operation on the page.
However, in the case of MaSM, the LSN field is not necessary because recovery processing does
not access the main data, rather it recovers the in-memory buffer for recent updates.

Update Record. For an incoming update, we construct a record of the format (timestamp,
key, type, content). As discussed in Section 3.2.1, table range scans output records in key
order, either the primary key in a row store or the RID in a column store, and well-formed updates
contain the key information. The type field is one of insert/delete/modify/replace;
replace represents a deletion merged with a later insertion with the same key. The content
field contains the rest of the update information: for insert/replace, it contains the new
record except for the key; for delete, it is null; for modify, it specifies the attribute(s) to modify
and the new value(s). During query processing, a getnext call on Merge_data_updates

incurs getnext on operators in the subtree. Run_scan and Mem_scan scan the associated
materialized sorted runs and the in-memory buffer, respectively. The (begin key, end key)
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of the range scan is used to narrow down the update records to scan. Merge_updates merges
multiple streams of sorted updates. For updates with the same key, it merges the updates correctly.
For example, the content fields of multiple modifications are merged. A deletion followed by
an insertion changes the type field to replace. The operator Merge_data_updates performs
the desired outer-join like merging operation of the data records and the update records.

Online Updates and Range Scan. Usually, incoming updates are appended to the end of the
update buffer, and therefore do not interfere with ongoing Mem_scan. However, flushing the
update buffer must be handled specially. MaSM records a flush timestamp with the update buffer
therefore Mem_scan can discover the flushing. When this happens, Mem_scan instantiates a
Run_scan operator for the new materialized sorted run and replaces itself with the Run_scan in
the operator tree. The update buffer must be protected by latches (mutexes). To reduce latching
overhead, Mem_scan retrieves multiple update records at a time.

Incoming Update. The steps to process an incoming update are:

1: if In-memory buffer is full then
2: Sort update records in the in-memory buffer in key order;
3: Build a run index recording (begin key, SSD page);
4: Create a new materialized sorted run with run index on SSD;
5: Reset the in-memory buffer;
6: end if
7: Append the incoming update record to the in-memory buffer;

Table Range Scan. MaSM-2M constructs a Volcano-style query operator tree to replace the
Table_range_scan operator:

1: Instantiate a Run_scan operator per materialized sorted run using the run index to narrow
down the SSD pages to retrieve;

2: Sort the in-memory buffer for recent update records;
3: Instantiate a Mem_scan operator on the in-memory buffer and locate the begin and end

update records for the range scan;
4: Instantiate a Merge_updates operator as the parent of all the Run_scan operators and the

Mem_scan operator;
5: Instantiate a Merge_data_updates operator as the parent of the Table_range_scan

and the Merge_updates;
6: return Merge_data_updates;

Figure 3.7: MaSM-2M algorithm

Multiple Concurrent Range Scans. When multiple range scans enter the system concurrently,
each one builds its own query operator tree with distinct operator instances, and separate read
buffers for the materialized sorted runs. Run_scan performs correctly because materialized
sorted runs are read-only. On the other hand, the in-memory update buffer is shared by all
Mem_scan operators, which sort the update buffer then read sequentially from it. For reading
the buffer sequentially, each Mem_scan tracks (key, pointer) pairs for the next position
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and the end_range position in the update buffer. To handle sorting, MaSM records a sort
timestamp with the update buffer whenever it is sorted. In this way, Mem_scan can detect a
recent sorting. Upon detection, Mem_scan adjusts the pointers of the next and end_range

positions by searching for the corresponding keys. There may be new update records that fall
between the two pointers after sorting. Mem_scan correctly filters out the new update records
based on the query timestamp.

In-Place Migration of Updates Back to Main Data. Migration is implemented by performing
a full table scan where the scan output is written back to disks. Compared to a normal table
range scan, there are two main differences. First, the (begin key, end key) is set to cover
the entire range. Second, Table_range_scan returns a sequence of data pages rather than
a sequence of records. Merge_data_updates applies the updates to the data pages in the
database buffer pool, then issues (large sequential) I/O writes to write back the data pages. For
compressed data chunks in a column store, the data are uncompressed in memory, modified,
re-compressed, and written back to disks. The primary key index or the RID position index is
updated along with every data page. Here, by in-place migration, we mean two cases: (i) new
data pages overwrite the old pages with the same key ranges; or (ii) after writing a new chunk of
data, the corresponding old data chunk is deleted so that its space can be used for writing other
new data chunks.

The migration operation is performed only when the system is under low load or when the size of
cached updates is above a pre-specified threshold. When one of the conditions is true, MaSM
logs the current timestamp t and the IDs of the set R of current materialized sorted runs in the
redo log, and spawns a migration thread. The thread waits until all ongoing queries earlier than
t complete, then migrates the set R of materialized runs. When migration completes, it logs a
migration completion record in the redo log then deletes the set R of materialized runs. Note that
any queries that arrive during migration are evaluated correctly without additional delays. The
table scan performed by the migration thread serve them correctly by delivering the data with the
appropriate updates. On the other hand, the migration process begins only after all queries with
starting time earlier than the selected migration timestamp t have finished.

3.3.3 MaSM-M

Figure 3.8 illustrates MaSM-M, the MaSM algorithm using M memory. There are two main
differences between MaSM-M and MaSM-2M. First, compared to MaSM-2M, MaSM-M man-
ages memory more carefully to reduce its memory footprint to M pages. S of the M pages,
called update pages, are dedicated to buffering incoming updates in memory. The rest of the
pages, called query pages, are mainly used to support query processing. Second, materialized
sorted runs have different sizes in MaSM-M. Since the query pages can support up to only M −S

materialized sorted runs, the algorithm has to merge multiple smaller materialized sorted runs
into larger materialized sorted runs. We call the sorted runs that are directly generated from the
in-memory buffer 1-pass runs, and those resulted from merging 1-pass runs 2-pass runs.
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Figure 3.8: Illustrating MaSM algorithm using M memory.

All 1-pass sorted runs comprised
of S pages each. Since 1-pass
sorted runs have the same size, when
generating 2-pass runs we merge
N contiguous 1-pass sorted runs.
Any other approach would incur a
higher number of writes on the de-
vice leading to undesired increase
in the write amplification of the
MaSM algorithm. Replacement Se-
lection (Knuth, 1998) offers less to-
tal number writes and better merge
performance, but breaks the correct
operation of the migration process
discussed in Section 3.3.2. The 1-
pass sorted runs are created sequentially and, hence, they have disjoint timestamp sets. This
property is important during migration and crash recovery in order to guarantee that there is
a timestamp t before which, all updates are taken into account when the migration is finished.
Using Replacement Selection would generate sorted runs with timestamp overlaps, making it
impossible for the migration process to complete correctly.

Figure 3.9 presents the pseudo code of MaSM-M. Algorithm parameters are summarized in
Table 3.1. Incoming updates are cached in the in-memory buffer until the buffer is full. At this
moment, the algorithm tries to steal query pages for caching updates if they are not in use (Lines
2–3). The purpose is to create 1-pass runs as large as possible for reducing the need for merging
multiple runs. When query pages are all in use, the algorithm materializes a 1-pass sorted run
with run index on SSDs (Line 5).

The table range scan algorithm consists of three parts. First, Lines 1–4 create a 1-pass run if the
in-memory buffer contains at least S pages of updates. Second, Lines 5–8 guarantee that the
number of materialized sorted runs is at most M−S, by (repeatedly) merging the N earliest 1-pass
sorted runs into a single 2-pass sorted run until K1 +K2 ≤ M −S. Note that the N earliest 1-pass
runs are adjacent in time order, and thus merging them simplifies the overall MaSM operation
when merging updates with main data. Since the size of a 1-pass run is at least S pages, the size
of a 2-pass sorted run is at least N S pages. Finally, Lines 9–14 construct the query operator tree.
This part is similar to MaSM-2M.

Like MaSM-2M, MaSM-M handles concurrent range scans, updates, and in-place migration
using the timestamp approach.

Minimizing SSD Writes for MaSM-M. We choose the S and N parameters to minimize SSD
writes for MaSM-M. Theorem 3.1 computes the bound of the number of SSD writes that MaSM
incurs. In fact, it is a corollary of a more general result shown in the next section (Theorem 3.2).
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Incoming Updates:

1: if In-memory buffer is full then
2: if At least one of the query pages is not used then
3: Steal a query page to extend the in-memory buffer;
4: else
5: Create a 1-pass materialized sorted run with run index from the updates in the in-memory

buffer;
6: Reset the in-memory buffer to have S empty pages;
7: end if
8: end if
9: Append the incoming update record to the in-memory buffer;

Table Range Scan Setup:

1: if In-memory buffer contains at least S pages of updates then
2: Create a 1-pass materialized sorted run with run index from the updates in the in-memory

buffer;
3: Reset the in-memory buffer to have S empty update pages;
4: end if
5: while K1 +K2 > M −S do {merge 1-pass runs}
6: Merge N earliest adjacent 1-pass runs into a 2-pass run;
7: K1 = K1 −N ; K2++;
8: end while
9: Instantiate a Run_scan operator per materialized sorted run using the run index to narrow

down SSD pages to retrieve;
10: if In-memory buffer is not empty then
11: Sort the in-memory buffer and create a Mem_scan operator;
12: end if
13: Instantiate a Merge_updates operator as the parent of all the Run_scan operators and the

Mem_scan operator;
14: Instantiate a Merge_data_updates operator as the parent of the Table_range_scan

and the Merge_updates;
15: return Merge_data_updates;

Figure 3.9: MaSM-M algorithm
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Table 3.1: Parameters used in the MaSM-M algorithm.

‖SSD‖ SSD capacity (in pages), ‖SSD‖ = M 2

M memory size (in pages) allocated for MaSM-M
S memory buffer (in pages) allocated for incoming updates

K1 number of 1-pass sorted runs on SSDs
K2 number of 2-pass sorted runs on SSDs
N merge N 1-pass runs into a 2-pass run, N ≤ M −S

Theorem 3.1. The MaSM-M algorithm minimizes the number of SSD writes in the worst case
when Sopt = 0.5M and Nopt = 0.375M +1. The average number of times that MaSM-M writes
every update record to SSD is 1.75+ 2

M .

3.3.4 MaSM-αM

We generalize the MaSM-M algorithm to a MaSM-αM algorithm that uses αM memory, where
α ∈ [ 2

M
1
3

,2]. The algorithm is the same as MaSM-M except that the total allocated memory size
is αM pages. The lower bound on α ensures that the memory is sufficiently large to make 3-pass
sorted runs unnecessary. MaSM-M is a special case of MaSM-αM when α= 1, and MaSM-2M
is a special case of MaSM-αM when α= 2. Similar to Theorem 3.1, we can obtain the following
theorem for minimizing SSD writes for MaSM-αM.

Theorem 3.2. Let α ∈ [ 2

M
1
3

,2]. The MaSM-αM algorithm minimizes the number of SSD writes

in the worst case when Sopt = 0.5αM and Nopt = 1
b 4
α2 c

( 2
α −0.5α)M +1. The average number of

times that MaSM-αM writes every update record to SSD is roughly 2−0.25α2.

We can verify that MaSM-M incurs roughly 2−0.25∗12 = 1.75 writes per update record, while
MaSM-2M writes every update record once (2−0.25∗22 = 1).

Theorem 3.2 shows the trade-off between memory footprint and SSD writes for a spectrum of
MaSM algorithms. At one end of the spectrum, MaSM-2M achieves minimal SSD writes with
2M memory. At the other end of the spectrum, one can achieve a MaSM algorithm with very
small memory footprint (2M

2
3 ) while writing every update record at most twice.

3.3.5 Further Optimizations

Granularity of Run Index. Because run indexes are read-only, their granularity can be chosen
flexibly. For example, suppose the page size of the sorted runs on SSDs is 64KB. Then we can
keep the begin key for a coarser granularity, such as one key per 1MB, or a finer granularity, such
as one key per 4KB. The run index should be cached in memory for efficient accesses (especially
if there are a lot of small range scans). Coarser granularity saves memory space, while finer
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granularity makes range scans on the sorted run more precise. The decision should be made
based on the query workload. The former is a good choice if very large ranges are typical, while
the latter should be used if narrower ranges are frequent. For indexing purpose, one can keep
a 4-byte prefix of the actual key in the run index. Therefore, the fine-grain indexes that keep 4
bytes for every 4KB updates are ‖SSD‖/1024 large. If keeping 4 bytes for every 1MB updates,
the total run index size is ‖SSD‖/256K large. In both cases the space overhead on SSD is very
small: ≈ 0.1% and ≈ 4 ·10−4% respectively. Note that there is no reason to have finer granularity
than one value (4 bytes in our setup) every 4KB of updates because this is the access granularity
as well. Hence, the run index overhead is never going to be more than 0.1%.

Handling Skews in Incoming Updates. When updates are highly skewed, there may be many
duplicate updates (i.e., updates to the same record). The MaSM algorithms naturally handle
skews: When generating a materialized sorted run, the duplicates can be merged in memory
as long as the merged update records do not affect the correctness of concurrent range scans.
That is, if two update records with timestamp t1 and t2 are to be merged, there should not be
any concurrent range scans with timestamp t , such that t1 < t ≤ t2. In order to further reduce
duplicates, one can compute statistics about duplicates at the range scan processing time. If the
benefits of removing duplicates outweigh the cost of SSD writes, one can remove all duplicates
by generating a single materialized sorted run from all existing runs.

Improving Migration. There are several ways to improve the migration operation. First,
similar to several techniques to share scans (coordinated scans (Fernandez, 1994), circular
scans (Harizopoulos et al., 2005), cooperative scans (Zukowski et al., 2007)), we can combine
the migration with a table scan query in order to avoid the cost of performing a table scan for
migration purposes only. Hence, any queries that arrives during the migration process can be
attached to the migration table scan and use the newly merged data directly as their output. In
case they did not attach at the very beginning of the migration process, the queries spawn a new
range scan from the beginning of the fact table until the point they actually started from. Since
the data residing on disk is the same in the two parts of the query, i.e., the version of the data
after the latest migration, a simple row id is enough to signify the ending of the second range
scan. Second, one can migrate a portion (e.g., every 1/10 of table range) of updates at a time to
distribute the cost across multiple operations, shortening any delays for queries arriving during an
ongoing migration. To do this, each materialized sorted run records the ranges that have already
been migrated and the ranges that are still active.

3.3.6 Transaction Support

The lifetime of an update. A new update, U , arriving in the system is initially logged on
the transactional log and, subsequently, stored in the in-memory buffer. The transactional log
guarantees that in an event of a crash, the updates stored in-memory will not be lost. When the
buffer gets full it is sorted and it is sequentially written as a 1-pass materialized sorted run on
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the SSD. Once this step is completed the record for U on the transactional log is not needed,
because MaSM guarantees the durability of U on the SSD. Hence, the transactional log can be
truncated as often as the in-memory buffer is flushed to flash. For MaSM-αM and α< 2 (and,
hence, MaSM-M as well) 1-pass sorted runs are merged and written a second time on the SSD on
2-pass materialized sorted runs. For MaSM-2M this step is skipped. When the SSD free capacity
is less than a given threshold, the migration process is initiated. During this process, all updates
are applied on the main data during a full table scan. Each data page has its timestamp updated to
be equal to the timestamp of the last added update. The migration process is protected with log
records that make sure that in an event of a crash the process will start over. When the migration
process completes correctly, the sorted-runs including migrated updates are removed from the
SSD and the relevant updates are now part only of the main data.

Serializability among Individual Queries and Updates. By using timestamps, MaSM algo-
rithms guarantee that queries see only earlier updates. In essence, the timestamp order defines a
total serial order, and thus MaSM algorithms guarantee serializability among individual queries
and updates.

Supporting Snapshot Isolation for General Transactions. In snapshot isolation (Berenson
et al., 1995), a transaction works on the snapshot of data as seen at the beginning of the transaction.
If multiple transactions modify the same data item, the first committer wins while the other
transactions abort and roll back. Note that snapshot isolation alone does not solve the online
updates problem in data warehouses. While snapshot isolation removes the logical dependencies
between updates and queries so that they may proceed concurrently, the physical interferences
between updates and queries present major performance problems. Such interferences are the
target of MaSM algorithms.

Similar to prior work (Héman et al., 2010), MaSM can support snapshot isolation by maintaining
for every ongoing transaction a small private buffer for the updates performed by the transaction.
(Note that such private buffers may already exist in the implementation of snapshot isolation.) A
query in the transaction has the timestamp of the transaction start time so that it sees only the
snapshot of data at the beginning of the transaction. To incorporate the transaction’s own updates,
we can instantiate a Mem_scan operator on the private update buffer, and insert this operator in
the query operator tree in Figure 3.6 and 3.8. At commit time, if the transaction succeeds, we
assign the commit timestamp to the private updates and copy them into the global in-memory
update buffer.

Supporting Locking Schemes for General Transactions. Shared (exclusive) locks are used to
protect reads (writes) in many database systems. MaSM can support locking schemes as follows.
First, for an update, we ensure that it is globally visible only after the associated exclusive lock
is released. To do this, we allocate a small private update buffer per transaction (similar to
snapshot isolation), and cache the update in the private buffer. Upon releasing the exclusive lock
that protects the update, we assign the current timestamp to the update record and append it to
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MaSM’s global in-memory update buffer. Second, we assign the normal start timestamp to a
query so that it can see all the earlier updates.

For example, two phase locking is correctly supported. In two phase locking, two conflicting
transactions A and B are serialized by the locking scheme. Suppose A happens before B . Our
scheme makes sure that A’s updates are made globally visible at A’s lock releasing phase, and B

correctly see these updates.

The In-Memory Update Buffer. The incoming updates are first stored in an in-memory buffer
before they are sorted and written on the SSD. During query execution (one or more concurrent
queries) this buffer can be read by every active query without any protection required. In fact,
even in the presence of updates only minimal protection is needed because no query will ever need
to read updates made by subsequent transactions. Hence, the buffer is protected for consistency
with a simple latch. However, when updates are issued concurrently the in-memory buffer is
bound to get full. In this case the buffer is locked, sorted and flushed to the SSD. During the
in-memory buffer flush MaSM delays the writes. A different approach is to have a second buffer
and switch the pointers between the two buffers when one gets full, sorted and flushed to the
SSD.

Crash Recovery. Typically, MaSM needs to recover only the in-memory update buffer for crash
recovery. This can be easily handled by reading the database redo log for the update records.
It is easy to use update timestamps to distinguish updates in memory and updates on SSDs. In
the rare case, the system crashes in the middle of an update migration operation. To detect such
cases, MaSM records the start and the end of an update migration in the log. Note that we do not
log the changes to data pages in the redo log during migration, because MaSM can simply redo
the update migration during recovery processing; by comparing the per-data-page timestamps
with the per-update timestamps, MaSM naturally determines whether updates should be applied
to the data pages. Cached updates are removed only after the migration succeeds. Therefore, this
process is idempotent, so in an event of multiple crashes it can still handle correctly the updates.

The primary key index or RID position index is examined and updated accordingly.

3.3.7 Achieving The Five Design Goals

As described in Sections 3.3.2–3.3.6, it is clear that the MaSM algorithms perform no random
SSD writes and provide correct ACID support. We analyze the other three design goals in the
following.

Low Overhead for Table Range Scan Queries. Suppose that updates are uniformly distributed
across the main data. If the main data size is ‖Di sk‖ pages, and the table range scan query
accesses R disk pages, then MaSM-αM reads max(R ‖SSD‖

‖Di sk‖ ,0.5αM) pages on SSDs. This
formula has two parts. First, when R is large, run indexes can effectively narrow down the accesses
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to materialized sorted runs, and therefore MaSM performs (R ‖SSD‖
‖Di sk‖ ) SSD I/Os, proportional to

the range size. Compared to reading the disk main data, MaSM reads fewer bytes from SSD, as
‖SSD‖
‖Di sk‖ is 1%–10%. Therefore, the SSD I/Os can be completely overlapped with the table range
scan on main data, leading to very low overhead. A detailed analysis of the impact of the SSD
I/Os is presented both through an analytical model in Section 3.4.4 and through experimentation
in Section 3.5.2.

Second, when the range R is small, MaSM-αM performs at least one I/O per materialized sorted
run: the I/O cost is bounded by the number of materialized sorted runs (up to 0.5αM). (Our
experiments in Section 3.5.2 see 128 sorted runs for 100GB data.) Note that SSDs can support
100x–1000x random 4KB reads per second compared to disks (Intel, 2009). Therefore, MaSM
can overlap most latencies of the 0.5αM random SSD reads with the small range scan on disks,
achieving low overhead.

Bounded memory footprint. Theorem 3.2 shows that our MaSM algorithms use [2M
2
3 ,2M ]

pages of memory, where M =p‖SSD‖.

Bounded number of total writes on SSD. MaSM has a limited effect in the device lifetime by
bounding the number of writes per update according to Theorem 3.2. All MaSM algorithms use
fewer than 2 SSD writes per update, with MaSM-2M using only 1 write per update.

Efficient In-Place Migration. MaSM achieves in-place update migration by attaching times-
tamps to updates, queries, and data pages as described in Section 3.3.2.

We discuss two aspects of migration efficiency. First, MaSM performs efficient sequential I/O
writes in a migration. Because update cache size is non-trivial (1%–10%) compared to main data
size, it is likely that there exist update records for every data page. Compared to conventional
random in-place updates, MaSM can achieve orders of magnitude higher sustained update rate,
as is shown in Section 3.5.2. Second, MaSM achieves low migration frequency with a small
memory footprint. If SSD page size is P , then MaSM-αM uses F = αMP memory capacity
to support an SSD-based update cache of size M 2P = F 2

α2P . Note that as the memory footprint
doubles, the size of MaSM’s update cache increases by a factor of 4, and the migration frequency
decreases by a factor of 4, as compared to a factor of 2 with prior approaches that cache updates
in memory (see Figure 3.1). For example, for MaSM-M, if P = 64KB, a 16GB in-memory update
cache in prior approaches has the same migration overhead as just an F = 32MB in-memory
buffer in our approach, because F 2/(64KB) = 16GB.

3.4 Analysis and Modeling of MaSM

In this section, we present the proofs of the theorems in Section 3.3 and provide an in-depth
analysis of the behavior of the MaSM algorithm.

53



Chapter 3. Online Updates for Data Analytics using Solid-State Storage

3.4.1 Theorems About MaSM Behavior

We start by proving Theorem 3.2 for the general case and then we show how to deduce Theorem
3.1.

Theorem 3.2. Let α ∈ [ 2

M
1
3

,2]. The MaSM-αM algorithm minimizes the number of SSD writes

in the worst case when Sopt = 0.5αM and Nopt = 1
b 4
α2 c

( 2
α −0.5α)M +1. The average number of

times that MaSM-αM writes every update record to SSD is roughly 2−0.25α2.

Proof. Every update record is written at least once to a 1-pass run. Extra SSD writes occur when
1-pass runs are merged into a 2-pass run. We choose S and N to minimize the extra writes.

The worst case scenario happens when all the 1-pass sorted runs are of the minimal size S. In this
case, the pressure for generating 2-pass runs is the greatest. Suppose all the 1-pass runs have size
S and all the 2-pass runs have size N S. We must make sure that when the allocated SSD space is
full, MaSM-αM can still merge all the sorted runs. Therefore:

K1S +K2N S = M 2 (3.1)

and

K1 +K2 ≤αM −S (3.2)

Compute K1 from (3.1) and plugging it into (3.2) yields:

K2 ≥ 1

N −1
(S −αM + M 2

S
) (3.3)

When the SSD is full, the total extra writes is equal to the total size of all the 2-pass sorted runs:

E xtr aW r i tes = K2N S ≥ N

N −1
(S2 −αMS +M 2) (3.4)

To minimize E xtr aW r i tes, we would like to minimize the right hand side and achieve the
equality sign as closely as possible. The right hand side achieves the minimum when N takes the
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largest possible value and Sopt = 0.5αM . Plug it into (3.3) and (3.4):

K2 ≥ 1

N −1
(

2

α
−0.5α)M (3.5)

E xtr aW r i tes = 0.5αMK2N ≥ N

N −1
(1−0.25α2)M 2 (3.6)

Note that the equality signs in the above two inequalities are achieved at the same time. Given a
fixed K2, the smaller the N , the lower the E xtr aW r i tes. Therefore, E xtr aW r i tes is minimized
when the equality signs are held. We can rewrite mi n(E xtr aW r i tes) as a function of K2:

mi n(E xtr aW r i tes) = (0.5α
K2

M
+1−0.25α2)M 2 (3.7)

The global minimum is achieved with the smallest non-negative integer K2. Since N ≤ αM −
Sopt = 0.5αM , we know K2 > 4

α2 −1 according to (3.5).

Therefore, E xtr aW r i tes achieves the minimum when Sopt = 0.5αM , K2,opt = b 4
α2 c, and Nopt =

1
K2,opt

( 2
α −0.5α)M +1. We can compute the minimum E xtr aW r i tes

' (1−0.25α2)M 2. In this setting, the average number of times that MaSM-αM writes every
update record to SSD is roughly 2−0.25α2. Moreover, since K2 ≤αM −Sopt iff b 4

α2 c ≤ 0.5αM ,
we know that α≥ 2

M
1
3

.

Theorem 3.1. The MaSM-M algorithm minimizes the number of SSD writes in the worst case
when Sopt = 0.5M and Nopt = 0.375M +1. The average number of times that MaSM-M writes
every update record to SSD is 1.75+ 2

M .

Proof. When α = 1, Theorem 3.2 yields Sopt = 0.5M and Nopt = 1
4 (2− 0.5)M + 1 = 3

8 M + 1.
Moreover, equation 3.7 with K2 = b 4

α2 c = 4 yields E xtr aW r i tes = ( 2
M +1–0.25)M 2 = 0.75M 2 +

2M . In this setting, the average number of times that MaSM-M writes every update record to
SSD is 1+ (0.75M 2 +2M)/M 2 = 1.75+ 2

M ' 1.75.

3.4.2 SSD Wear vs. Memory Footprint

MaSM-αM specifies a spectrum of MaSM algorithms trading off SSD writes for memory
footprint. By varying α from 2 to 2

M
1
3

, the memory footprint reduces from 2M pages to 2M
2
3

pages, while the average times that an update record is written to SSDs increases from the
(minimal) 1 to close to 2. In all MaSM algorithms, we achieve small memory footprint and low
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total SSD writes.

In Figure 3.10 we vary the value of α on the x-axis and depict the resulting number of writes per
updates of the corresponding MaSM-αM algorithm. The figure shows the operating point of the
MaSM-2M algorithm (on the rightmost part of the graph), the operating point of the MaSM-M
(in the middle) and the point corresponding to the lower bound of the value of the parameter
α, which is the smallest possible memory footprint allowing MaSM to avoid 3-pass external
sorting. We see that the minimum value of α for 4GB SSD space, is α≈ 0.02, leading to 100x
less memory for twice the number of writes per update, compared to MaSM-2M. Therefore,
one can choose the desired parameter α based on the requirements of the application and the
capacities of the underlying SSD.
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Figure 3.10: The tradeoff between SSD wear and memory
footprint.

The write endurance of the
enterprise-grade SLC (Single
Level Cell) NAND Flash SSD,
32GB Intel X25E SSD, used
in our experimentation is 105.
Therefore, the Intel X25E SSD
can support 3.2-petabyte writes,
or 33.8MB/s for 3 years. MaSM
writes on flash using large
chunks, equal to an erase block
for several SSDs, allowing the
device to operate with minimal
write amplification, close to 1.
MaSM-2M writes SSDs once
for any update record, therefore a single SSD can sustain up to 33.8MB/s updates for 3 years.
MaSM-M writes about 1.75 times for an update record. Therefore, for MaSM-M, a single SSD
can sustain up to 19.3MB/s updates for 3 years, or 33.8MB/s for 1 year and 8 months. This limit
can be improved by using larger total SSD capacity: doubling SSD capacity doubles this bound.

Newer enterprise-grade NAND Flash SSDs, however, have switched to MLC (Multi Level Cell).
The endurance of a MLC cell is typically one order of magnitude lower than SLC, 104, and the
capacity of MLC NAND Flash SSDs about one order of magnitude higher, 200GB to 320GB.
The lack of endurance in erase cycles is balanced out by the larger capacity and, as a result, the
lifetime of an MLC SSD is in fact similar to an SLC SSD.

3.4.3 Memory Footprint vs. Performance

As discussed in Section 3.3.7, the I/O costs of small range scans are determined by the number of
materialized sorted runs. For the extreme case of a point query, where a single page of data is
retrieved, the merging process has to fetch one page of updates from every sorted run. In this
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case the response time is dominated by the time of reading from the SSD. In order to mitigate
this bottleneck one has to reduce the number of sorted runs stored on the SSD.

For the family of MaSM-αM algorithms, the number of sorted runs stored on the SSD can be
calculated using Equation 3.2. If we assume the optimal distribution of buffer pages as described
in Theorem 3.2, i.e., Sopt = α·M

2 , the equality holds for Equation 3.2 and we get the maximum
number of sorted runs, N :

N = K1 +K2 =α ·M −Sopt = α ·M

2
(3.8)
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Figure 3.11: Memory footprint vs. short range performance.

A new tradeoff is formed: by
increasing the allocated mem-
ory for the algorithm (i.e. by in-
creasing α)7 one increases the
lower bound of the cost of read-
ing updates from the SSD in the
case of sort range scans. In fact,
the lower bound of updates read
in MB from the SSD is given
by the product of the number of
sorted runs, N , the SSD page
size, P , and the index granular-
ity fraction, g , which is defined as the granularity of the run index divided by the page size.
Finally, M =p‖SSD‖ and α is the parameter showing the available memory to the MaSM-αM
algorithm.

Upd atesRead = N · g ·P = α ·M · g ·P

2
(3.9)

Equation 3.9 shows the relationship between the size of updates to be read and the value of the
parameter α. Figure 3.11 shows how the lower bound of the size of fetched updates (y-axis in
MB) changes as α changes (x-axis). Three blue lines are presented each one corresponding to
index granularity 64KB, 16KB and 4KB respectively. The straight red line on the top of the graph
corresponds to the overall size of the SSD which in our experimentation and analysis is 4GB and
the SSD page size P is equal to 64KB. Higher values of α lead to higher I/O cost for fetching the
updates, because a bigger percentage of the updates stored on SSD should be read. The above
analysis is extended in the following section in order to fully understand how the overhead of

7Increasing α helps with SSD wear (Section 3.4.2) but it has adverse effects regarding short range queries
performance. Hence, there is a tradeoff between SSD wear, allocated memory, and short range queries performance.
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reading the updates affects the performance of the MaSM algorithms.

3.4.4 Modeling the I/O Time of Range Queries

In this section we present an analytical model for range queries, which considers the I/O time of
reading updates from SSDs, and the I/O time of reading the main data. We model various aspects
of the range queries, including relation size, disk capacity, SSD capacity, range size, and disk and
SSD performance characteristics. The parameters used in the performance model, including the
ones detailed in the discussion about the MaSM algorithms in Section 3.3.4 (see Table 3.1), are
summarized in Table 3.2.

In Sections 3.3.7 and 3.4.3 it is argued that the lower bound for the cost of retrieving updates
from SSD is given by the number of sorted runs. The cost of retrieving updates for larger ranges,
however, is a function of the range of the relation we retrieve. More specifically, if we assume that
the updates are uniformly distributed over the main data then the number of SSD pages retrieved
is proportional to the range size of the query. Hence, the time needed to fetch the updates is given
by Equation 3.10.

FetchUpd ates = max(‖SSD‖ · r, N · g ) · P

F BW
(3.10)

The size of the range, r % is expressed as a percentage of the total size of the relation (T ). ‖SSD‖
is the number of SSD pages devoted to the MaSM algorithm, g is the granularity of the run
index as a fraction of SSD pages, which in turn have size P . The bandwidth that updates are
fetched from the SSD, F BW , defines how fast MaSM can read updates. In Equation 3.10 we first
calculate the number of pages containing updates to be read, which is equal to max(‖SSD‖r, N g ),
and then we take the worst case scenario regarding the I/O time per page.

MaSM overlaps SSD I/Os for retrieving updates with HDD I/Os for retrieving the main data. In
order to model this behavior, we devise a simple HDD model. For a query that requires a range
scan of r % of the main data (with total size T ) the time needed to retrieve the data is given by
Equation 3.11.

Read M ai nDat a = s + r ·T

DBW
(3.11)

The seek time, s, plays an important role since it dominates the response time for short ranges.
For large ranges, however, the most important factor is the disk bandwidth, DBW .

Achieving perfect I/O overlapping using MaSM. Using Equations 3.10 and 3.11 we compute
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Table 3.2: The parameters of MaSM-M’s performance model and their values.

T The total size of the table 100 GB
s The seek time of the main storage hard disk 4.17 ms, 3 ms, 2 ms

DBW The sequential bandwidth offered by the main 77 MB/s, 200 MB/s,
storage hard disk 800 MB/s

r The percentage of the relation queried sequentially 2−26 . . .2−1,1

‖SSD‖ SSD capacity (in pages) 65536 pages
M MaSM-M memory, M =p‖SSD‖ 256 pages
P SSD page size 64 KB
α The α parameter, giving the amount of memory 0.5, 1.0, 2.0

available to MaSM-αM
N The number of sorted runs 64, 128, 256

g The granularity fraction of the run index 1, 1/16

ReadBW The nominal read bandwidth offered by the SSD 250 MB/s, 1500 MB/s
F BW The random read bandwidth offered by the SSD 193 MB/s, 578 MB/s

when reading P-sized pages

under which conditions the I/O for fetching updates can be entirely overlapped by the I/O needed
to read the main data, i.e., the formal condition for perfect I/O overlapping:

Read M ai nDat a ≥ FetchUpd ates ⇒ s + r ·T

DBW
≥ max(‖SSD‖ · r, N · g ) · (

P

F BW
) ⇒

s ≥ max(‖SSD‖ · r, N · g ) · P

F BW
− r ·T

DBW
(3.12)

Equation 3.12 has two branches, depending on whether ‖SSD‖ · r has higher value than N · g

or not. When the query range is large enough to bring at least one page per sorted run (i.e.,
‖SSD‖ · r ≥ N · g ) the condition becomes:

s ≥ ‖SSD‖ · r ·P

F BW
− r ·T

DBW
⇒ s ≥ r ·

(
P · ‖SSD‖

F BW
− T

DBW

)
(3.13)

Hence, for large enough ranges, MaSM can perfectly overlap the I/O needed to fetch the
updates with I/O for the main data if the time needed to read randomly all of the updates,
TU = P · ‖SSD‖/F BW , is less than the time needed to read sequentially the entire relation,
TR = T /DBW . If this condition does not hold, perfect I/O overlap is still possible provided that
the difference TU −TR multiplied by the fraction of the range query is less than the time needed
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to initiate a main data I/O, i.e., the seek time of the HDD storing the main data. Regarding the
second branch of Equation 3.12, i.e., for short ranges that ‖SSD‖ · r < N · g the condition is:

s ≥ N · g ·P

F BW
− r ·T

DBW
(3.14)

Equation 3.14 implies that for short ranges, MaSM can perfectly overlap the I/O needed to fetch
the updates with I/O for the main data if the time needed to read randomly the minimal number of
pages per sorted run, TmU = N ·g ·P

F BW , is less than the time needed to read sequentially the queried
range of the relation, Tr R = r ·T

DBW , or, if this does not hold, the difference TmU −Tr R is less than
the seek time of the HDD storing the main data.

Analysis of MaSM Behavior. We use the analytical model from the previous section to predict
the anticipated behavior of the MaSM algorithms for our experimental setup in Section 3.5, as
well as, for different setups with varying performance capabilities of the disk subsystem storing
the main data and varying capabilities of the SSD storing the updates.

Table 3.2 shows the parameter values considered in our analysis8. In particular, for the disk
subsystem we use seek time s = 4.17ms and disk bandwidth DBW = 77MB/s which are either
directly measured or taken from device manuals for the experimental machine in the next section.
The SSD used shows 75µs read latency and offers 250MB/s read bandwidth. Please note that
F BW is not equal to read bandwidth, but it is calculated as the effective bandwidth to read a
P-sized page.

In Figure 3.12 we see the I/O time of (i) reading the main data and (ii) reading the updates from
the SSD as a function of the query range. The x-axis shows the range in MB for a relation
with total size T = 100GB. The vertical dashed lines correspond to the ranges we used for our
experimentation in Section 3.5.2: 4KB, 1MB, 10MB, 100MB, 1GB, 10GB, 100GB. The blue
Scan only line shows the I/O time of accessing the main data for the given range, the red lines
show the I/O of fetching the updates for different values of α (0.5, 1, 2) and index granularity
64KB. Finally, in the black lines the only change is the granularity which is now 4KB. We observe
that for any combination of g and α, MaSM can hide the cost of reading updates if the range is
more than 10MB. For α≤ 1 and index granularity 4KB, the cost of reading the updates can be
hidden for every possible range, even for the smallest possible range of 4KB which models the
point query. To detail the comparison between the time to fetch the updates and the time to read
the main data we depict the ratio between these two values in Figure 3.13 for index granularity
64KB and in Figure 3.14 for index granularity 4KB.

Figure 3.13 shows that this ratio quickly rises when the range goes below 10MB: fetching the
updates may need 5x to 20x times more time than reading the main data for short ranges. In these

8Some explanations: the total SSD capacity used is 4GB in 64KB pages: 64K B ·65536 = 4GB . M =p‖SSD‖ = 256.
N =αM/2. The index granularity fraction g is 1 for granularity 64K B and 1/16 for granularity 4K B .
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Figure 3.12: Modeling MaSM performance for reading main data and fetching the updates using
the characteristics of the storage used in our experimentation.
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Figure 3.13: The ratio of the time to fetch
the updates from SSD to the time to read
the main data for index granularity 64KB.
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Figure 3.14: The ratio of the time to fetch
the updates from SSD to the time to read
the main data for index granularity 4KB.

cases MaSM is unable to hide the overhead of reading and merging the updates. On the other
hand, Figure 3.14 shows that if we decrease the index granularity from 64KB to 4KB, MaSM
with α= 1 can read the updates somewhat faster compared with the time needed to read the data
of a point query. This behavior is corroborated in Section 3.5.2 when merging updates from the
SSD for the point queries leads to small performance penalties. Both Figures 3.13 and 3.14 show
that for large ranges starting from 1-10MB the overhead of reading the updates can be easily
hidden by the cost of reading the main data.

Next, we calculate the I/O cost of reading the main data from a faster disk, assuming that the
seek time is now s = 3ms and the disk bandwidth is DBW = 200MB/s. The performance of this
disk is depicted in Figure 3.12 in the blue dotted line named Scan only - Fast HDD. This line
shows that if the current system is equipped with a faster disk then the overhead of MaSM grows,
particularly for short range queries and one is forced to use less memory to hide the overhead of
fetching the updates from the SSD.

The previous analysis of a faster disk opens the question whether MaSM is relevant in a setup
involving a read-optimized array of disks, which can deliver the optimal disk performance while
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Figure 3.15: Modeling MaSM performance for reading main data and fetching the updates using
the characteristics of a high-end storage system.

having larger than before and cost-effective capacity. In fact, in such a setup a single enterprise
state-of-the-art flash device suffices to hide the overhead of reading and merging the updates.
We argue that if one is equipped with a high-end disk subsystem it is feasible to accompany it
with a high-end flash device. Figure 3.15 shows the performance prediction of the previously
described Fast HDD (s = 3ms and DBW = 200MB/s) and of a read optimized RAID installation
(s = 2ms and DBW = 800MB/s). The flash device is now replaced by a high-end flash device
with specifications similar to the ioDrive2 FusionIO card (FusionIO, 2013) (read latency 68µs,
read bandwidth 1500MB/s and F BW = 578MB/s). The blue dotted line name Scan only - RAID
shows the I/O time needed for the RAID subsystem to deliver the corresponding range of pages.
For the case of a high-end flash device with any possible value of α the MaSM algorithms
manage to entirely hide the overhead of fetching the updates when the index granularity is 4KB.
Thus, MaSM can be used as an enabler both in a commodity system - as we demonstrate in our
experimentation as well - and in a system with high-end storage both for the main data and for
the updates.

3.4.5 LSM analysis and comparison with MaSM

In Section 3.2.3 we show that an LSM with h = 4 applies minimum writes per update.

Below we give more details for this computation assuming the same storage setup as in our
experimentation in Section 3.5.

Table 3.3: Computing the optimal height, h for an LSM tree, using the size ratio between adjacent
levels, r , and the I/O write rate normalized by input insertion rate, (h −0.5)(1+ r ). (The C0 tree
is in memory, and C1, ..., Ch trees are on SSDs. Suppose memory size allocated to the C0 tree is
16MB, and the SSD space allocated to the LSM tree is 4GB.)

h 1 2 3 4 5 6 7 8 9 10
r 256.0 15.5 6.0 3.7 2.8 2.3 2.0 1.8 1.7 1.6

writes/update 128.5 24.8 17.5 16.5 17.0 18.1 19.5 21.1 22.7 24.5
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LSM optimal height. We compute the optimal height for an LSM tree, which uses 16MB
memory and up to 4GB SSD space, as shown in Table 3.3. According to Theorem 3.1 in (O’Neil
et al., 1996), in an optimal LSM tree, the ratios between adjacent LSM levels are all equal to
a common value r . Therefore, Si ze(Ci ) = Si ze(C0) · r i . In Table 3.3, we vary h, the number
of LSM levels on SSD, from 1 to 10. For a specific h, we compute r in the second row in the
table so that the total size of C1, ..., Ch (i.e. Ctot =∑h

i=1 C0 · r i ) for C0 =16MB, is Ctot =4GB. To
compute the total I/O writes, we follow the same analysis in the proof of Theorem 3.1 in (O’Neil
et al., 1996). Let us consider the rolling merge from Ci−1 to Ci . Suppose the input insertion rate
is R bytes per second. Then the rolling merge must migrate R bytes from Ci−1 to Ci per second.
This entails reading R bytes from Ci−1, reading R ∗ r bytes from Ci , and writing R ∗ (1+ r ) bytes
to Ci per second. Therefore, the LSM tree sees a R∗(1+r ) bytes per second I/O write rate at level
C1, ..., Ch−1. For the last level, we consider it to grow from 0 to the full size, because when it is
close to full, all the update entries in the LSM can be migrated to the main data. On average, the
LSM would see 0.5R ∗ (1+ r ) bytes per second I/O write rate at Ch . Therefore, we can compute
the I/O write rate normalized by input insertion rate as (h −0.5)(1+ r ). As shown in Table 3.3,
the minimal I/O write rate is achieved when h = 4. The optimal LSM tree writes every update
entry 16.5 times on SSDs.

MaSM vs LSM. Next, we compare the writes per update for LSM and MaSM when LSM, like
MaSM, has two levels. We assume variable memory and SSD space, maintaining, however, the
ratio between the two: M pages in memory and M 2 pages on the SSD have as a result a ratio M

between C0 and C1.

Every time the in-memory buffer fills, its contents are merged with the existing data on the SSD.
In the best-case scenario the SSD is initially empty, so, the first time M pages are written on the
SSD, the second time M pages are merged with M pages of sorted data (incurring in total 2 ·M

writes), the third time M pages are merged with 2 ·M pages of sorted data (incurring in total 3 ·M

writes) and so on until the final M th time during which M ·M writes take place. In total, during
this migration operation, the number of writes is:

LSMW r i tes = M +2 ·M + ...+M ·M = 0.5 ·M ·M · (M +1) = 0.5 ·M 3 +0.5 ·M 2

On the other hand, the worst case for MaSM is that every page has been written 2 times on flash,
hence leading to total writes equal to M aSMW r i tes = 2 ·M 2. Dividing the two quantities we
get the ratio between the number of writes for LSM and the number of writes for the worst case
of MaSM.

LSMW r i tes
M aSMW r i tes = 0.5·M 3+0.5·M 2

2·M 2 = 0.25 ·M +0.25
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The above ratio shows that LSM not only performs more writes than MaSM (since 0.25·M+0.25 ≥
1 for any M ≥ 3), but additionally it increases the number of writes for larger amount of resources
available. On the other hand, as explained in Section 3.4.2, when more memory is available,
MaSM manages to decrease the number of writes per update.

3.5 Experimental Evaluation

We perform real-machine experiments to evaluate our proposed MaSM algorithms. We start by
describing the experimental setup in Section 3.5.1. Then, we present experimental studies with
synthetic data in Section 3.5.2 and perform experiments based on TPC-H traces recorded from a
commercial database system in Section 3.5.3.

3.5.1 Experimental Setup

Machine Configuration. We perform all experiments on a Dell Precision 690 workstation
equipped with a quad-core Intel Xeon 5345 CPU (2.33GHz, 8MB L2 cache, 1333MHz FSB)
and 4GB DRAM running Ubuntu Linux with 2.6.24 kernel. We store the main table data on a
dedicated SATA disk (200GB 7200rpm Seagate Barracuda with 77MB/s sequential read and write
bandwidth). We cache updates on an Intel X25-E SSD (Intel, 2009) (with 250MB/s sequential
read and 170MB/s sequential write bandwidth). All code is compiled with g++ 4.2.4 with “-O2”.

Implementation. We implemented a prototype row-store data warehouse, supporting range scans
on tables. Tables are implemented as file system files with the slotted page structure. Records are
clustered according to the primary key order. A range scan performs 1MB-sized disk I/O reads
for high throughput unless the range size is less than 1MB. Incoming updates consist of insertions,
deletions, and modifications to attributes in tables. We implemented three algorithms for online
updates: (1) In-place updates; (2) IU (Indexed Updates); and (3) MaSM-M. In-place updates
perform 4KB-sized read-modify-write I/Os to the main data on disk. The IU implementation
caches updates on SSDs and maintains an index to the updates. We model the best performance
for IU by keeping its index always in memory in order to avoid random SSD writes to the index.
Note that this consumes much more memory than MaSM. Since the SSD has 4KB internal page
size, IU uses 4KB-sized SSD I/Os. For MaSM, we experiment with the MaSM-M algorithm,
noting that this provides performance lower bounds for any MaSM-αM with 1 ≤ α ≤ 2. By
default, MaSM-M performs 64KB-sized I/Os to SSDs. Asynchronous I/Os (with libaio) are used
to overlap disk and SSD I/Os, and to take advantage of the internal parallelism of the SSD.

Experiments with Synthetic Data (Section 3.5.2). We generate a 100GB table with 100-byte
sized records and 4-byte primary keys. The table is initially populated with even-numbered
primary keys so that odd-numbered keys can be used to generate insertions. We generate updates
randomly uniformly distributed across the entire table, with update types (insertion, deletion, or
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field modification) selected randomly. By default, we use 4GB of flash-based SSD space for
caching updates, thus MaSM-M requires 16MB memory for 64KB SSD effective page size. We
also study the impact of varying the SSD space.

TPC-H replay experiments (Section 3.5.3). We ran the TPC-H benchmark with scale factor
SF = 30 (roughly 30GB database) on a commercial row-store DBMS and obtained the disk traces
of the TPC-H queries using the Linux blktrace tool. We were able to obtain traces for 20
TPC-H queries except queries 17 and 20, which did not finish in 24 hours. By mapping the I/O
addresses in the traces back to the disk ranges storing each TPC-H table, we see that all the 20
TPC-H queries perform (multiple) table range scans. Interestingly, the 4GB memory is large
enough to hold the smaller relations in hash joins, therefore hash joins reduce to a single pass
algorithm without generating temporary partitions. Note that MaSM aims to minimize memory
footprint to preserve such good behaviors.

We replay the TPC-H traces using our prototype data warehouse as follows. We create TPC-H
tables with the same sizes as in the commercial database. We replay the query disk traces as
the query workload on the real machine. We perform 1MB-sized asynchronous (prefetch) reads
for the range scans for high throughput. Then we apply online updates to TPC-H tables using
in-place updates and our MaSM-M algorithm. Although TPC-H provides a program to generate
batches of updates, each generated update batch deletes records and inserts new records in a
very narrow primary key range (i.e. 0.1%) of the orders and lineitem tables. To model the
more general and challenging case, we generate updates to be randomly distributed across the
orders and lineitem tables (which occupy over 80% of the total data size). We make sure
that an orders record and its associated lineitem records are inserted or deleted together. For
MaSM, we use 1GB SSD space, 8MB memory, and 64KB sized SSD I/Os.

Measurement Methodology. We use the following steps to minimize OS and device caching
effect: (i) opening all the (disk or SSD) files with O_DIRECT|O_SYNC flag to get around OS file
cache; (ii) disabling the write caches in the disk and the SSD; (iii) reading an irrelevant large
file from each disk and each SSD before every experiment so that the device read caches are
cleared. In experiments on synthetic data, we randomly select 10 ranges for scans of 100MB or
larger, and 100 ranges for smaller ranges. For the larger ranges, we run 5 experiments for every
range. For the smaller ranges, we run 5 experiments, each performing all the 100 range scans
back-to-back (to reduce the overhead of OS reading file inodes and other metadata). In TPC-H
replay experiments, we perform 5 runs for each query. We report the averages of the runs. The
standard deviations are within 5% of the averages.

3.5.2 Experiments with Synthetic Data

Comparing All Schemes for Handling Online Updates. Figure 3.16 compares the performance
impact of online update schemes on range scan queries on primary key while varying the range
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size from 4KB (a disk page) to 100GB (the entire table).
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Figure 3.16: Comparing the impact of online update schemes on the
response time of primary key range scans (normalized to scans without
updates).

For IU and MaSM
schemes, the cached
updates occupy 50%
of the allocated 4GB
SSD space (i.e. 2GB),
which is the average
amount of cached up-
dates expected to be
seen in practice. The
coarse-grain index records
one entry per 64KB
cached updates on the
SSD, while the fine-
grain index records
one entry per 4KB
cached updates. All the bars are normalized to the execution time of range scans without
updates. As shown in Figure 3.16, range scans with in-place updates (the leftmost bars) see
1.7–3.7x slowdowns. This is because the random updates significantly disturb the sequential
disk accesses of the range scans. Interestingly, as the range size reduces from 4KB to 1MB, the
slowdown increases from 1.7x to 3.7x. We find that elapsed times of pure range scans reduce
from 29.8ms to 12.2ms, while elapsed times of range scans with in-place updates reduce from
50.3ms to only 44.7ms. Note that the queries perform a single disk I/O for data size of 1MB or
smaller. The single I/O is significantly delayed because of the random in-place updates.

Observing the second bars in Figure 3.16, shows that range scans with IU see 1.1–3.8x slowdowns.
This is because IU performs a large number of random I/O reads for retrieving cached updates
from the SSD. When the range size is 4KB, the SSD reads in IU can be mostly overlapped with
the disk access, leading to quite low overhead for that range size.

MaSM with coarse-grain index incurs little overhead for 100MB to 100GB ranges. This is
because the total size of the cached updates (2GB) is only 1/50 of the total data size. Using the
coarse-grain run index, MaSM retrieves roughly 1/50 SSD data (cached updates) compared to
the disk data read in the range scans. As the sequential read performance of the SSD is higher
than that of the disk, MaSM can always overlap the SSD accesses with disk accesses for the large
ranges.

For the smaller ranges (4KB to 10MB), MaSM with coarse-grain index incurs up to 2.9x
slowdowns. For example, at 4KB ranges, MaSM has to perform 128 SSD reads of 64KB each.
This takes about 36ms (mainly bounded by SSD read bandwidth), incurring 2.9x slowdown. On
the other hand, MaSM with fine-grain index can narrow the search range down to 4KB SSD
pages. Therefore, it performs 128 SSD reads of 4KB each. The Intel X25-E SSD is capable of
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Figure 3.17: MaSM range scans varying updates cached in SSD.
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supporting over 35,000 4KB random reads per second. Therefore, the 128 reads can be well
overlapped with the 12.2ms 4KB range scan. Overall, MaSM with fine-grain index incurs only
4% overhead even at 4KB ranges.

Comparing Experimental Results with Modeled MaSM’s behavior. The above experimental
results follow the behavior predicted by the performance model described in Section 3.4.4. MaSM
with coarse-grained run indexes results in significant performance degradation for short range
scans, while MaSM with fine-grained run indexes hides the merging overhead and shows zero
to negligible slowdown for all ranges. According to the model the same pattern is observed
when one employs a system with a high-end array of disks for storage of the main data and an
enterprise flash-based SSD for buffering the updates.

MaSM Varying Cached Update Size. Figure 3.17 varies both the range size (from 4KB to
100GB) and the cached update size (from 25% full to 99% full) on the SSD. We disable update
migration by setting the migration threshold to be 100%. We use MaSM with fine-grain index
for 4KB to 10MB ranges, and MaSM with coarse-grain index for 100MB to 100GB ranges.
From Figure 3.17, we see that in all cases, MaSM achieves performance comparable to range
scans without updates. At 4KB ranges, MaSM incurs only 3%–7% overheads. The results can
be viewed from another angle. MaSM with a 25% full 4GB-sized update cache has similar
performance to MaSM with a 50% full 2GB-sized update cache. Therefore, Figure 3.17 also
represents the performance varying SSD space from 2GB to 8GB with a 50% full update cache.

Varying Update Speed. Figure 3.18 shows the MaSM performance while varying concurrent
update speed from 2,000 updates per scan to 10,000 updates per scan. The allocated SSD space is
50% full at the beginning of the experiments. We perform 10 MaSM range scans with concurrent
updates. 10,000 updates roughly occupies an 8MB space on the SSD, which is the allocated
memory size for MaSM. Therefore, the increase of unsorted updates is between 20% to 100% of
M. As shown in the figure, the normalized scan time of MaSM shows a slight upward trend as
the update speed increases especially for the smaller ranges. This is because MaSM must process
more unsorted data, which cannot be overlapped with the scan operation. The significance of this
overhead increases as range size decreases.
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Figure 3.19: Comparing the impact of online update schemes, with MaSM using both SSD and
HDD, on the response time of primary key range scans (normalized to scans without updates).

HDD as Update Cache. We experimented using a separate SATA disk (identical to the main
disk) as the update cache in MaSM. In this experiment we use a 10GB dataset and the size of the
cache is 1GB. Figure 3.19 compares in-place updates, indexed updates (IU), and MaSM with
coarse grain index using either SSD or HDD to cache the updates. While the performance trends
for the first three configurations are very similar with the respective configurations presented
in Figure 3.16, when MaSM uses HDD to cache the updates the overhead for short ranges is
impractical. The poor random read performance of the disk-based update cache results in in
28.8x (4.7x) query slowdowns for 1MB (10MB) sized range scans. The overhead of using HDD
to cache updates in MaSM diminishes for larger ranges where the cost of reading the cached
updates is amortized with the cost to retrieve the main data. This experiment shows that in order
to accommodate modern analytical workloads which include both short and long range scans it
is essential to cache the updates in a storage medium offering good random read performance,
making flash devices a good match.
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Figure 3.21: Sustained updates per second
varying SSD size in MaSM.

Migration Performance.
Figure 3.20 shows the
performance of migrating
4GB-sized cached updates
while performing a table
scan. Compared to a pure
table scan, the migration
performs sequential writes
in addition to sequential
reads on the disk, lead-
ing to 2.3x execution time.
The benefits of the MaSM migration scheme are as follows: (i) multiple updates to the same data
page are applied together, reducing the total disk I/O operations; (ii) disk-friendly sequential
writes rather than random writes are performed; and (iii) it updates main data in place. Finally,
note that MaSM incurs its migration overhead orders of magnitude less frequently than prior
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approaches—recall Figure 3.1.

Sustained Update Rate. Figure 3.21 reports the sustained update throughput of in-place updates,
and three MaSM schemes with different SSD space. For in-place updates, we depict the best
update rate by performing only updates, without concurrent queries. For MaSM, we continuously
perform table scans. The updates are sent as fast as possible so that every table scan incurs the
migration of updates back to the disk. We set the migration threshold to be 50% so that in steady
state, a table scan with migration is migrating updates in 50% of the SSD while the other 50% of
the SSD is holding incoming updates. Figure 3.21 also shows the disk random write performance.
We see that (i) compared to in-place updates, which perform random disk I/Os, MaSM schemes
achieve orders of magnitude higher sustained update rates; and (ii) as expected, doubling the
SSD space roughly doubles the sustained update rate.

General Transactions with Read-Modify-Writes. Given the low overhead of MaSM even at
4KB ranges, we argue that MaSM can achieve good performance for general transactions. With
MaSM, the reads in transactions achieve similar performance as if there were no online updates.
On the other hand, writes are appended to the in-memory buffer, resulting in low overhead.
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Figure 3.22: Range scan and MaSM perfor-
mance while emulating CPU cost of query pro-
cessing (10GB ranges).

Varying CPU Cost of Query Processing.
Complex queries may perform significant
amount of in-memory processing after retriev-
ing records from range scans. We study how
MaSM behaves when the range scan becomes
CPU bound. In Figure 3.22, we model query
complexity by injecting CPU overhead. For
every 1000 retrieved records, we inject a busy
loop that takes 0.5ms, 1.0ms, 1.5ms, 2.0ms, or
2.5ms to execute. In other words, we inject
0.5us to 2.5us CPU cost per record. As shown
in Figure 3.22, the performance is almost flat
until the 1.5us point, indicating that the range scan is I/O bound. From 1.5us to 2.5us, the execu-
tion time grows roughly linearly, indicating that the range scan is CPU bound. Most importantly,
we see that range scans with MaSM have indistinguishable performance compared with pure
range scans for all cases. The CPU overhead for merging the cached updates with main data is
insignificant compared to (i) asynchronous I/Os when the query is I/O bound and (ii) in-memory
query overhead when the query is CPU bound. The sorted runs containing the cached updates are
merged using heap-merge, hence, having complexity logarithmic to the number of sorted-runs,
O(log (#r uns)).
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Figure 3.23: Comparing in-place updates with MaSM performance
(using both coarse-grain and fain-grain run indexes) when both data
and updates are stored in memory (10GB table size).

Merging Overhead. We
further investigate the merg-
ing overhead by running
MaSM while storing both
main data and updates
on a ramdisk. This is
a pure CPU-bound exe-
cution, hence, any slow-
downs are due to the merg-
ing overhead of MaSM. To
run this experiment we use
a server with more main
memory: a Red-Hat Linux
server with 2.6.32 64-bit kernel, equipped with 2 6-Core 2.67GHz Intel Xeon CPU X5650 and
48GB of main memory. For this experiment, we generate a 10GB table with 100-byte sized
records and 4-byte primary keys. Similarly to the previous experiments, the table is initially
populated with even-numbered primary keys so that odd-numbered keys can be used to generate
insertions. We generate updates randomly uniformly distributed across the entire table, with
update types (insertion, deletion, or field modification) selected randomly. We use 1GB of
in-memory space for caching updates, thus MaSM-M requires 8MB memory for 64KB effective
page size. Figure 3.23 compares the performance of range scans using in-place updates and
MaSM (both with coarse-grain and fine-grain indexes), varying the range size from 4KB (a
disk page) to 10GB (the entire table). Similarly to previous experiments, coarse-grain indexes
record one entry per 64KB cached updates, and fine-grain index records one entry per 4KB
cached updates. When comparing coarse-grain with fine-grain indexes, note that coarse-grain
indexes require to read bigger chunks of the sorted runs but do less comparisons, while fine-grain
indexes read more smaller chunks and, as a result, need to do more comparisons. For both MaSM
schemes, the cached updates occupy about 50% of the allocated 1GB space, which is the average
amount of cached updates expected to be seen in practice. All the bars are normalized to the
execution time of range scans without updates.

As shown in Figure 3.23, contrary to the I/O bound experiments, range scans with in-place
updates see small performance penalty, varying between 7% and 58%. On the other hand, both
MaSM schemes show significant performance penalty for 4KB and 100KB ranges (varying from
3x to 15x). For 1MB and 10MB ranges MaSM sees small performance degradation (12% to 42%)
and for 100MB, 1GB and 10GB ranges, MaSM sees no performance penalty. Similarly to the
I/O-bound experiments, in CPU-bound experiments the MaSM overhead is hidden when a large
portion of the main file is requested by the range scan. The CPU overhead of MaSM consists of
two parts. The first part is the initial operation to search for the starting update record for a given
range. The second part is the CPU overhead for merging update records with main data. When
the range size is large, the second part dominates. From the figure, it is clear that this overhead is
negligible. That means the overhead for merging updates with main data is very small. When the
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Figure 3.24: Replaying I/O traces of TPC-H queries on a real machine with online updates.

range size is small, the first part becomes important, which is the reason for the large overhead
for the 4KB and 100KB cases.

Overall, as expected, the merging overhead of MaSM for very short range scans cannot be
amortized in the in-memory case. On the other hand, for range scans that are more than 0.01%
of the file, MaSM offers better performance than in-place updates even when data are stored
in the main memory. An observation that is entirely hidden in the I/O-bound experiments is
that for intermediate ranges (1MB and 10MB) the comparison overhead of the fine-grain run
indexes exceeds the benefits of the reduced amount of fetched data compared with coarse-grain
run indexes, leading, nevertheless to smaller slowdowns when compared with range scans with
in-place updates.

3.5.3 TPC-H Replay Experiments

Figure 3.24 shows the execution times of the TPC-H replay experiments (in seconds). The left
bar is the query execution time without updates; the middle bar is the query execution time with
concurrent in-place updates; the right bar is the query execution time with online updates using
MaSM. For the MaSM algorithm, the SSD space is 50% full at the start of the query. MaSM
divides the SSD space to maintain cached updates on a per table basis in the TPC-H experiments).

From Figure 3.24, we see that in-place updates incur 1.6–2.2x slowdowns. In contrast, compared
to pure queries without updates, MaSM achieves very similar performance (with up to 1%
difference), providing fresh data with little I/O overhead. Note that the queries typically consist
of multiple (concurrent) range scan operations on multiple tables. Therefore, the results also
show that MaSM can handle multiple concurrent range scans well.

3.6 Discussion

3.6.1 Shared-Nothing Architectures

Large analytical data warehouses often employ a shared-nothing architecture for achieving
scalable performance (Becla and Lim, 2008). The system consists of multiple machine nodes
with local storage connected by a local area network. The main data are distributed across
multiple machine nodes by using hash partitioning or range partitioning. Incoming updates are
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mapped and sent to individual machine nodes, and data analysis queries often are executed in
parallel on many machine nodes. Because updates and queries are eventually decomposed into
operations on individual machine nodes, MaSM algorithms can be applied on a per-machine-node
basis. Note that recent data center discussions show that it is reasonable to enhance every machine
node with SSDs (Barroso, 2010).

MaSM addresses the challenge to incorporate the most recent updates in the main data residing
in a node with negligible overhead. A similar concept can be implemented for shared-nothing
architectures where scale-out is the primary goal. In a scale-out setup multiple nodes host the
data, and the updates are stored either in a single or in multiple nodes. There are three possible
approaches to exploit MaSM in scale-out setup. First, MaSM can enhance the scan operator of
each node transparently to the rest of the system both in the single node, and in the API between
different nodes. Second, MaSM can be designed in a hierarchical fashion enhancing each node
with SSDs to cache updates. In order to answer a query a MaSM operator in the inter-node
level will be instantiated which will merge updates and data from every node involved. In this
case, each node holds the updates corresponding to the data residing in the node which could
potentially lead to unbalanced load. In order to amend this drawback, the third proposal, caches
all updates in all nodes and feeds to the inter-node level MaSM operator only tuples after they
have been merged with the most recent updates.

3.6.2 MaSM for deeper memory hierarchies and new storage technologies

MaSM is designed to exploit the increased depth of memory hierarchies offered by flash devices.
Typically, flash-based SSDs and high-end flash devices are perceived today either as secondary
storage, or as a level of the memory hierarchy residing between main memory and secondary
storage. Flash devices, however, are fundamentally different than the other levels since they
have a read/write performance asymmetry and endurance limitations (discussed in Section 2.1).
Hence, in several approaches that flash is used as a caching layer, including MaSM, flash has a
specialized role tailored for its characteristics and respecting its limitations.

The memory hierarchy is constantly evolving and more technologies are expected to augment
it, potentially by adding more levels. Technologies like PCM, ferroelectric RAM, magnetic
RAM, and Memristor may achieve a viable memory product which can reside performance-wise
and price-wise between main memory and flash devices, reducing, as well, the effect of limited
endurance that flash devices started hurting from. MaSM can naturally exploit new technologies
by either replacing flash with its successor, or by exploiting a deeper hierarchy. Assuming, for
example, that a new level of PCM non-volatile main memory will be added in the system, MaSM
can be altered as follows. All incoming updates can be safely kept "in-memory" without the
need of an external logging mechanism, while the sorted runs will be written out on the flash
device (which has limited endurance). Taking this idea a step further, in the generic MaSM-αM
algorithm, incoming updates and first-pass sorted runs will be written on non-volatile main
memory and second-pass sorted runs on flash. Additionally, some second-pass sorted runs can be
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kept in the newly introduced level to keep updates that are often used when answering queries in
a faster level.

3.6.3 Can SSDs Enhance Performance and Be Cost Efficient?

SSDs have been studied as potential alternatives or enhancements to HDDs in many recent
database studies (Bouganim et al., 2009; Canim et al., 2009, 2010b; Chen, 2009; Chen et al.,
2010; Koltsidas and Viglas, 2008; Lee et al., 2008; Ozmen et al., 2010; Stoica et al., 2009;
Tsirogiannis et al., 2009). In this chapter, we exploit SSDs to cache differential updates. Here,
we perform a back-of-the-envelope computation to quantify the cost benefits of using SSDs.

Assuming we have a budget B for storage, we can either spend it on N disks or spend X % for
disks and the rest for SSD. If N ·X % disks can provide the desired capacity then the performance
gain of running a table scan when using SSD can be computed as follows. A table scan is linearly
faster with the number of disks, while random updates slows performance down by a constant
factor FHDD which ranges between 1.5 and 4, as shown in Figure 3.3. When executing a table
scan with concurrent random updates the performance gain is N /FHDD . If we buy SSD with
100%− X % of our budget, on the one hand we decrease the performance gain due to disks to
N ·X %; on the other hand, the update cost is slowed down with a different constant factor FSSD ,
which is close to 1 in our experiments. The performance gain now is (N ·X %)/FSSD . Therefore,
the relative performance gain of using SSD is computed as follows:

Rel ati veGai n = N ·X %

FSSD
· FHDD

N
= FHDD ·X %

FSSD

We can select the budget used for SSD to be low enough to ensure the desired overall capacity
and high enough to lead to important performance gain. For example, if X % = 90% of the budget
is used for the disk storage, Rel ati veGai n of using SSD as in our proposal is between 1.35 and
3.6.

3.6.4 General support of MaSM

Secondary Index. We discuss how to support index scans in MaSM. Given a secondary index
on Y and a range [Ybeg i n ,Yend ], an index scan is often served in two steps in a database. Similar
to index-to-index navigation (Graefe, 2010), in the first step, the secondary index is searched to
retrieve all the record pointers within the range. In the second step, the record pointers are used
to retrieve the records. Thus, any query retrieving a range of k records using a secondary index
can be transformed to k point queries on the primary index. We show that point queries on the
primary index can be handled efficiently, so, a query using a secondary index will be handled
correctly and efficiently. An optimization for disk performance is to sort the record pointers
according to the physical storage order of the records between the two steps. In this case, instead
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of k point queries, a query on a secondary index will be transformed to a number of range queries
(less than or equal to k), having, as a result, better I/O performance.

For every retrieved record, MaSM can use the key (primary key or RID) of the record to look up
corresponding cached updates and then merge them. However, we must deal with the special case
where Y is modified in an incoming update: We build a secondary update index for all the update
records that contain any Y value, comprised of a read-only index on every materialized sorted
run and an in-memory index on the unsorted updates. The index scan searches this secondary
update index to find any update records that fall into the desired range [Ybeg i n ,Yend ]. In this way,
MaSM can provide functionally correct support for secondary indexes.

Multiple Sort Orders. Heavily optimized for read accesses, column-store data warehouses can
maintain multiple copies of the data in different sort orders (a.k.a. projections) (Stonebraker et al.,
2005; Lamb et al., 2012). For example, in addition to a prevailing sort order of a table, one can
optimize a specific query by storing the columns in an order that is most performance friendly for
the query. However, multiple sort orders present a challenge for differential updates; prior work
does not handle this case (Héman et al., 2010).

One way to support multiple sort orders would be to treat columns with different sort orders as
different tables, and to build different update caches for them. This approach would require that
every update must contain the sort keys for all the sort orders so that the RIDs for individual sort
orders could be obtained.

Alternatively, we could treat sort orders as secondary indexes. Suppose a copy of column X is
stored in an order OX different from the prevailing RID order. In this copy, we store the RID
along with every X value so that when a query performs a range scan on this copy of X , we can
use the RIDs to look up the cached updates. Note that adding RIDs to the copy of X reduces
compression effectiveness, because the RIDs may be quite randomly ordered. Essentially, X with
RID column looks like a secondary index, and can be supported similarly.

Materialized Views. Materialized views can speed up the processing of well-known query
types. A recent study proposed lazy maintenance of materialized views in order to remove view
maintenance from the critical path of incoming update handling (Zhou et al., 2007). Unlike eager
view maintenance where the update statement or the update transaction eagerly maintains any
affected views, lazy maintenance postpones the view maintenance until the data warehouse has
free cycles or a query references the view. It is straightforward to extend differential update
schemes to support lazy view maintenance, by treating the view maintenance operations as
normal queries.
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3.6.5 Applying MaSM to Cloud Data Management

Key-Value stores are becoming a popular cloud data storage platform because of its scalability,
availability and simplicity. Many Key-Value store implementations (e.g., Bigtable, HBase, and
Cassandra) follow the LSM principle to handle updates. In Section 3.1.2, we have discussed
the difference between these schemes and MaSM. In the past several years, SSD capacity has
been increasing dramatically, and its price per capacity ratio is reducing steadily. This makes
SSDs increasingly affordable; SSDs have already been considered as standard equipment for
cloud machines (Barroso, 2010). When a Key-Value store node is equipped with an SSD, the
presented MaSM algorithm can be applied to improve the performance, reduce memory footprint,
and reduce SSD wear in Key-Value stores.

3.7 Conclusion

Efficient analytical processing in applications that require data freshness is challenging. The
conventional approach of performing random updates in place degrades query performance
significantly, because random accesses disturb the sequential disk access patterns of the typical
analysis query. Recent studies follow the differential update approach, by caching updates
separate from the main data and combining cached updates on-the-fly in query processing.
However, these proposals all require large in-memory buffers or suffer from high update migration
overheads.

In this chapter, we proposed to judiciously use solid-state storage to cache differential updates.
Our work is based on the principle of using SSD as a performance booster for databases stored
primarily on magnetic disks, since for the foreseeable future, magnetic disks offer cheaper
capacity (higher GB/$), while SSDs offer better but more expensive read performance (higher
IOPS/$). We presented a high-level framework for SSD-based differential update approaches, and
identified five design goals. We presented an efficient algorithm, MaSM, that achieves low query
overhead, small memory footprint, no random SSD writes, few SSD writes, efficient in-place
migration, and correct ACID support. Experimental results using a prototype implementation
showed that, using MaSM, query response times remain nearly unaffected even if updates are
running at the same time. Moreover, update throughput using the MaSM algorithms is several
orders of magnitude higher than in-place updates and, in fact, tunable by selecting different SSD
buffer capacity.
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4 Enhancing Data Analytics with Work
Sharing1

4.1 Introduction

Data warehouses (DW) are database systems specialized for servicing on-line analytical process-
ing (OLAP) workloads. OLAP workloads consist mostly of ad-hoc, long running, scan-heavy
queries over relatively static data (new data are periodically loaded). Today, in the era of data
deluge (Kersten et al., 2011), organizations collect massive data for analysis. The increase of
processing power and the growing applications’ needs have led to increased requirements for
both throughput and latency of analytical queries over ever-growing datasets.

General-purpose DW, however, cannot easily handle analytical workloads over big data with high
concurrency (Becla and Lim, 2008; Candea et al., 2009). A limiting factor is their typical query-
centric model: DW optimize and execute each query independently. Concurrent queries, however,
often exhibit overlapping data accesses or computations. The query-centric model misses the
opportunities of sharing work and data among them and results in performance degradation due
to the contention of concurrent queries for I/O, CPU and RAM resources.

4.1.1 Methodologies for sharing data and work

A variety of ideas have been proposed to exploit sharing, including diverse buffer pool manage-
ment techniques, materialized views, caching and multi-query optimization (see Section 2.3).
More recently, query engines started sharing data at the I/O layer using shared scans (a technique
with variants also known as circular scans, cooperative scans or clock scan) (Colby et al., 1998;
Cook, 2001; Morri, 2002; Qiao et al., 2008; Unterbrunner et al., 2009; Zukowski et al., 2007).

In this chapter, we evaluate work sharing techniques at the level of the execution engine, where
we distinguish two predominant methodologies: (a) Simultaneous pipelining (SP) (Harizopoulos
et al., 2005), and (b) Global query plans (GQP) (Arumugam et al., 2010; Candea et al., 2009,

1The material of this chapter has been the basis for the VLDB 2013 paper "Sharing Data and Work Across
Concurrent Analytical Queries" (Psaroudakis et al., 2013).
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2011; Giannikis et al., 2012) with shared operators.

(a) Query-centric model (c) Simult. Pipelining

A B C

Q1 Q2 Q3

(d) Global Query Plan

A B C

⋈

Q3

⋈
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⋈
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Q1, Q2, Q3⋈

Q2, Q3⋈⋈ Q1

Figure 4.1: Evaluation of three concurrent queries using (a) a query-centric model, (b) shared
scans, (c) SP, and (d) a GQP.

Simultaneous pipelining (SP) is introduced in QPipe (Harizopoulos et al., 2005), an operator-
centric execution engine, where each relational operator is encapsulated into a self-contained
module called a stage. Each stage detects common sub-plans among concurrent queries, evaluates
only one of them and pipelines the results to all common sub-plans simultaneously when possible
(see Sections 2.3.2 and 2.3.3).

Global query plans (GQP) with shared operators are introduced in the CJOIN operator (Candea
et al., 2009, 2011). A single shared operator is able to evaluate multiple concurrent queries.
CJOIN uses a GQP, consisting of shared hash-join operators that evaluate the joins of multiple
concurrent queries simultaneously. More recent research prototypes extend the logic to additional
operators and to more general cases (Arumugam et al., 2010; Giannikis et al., 2012) (see Sections
2.3.4 and 2.3.5).

Figure 4.1 illustrates how a query-centric model, shared scans, SP, and a GQP operate through
a simple example of three concurrent queries which perform natural joins without selection
predicates and are submitted at the same time. The last two queries have a common plan, which
subsumes the plan of the first. We note that shared scans are typically used with both SP and
GQP.

4.1.2 Integrating Simultaneous Pipelining and Global Query Plans

In order to perform our analysis and experimental evaluation of SP vs. GQP, we integrate the
original research prototypes that introduced them into one system: We integrate the CJOIN
operator as an additional stage of the QPipe execution engine (see Section 4.2). Thus, we can
dynamically decide whether to evaluate multiple concurrent queries with the standard query-
centric relational operators of QPipe, with or without SP, or the GQP offered by CJOIN.

Furthermore, this integration allows us to combine the two sharing techniques, showing that they
are in fact orthogonal. As shown in Figure 4.1d, the GQP misses the opportunity of sharing
common sub-plans, and redundantly evaluates both Q2 and Q3. SP can be applied to shared
operators to complement a GQP with the additional capability of sharing common sub-plans (see
Section 4.2).
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4.1.3 Optimizing Simultaneous Pipelining

For the specific case of SP, it is shown in the literature (Johnson et al., 2007; Qiao et al., 2008)
that if it entails a serialization point, then enforcing aggressive sharing does not always improve
performance. In cases of low concurrency and enough available resources, it is shown that the
system should first parallelize with a query-centric model before sharing.

To calculate the turning point where sharing becomes beneficial, a prediction model is proposed
(Johnson et al., 2007) for determining at run-time whether SP is beneficial. In this chapter,
however, we show that the serialization point is due to the push-based communication employed
by SP (Harizopoulos et al., 2005; Johnson et al., 2007). We show that pull-based communication
can drastically minimize the impact of the serialization point, and is better suited for sharing
common results on multi-core machines.

We introduce Shared Pages Lists (SPL), a pull-based sharing approach that eliminates the
serialization point caused by push-based sharing during SP. SPL are data structures that store
intermediate results - of relational operators - and allow for a single producer and multiple
consumers. SPL make sharing with SP always beneficial and reduce response times by 82%-86%
in cases of high concurrency, compared to the original push-based SP design and implementation
(Harizopoulos et al., 2005; Johnson et al., 2007) (see Section 4.3).

4.1.4 Simultaneous Pipelining vs. Global Query Plans

Having optimized SP, and having integrated the CJOIN operator in the QPipe execution engine,
we proceed to perform an extensive analysis and experimental evaluation of SP vs. GQP (see
Section 4.5). Our work answers two fundamental questions: when and how an execution engine
should share in order to improve performance of typical analytical workloads.

Sharing in the execution engine. We identify a performance trade-off between using a query-
centric model and sharing. For a high number of concurrent queries, the execution engine should
share, as it reduces contention for resources and improves performance in comparison to a
query-centric model. For low concurrency, however, sharing is not always beneficial.

With respect to SP, we corroborate previous related work (Johnson et al., 2007; Qiao et al., 2008),
that if SP entails a serialization point, then enforcing aggressive sharing does not always improve
performance in cases of low concurrency. Our newly optimized SP with SPL, however, eliminates
the serialization point, making SP beneficial in cases of both low and high concurrency.

With respect to GQP, we corroborate previous work (Arumugam et al., 2010; Candea et al.,
2009, 2011; Giannikis et al., 2012) that shared operators are efficient in reducing contention for
resources and in improving performance for high concurrency (see Section 4.5.1). The design
of a shared operator, however, inherently increases book-keeping in comparison to the typical
operators of a query-centric model. Thus, for low concurrency, we show that shared operators
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result in worse performance than the traditional query-centric operators (see Section 4.5.2).

Moreover, we show that SP can be applied to shared operators of a GQP, in order to get the best
out of the two worlds. SP can reduce the response time of a GQP by 20%-48% for workloads
with common sub-plans (see Section 4.5.3).

Sharing in the I/O layer. Though our work primarily studies sharing inside the execution engine,
our experimental results also corroborate previous work relating to shared scans. The simple case
of a circular scan per table is able to improve performance of typical analytical workloads both in
cases of low and high concurrency. In highly concurrent cases, response times are reduced by
80%-97% in comparison to independent table scans (see Section 4.5.1).

Rules of thumb. Putting all our observations together, we deduce a few rules of thumb for
sharing, presented in Table 4.1. Our rules of thumb apply for the case of typical OLAP workloads
involving ad-hoc, long running, scan-heavy queries over relatively static data.

When
How to share in the

Execution Engine I/O Layer
Low concurrency Query-centric operators + SP

Shared Scans
High concurrency GQP (shared operators) + SP

Table 4.1: Rules of thumb for when and how to share data and work across typical concurrent
analytical queries in DW.

4.1.5 Contributions

In this chapter, we perform an experimental analysis of two work sharing methodologies, (a)
Simultaneous Pipelining (SP), and (b) Global Query Plans (GQP), based on the original research
prototypes that introduced them. Our analysis answers two fundamental questions: when and how
an execution engine should employ sharing in order to improve performance of typical analytical
workloads. More details on categorizing different sharing techniques for relational databases, as
well as for SP and GQP, the two state-of-the-art sharing methodologies for the execution engine
can be found in Section 2.3. Next, our work makes the following main contributions:

• Integration of SP and GQP: We show that SP and GQP are orthogonal, and can be
combined to take the best of the two worlds (Section 4.2). In our experiments, we show
that SP can further improve the performance of a GQP by 20%-48% for workloads that
expose common sub-plans.

• Pull-based SP: We introduce Shared Pages Lists (SPL), a pull-based approach for SP that
eliminates the sharing overhead of push-based SP. Pull-based SP is better suited for multi-
core machines than push-based SP, is beneficial for cases of both low and high concurrency,
and further reduces response times by 82%-86% for high concurrency (Section 4.3).
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• Evaluation of SP vs. GQP: We analyze the trade-offs of SP, GQP and their combina-
tion, and we detail through an extensive sensitivity analysis when each one is beneficial
(Section 4.5). We show that query-centric operators combined with SP result in better
performance for cases of low concurrency, while GQP with shared operators enhanced by
SP are better suited for cases of high concurrency.

4.1.6 Outline

This chapter is organized as follows. Section 4.2 describes our implementation for integrating SP
and GQP. Section 4.3 presents shared pages lists, our pull-based solution for sharing common
results during SP. Section 4.5 includes our experimental evaluation. Section 4.6 includes a short
discussion. We present our conclusions in Section 4.7.

4.2 Integrating SP and GQP

By integrating SP and GQP, we can exploit the advantages of both forms of sharing: Shared
operators in a GQP are efficient in handling a large number of concurrent similar queries, while
SP exploits common sub-plans in the query mix.

In Section 4.2.1, we describe how SP can conceptually improve performance of shared operators
in a GQP in the presence of common sub-plans. We continue in Sections 4.2.2 and 4.2.3 to
describe our implementation based on CJOIN and QPipe.

4.2.1 Benefits of applying SP to GQP

In this section, we mention several conceptual examples, showing the advantages of applying SP
to shared operators in a GQP. These observations apply to general GQP, and are thus applicable
to all the research prototypes we mention in Section 2.3.4.

Identical queries. If a new query is completely identical with an on-going query, SP takes care
to re-use the final results of the on-going query for the new query. If we assume that the top-most
operators in a query plan have a full step WoP (e.g. when final results are buffered and given
wholly to the client instead of being pipelined), the new query does not need to participate at
all in the GQP, independent of its time of arrival during the on-going query’s evaluation. This
is the case where the integration of SP and GQP offers the maximum performance benefits.
Additionally, admission costs are completely avoided, the tuples’ bitmaps do not need to be
extended to accommodate the new query (translating to fewer bit-wise operations), and the
latency of the new query is decreased to the latency of the remaining part of the on-going query.

Shared selections. If a new query has the same selection predicate as an on-going query, SP
allows to avoid the redundant evaluation of the same selection predicate from the moment the
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new query arrives until the end of evaluation of the on-going query (a selection operator has a
linear WoP). For each tuple, SP copies the resulting bit of the shared selection operator for the
on-going query, to the position in the tuple’s bitmap that corresponds to the new query.

Shared joins. If a new query has a common sub-plan with an on-going query under a shared join
operator, and arrives within the step WoP, SP can avoid extending tuples’ bitmaps with one more
bit for the new query for the sub-plan. The join still needs to be evaluated, but the number of
bit-wise AND operations is decreased.

Shared aggregations. If a new query has a common sub-plan with an on-going query under a
shared aggregation operator, and arrives within the step WoP, SP avoids calculating a redundant
sum. It copies the final result from the on-going query.

Admission costs. For every new query submitted to a GQP, an admission phase is required that
possibly re-adjusts the GQP to accommodate it. In case of common sub-plans, SP can avoid part
of the admission costs. The cost depends on the implementation.

For CJOIN (Candea et al., 2009, 2011), the admission cost of a new query includes (a) scanning
all involved dimension tables, (b) evaluating its selection predicates, (c) extending the bitmaps
attached to tuples, (d) increasing the size of hash tables of the shared hash-joins to accommodate
newly selected dimension tuples (if needed), and (e) stalling the pipeline to re-adjust filters
(Candea et al., 2009, 2011). In case of identical queries, SP can avoid these costs completely.
In case of common sub-plans, SP can avoid parts of these costs, such as avoiding scanning
dimension tables for which selection predicates are identical.

For DataPath (Arumugam et al., 2010), SP can decrease the optimization time of the GQP if it
assumes that the common sub-plan of a new query can use the same part of the current GQP
as the on-going query. For SharedDB (Giannikis et al., 2012), SP can help start a new query
before the next batch at any operator, if it has a common sub-plan with an on-going query and
has arrived within the corresponding WoP of the operator.

4.2.2 CJOIN as a QPipe stage

We integrate the original CJOIN operator into the QPipe execution engine as a new stage, using
Shore-MT (Johnson et al., 2007) as the underlying storage manager. In Figure 4.2, we depict the
new stage that encapsulates the CJOIN pipeline.

The CJOIN stage accepts incoming QPipe packets that contain the necessary information to
formulate a star query: (a) the projections for the fact table and the dimension tables to be joined,
and (b) the selection predicates. The CJOIN operator does not support selection predicates for
the fact table (Candea et al., 2009, 2011), as these would slow the preprocessor significantly. If
the preprocessor evaluates the fact table selection predicates, it results to a slower pipeline, which
defeats the purpose of potentially flowing fewer fact tuples in the pipeline. Fact table predicates
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Figure 4.2: Integration scheme of CJOIN as a QPipe stage.

are evaluated on the output tuples of CJOIN.

To improve admission costs we use batching, following the original CJOIN proposal (Candea
et al., 2011). In one pause of the pipeline, the admission phase adapts filters for all queries in the
batch. While the pipeline is paused, additional new queries form a new batch to be admitted after
the current batch is finished.

With respect to threads, there is a number of threads assigned to filters (we assume the single stage
model (Candea et al., 2009, 2011)), each one taking a fact tuple from the preprocessor, passing
it through the filters and giving it to the distributor. The original CJOIN uses a single-threaded
distributor which slows the pipeline significantly. To address this bottleneck, we augment the
distributor with several distributor parts. Every distributor part takes a tuple from the distributor,
examines its bitmap, and determines relevant CJOIN packets. For each relevant packet, it
performs the projection of the star query and forwards the tuple to the output buffer of the packet.

CJOIN supports only shared hash-joins. Consequent operators in a query plan, e.g. aggregations
or sorts, are query-centric. Nevertheless, our evaluation gives us insight on the general behavior
of shared operators in a GQP, as joins typically comprise the most expensive part of a star query.

4.2.3 SP for the CJOIN stage

We enable SP for the CJOIN stage with a step WoP. Evaluating the identical queries Q2 and Q3

of Figure 4.1d employing SP, requires only one packet entering the CJOIN pipeline. The second
satellite packet re-uses the results.

CJOIN is itself an operator, and we integrate it as a new stage in QPipe. As with any other QPipe
stage, SP is applied on the overall CJOIN stage. Conceptually, our implementation applies SP
for the whole series of shared hash-joins in the GQP. Our analysis, however, gives insight on
the benefits of applying SP to fine-grained shared hash-joins as well. This is due to the fact
that a redundant CJOIN packet involves all redundant costs we mentioned in Section 4.2.1 for
admission, shared selections operators and shared hash-joins. Our experiments show that the cost
of a redundant CJOIN packet is significant, and SP decreases it considerably.
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4.3 Shared Pages Lists for SP
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Figure 4.3: Evaluating multiple identical TPC-H Q1 queries (a) with a push-only model during
SP (FIFO), and (b) with a pull-based model during SP (SPL). In (c), we show the corresponding
speedups of the two methods of SP, over not sharing, for low concurrency.

In this section, we present design and implementation issues of sharing using SP, and how to
address them. Contrary to intuition, it is shown in the literature that work sharing is not always
beneficial: if there is a serialization point during SP, then sharing common results aggressively can
lead to worse performance, compared to a query-centric model that implicitly exploits parallelism
(Johnson et al., 2007; Qiao et al., 2008). When the producer (host packet) forwards results to
consumers (satellite packets), it is in the critical path of the evaluation of the remaining nodes of
the query plans of all involved queries. Forwarding results can cause a significant serialization
point. In this case, the DBMS should first attempt to exploit available resources and parallelize as
much as possible with a query-centric model, before sharing. A prediction model is proposed
(Johnson et al., 2007) for determining at run-time whether sharing is beneficial. In this section,
however, we show that SP is possible without a serialization point, thus rendering SP always
beneficial.

The serialization point is caused by strictly employing push-only communication. Pipelined
execution with push-only communication typically uses FIFO buffers to exchange results between
operators (Harizopoulos et al., 2005). This allows to decouple query plans and have a distinct
separation between queries, similar to a query-centric design. During SP, this forces the single
thread of the pivot operator of the host packet to forward results to all satellite packets sequentially
(see Figure 4.4a), which creates a serialization point.

This serialization point is reflected in the prediction model (Johnson et al., 2007), where the total
work of the pivot operator includes a cost for forwarding results to all satellite packets. By using
copying to forward results (Johnson et al., 2007), the serialization point becomes significant and
delays consequent operators in the plans of the host and satellite packets. This creates a trade-off
between sharing and parallelism, where in the latter case a query-centric model without sharing
is used.

Sharing vs. Parallelism. We demonstrate this trade-off with the following experiment, similar
to the basic experiment of (Johnson et al., 2007), which evaluates SP for the table scan stage
with a memory-resident database. Though the trade-off applies for disk-resident databases and
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Figure 4.4: Sharing identical results during SP with: (a) push-only model and (b) a SPL.

other stages as well, it is more pronounced in this case. Our experimental configuration can be
found in Section 4.5. We evaluate two variations of the QPipe execution engine: (a) No SP
(FIFO), which evaluates query plans independently without any sharing, and (b) CS (FIFO),
with SP enabled only for the table scan stage, thus supporting circular scans (CS). FIFO buffers
are used for pipelined execution and copying is used to forward pages during SP, following the
original push-only design (Harizopoulos et al., 2005; Johnson et al., 2007). We evaluate identical
TPC-H (TPC, 2013) Q1 queries, submitted at the same time, with a database of scaling factor
1. In Figure 4.3a, we show the response times of the variations, while varying the number of
concurrent queries.

For low concurrency, No SP (FIFO) efficiently uses available CPU resources. Starting with
as few as 32 queries, however, there is contention for CPU resources and response times grow
quickly, due to the fact that our server has 24 available cores and the query-centric model evaluates
queries independently. For 64 queries it uses all cores at their maximum, resulting in excessive
and unpredictable response times, with a standard deviation up to 30%.

CS (FIFO) suffers from low utilization of CPU resources, due to the aforementioned serialization
point of SP. The critical path increases with the number of concurrent queries. For 64 queries,
it uses an average of 3.1 of available cores. In this experiment, the proposed prediction model
(Johnson et al., 2007) would not share in cases of low concurrency, essentially falling back to the
line of No SP (FIFO), and would share in cases of high concurrency.

Nevertheless, the impact of the serialization point of SP can be minimized. Simply copying
tuples in a multi-threaded way would not solve the problem, due to synchronization overhead and
increased required CPU resources. A solution would be to forward tuples via pointers, a possibility
not considered by the original system (Harizopoulos et al., 2005; Johnson et al., 2007). We can,
however, avoid unnecessary pointer chasing; by employing pull-based communication, we can
share the results and eliminate forwarding altogether. In essence, we transfer the responsibility of
sharing the results from the producer to the consumers. Thus, the total work of the producer does
not include any forwarding cost. Our pull-based communication model is adapted for SP for any
stage with a step or linear WoP.

The serialization point of push-based SP was not a visible bottleneck in the original implementa-
tion, due to experiments being ran on a uni-processor (Harizopoulos et al., 2005). On multi-core
machines its impact grows as the available parallelism increases, and a prediction model (Johnson
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et al., 2007) was proposed and used at run-time to dynamically decide whether (push-based)
sharing should be employed. Our pull-based communication model for SP, however, addresses the
serialization point by distributing the sharing cost, leading to better scaling on modern multi-core
machines with virtually no sharing overhead.

To achieve this, we create an intermediate data structure, the Shared Pages Lists (SPL). SPL
have the same usage as the FIFO buffers of the push-only model. A SPL, however, allows a
single producer and multiple consumers. A SPL is a linked list of pages, depicted in Figure 4.4b.
The producer adds pages at the head, and the consumers read the list from the tail up to the head
independently.

In order to show the benefits of SPL, we run the experiment depicted in Figure 4.3a, by employing
SPL instead of FIFO buffers. When SP does not take place, a SPL has the same role as a FIFO
buffer, used by one producer and one consumer. Thus, the No SP (SPL) line has similar behavior
with the No SP (FIFO) line. During SP, however, a single SPL is used to share the results of one
producer with all consumers. In Figure 4.3b, we show the response times of the variations, while
varying the number of concurrent queries.

With SPL, sharing has the same or better performance than not sharing, for all cases of con-
currency. We avoid using a prediction model altogether, for deciding whether to share or not.
Parallelism is achieved due to the minimization of the serialization point. For high concurrency,
CS (SPL) uses more CPU resources and reduces response times by 82%-86% in comparison to
CS (FIFO).

Additionally, in Figure 4.3c, we show the speedup of sharing over not sharing, for both models.
We depict only values for low concurrency, as sharing is beneficial for both models in cases
of high concurrency. We corroborate previous results on the negative impact of sharing with
push-only communication (Johnson et al., 2007) for low concurrency, and show that pull-based
sharing is always beneficial.

- List of finishing packets
- Atomic counter of reads
- Data

SPL - Lock 
- List of satellite packets and their points of entry
- Maximum sizeHost packet

Satellite packetSatellite packet

Figure 4.5: Design of a shared pages list.
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4.3.1 Design of a SPL

In Figure 4.5, we depict a SPL. It points to the head and tail of the linked list. The host packet
adds pages at the head. Satellite packets read pages from the SPL independently. Due to
different concurrent actors accessing the SPL, we associate a lock with it. Contention for locking
is minimal in all our experiments, mainly due to the granularity of pages we use (32KB). A
lock-free linked list, however, can also be used to address any scalability problems.

Theoretically, if we allow the SPL to be unbounded, we can achieve the maximum parallelism
possible, even if the producer and the consumers move at different speeds. There are practical
reasons, however, why the SPL should not be unbounded, similar to the reasons why a FIFO
buffer should not be unbounded, including: saving RAM, and regulating differently paced actors.

To investigate the effect of the maximum size of the SPL, we re-run the experiment of Figure 4.3b,
for the case of 8 concurrent queries, varying the maximum size of SPL. In Figure 4.6, we show
the response times. We observe that changing the maximum size of the SPL does not heavily
affect performance. Hence, we chose a maximum size of 256KB for our experiments in Section
4.5 in order to minimize the memory footprint of SPL.

In order to decrease the size of the SPL, the last consumer is responsible for deleting the last
page. Each page has an atomic counter with the number of consumers that will read this page.
When a consumer finishes processing a page, he decrements its counter, deleting the page if he
sees a zero counter. In order to know how many consumers will read a page, the SPL stores a list
of active satellite packets. The producer assigns their number as the initial value of the atomic
counter of each emitted page.

4.3.2 Linear Window of Opportunity

In order to handle a linear WoP, such as circular scans, the SPL stores the point of entry of every
consumer. When the host packet finishes processing, the SPL is passed to the next host packet
that handles the processing for re-producing missed results.

0

2

4

6

8

0,25 1 4 16 64 256 1024

R
e

sp
o

n
se

 t
im

e
 

(s
e

c)
 

Maximum size of shared pages list (MB) 

CS (SPL)

                

256 KB 

Figure 4.6: Same experiment as in Figure 4.3b, for the case of 8 concurrent queries, with a
varying maximum size for SPL.
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When the host packet emits a page, it checks for consumers whose point of entry is this page,
and will need to finish when they reach it. The emitted page has attached to it a list of these
finishing packets, which are removed from the active packets of the SPL (they do not participate
in the atomic counter of subsequently emitted pages). When a consumer (packet) reads a page, it
checks whether it is a finishing packet, in which case, it exits the SPL.

4.4 Experimental Methodology

We compare five variations of the QPipe execution engine:

• QPipe, without SP, which is similar to a typical query-centric model that evaluates query
plans separately with pipelining, without any sharing. This serves as our baseline.

• QPipe-CS, supporting SP only for the table scan stage, i.e. circular scans (CS). It improves
performance over QPipe by reducing contention for CPU resources, the buffer pool and
the underlying storage device.

• QPipe-SP, supporting SP additionally for the join stage. It improves performance over
QPipe-CS, in cases of high similarity, i.e. common sub-plans. In cases of low similarity,
it behaves similar to QPipe-CS.

• CJOIN, without SP, which is the result of our integration of CJOIN into QPipe, hence the
joins in star queries are evaluated with a GQP of shared hash-joins. We remind that CJOIN
only supports shared hash-joins, thus subsequent operators are query-centric. Nevertheless,
this configuration allows us to compare shared hash-joins with the query-centric ones used
by the previous variations, giving us insight on the performance characteristics of general
shared operators.

• CJOIN-SP, which additionally supports SP for the CJOIN stage (see Section 4.2.3). We
use this configuration to evaluate the benefits of combining SP with a GQP. It behaves
similar to CJOIN in cases of low similarity in the query mix.

In all our experiments, SP for the aggregation and sorting stages is off. This is done on purpose
to isolate the benefits of SP for joins only, so as to better compare QPipe-SP and CJOIN-SP.

We use the Star Schema Benchmark (O’Neil et al., 2009) and Shore-MT (Johnson et al., 2009) as
the storage manager. SSB is a simplified version of TPC-H (TPC, 2013) where the tables lineitem
and order have been merged into lineorder and there are four dimension tables: date, supplier,
customer and part. Shore-MT is an open-source multi-threaded storage manager developed to
achieve scalability on multicore platforms.

Our server is a Sun Fire X4470 server with four hexa-core processors Intel Xeon E7530 at 1.86
GHz, with hyper-threading disabled and 64 GB of RAM. Each core has a 32KB L1 instructions
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cache, a 32KB L1 data cache, and a 256KB L2 cache. Each processor has a 12MB L3 cache,
shared by all its cores. For storage, we use two 146 GB 10kRPM SAS 2.5” disks, configured as a
RAID-0. The O/S is a 64-bit SMP Linux (Red Hat), with a 2.6.32 kernel.

We clear the file system caches before every measurement. All variations use a large buffer pool
that fits SSB datasets of scaling factors up to 30 (corresponding to around 18GB of data produced
by the SSB generator). SPL are used for exchanging results among packets. As we explain in
Section 4.3, we use 32KB pages and a maximum size of 256KB for a SPL.

Unless stated otherwise, every data point is the average of multiple iterations with standard
deviation less or equal to 5%. In some cases, contention for resources results in higher deviations.
In certain experiments, we mention the average CPU usage and I/O throughput of representative
iterations (averaged only over their activity period), to gain insight on the performance of the
variations.

We vary (a) the number of concurrent queries, (b) whether the database is memory-resident or
disk-resident, (c) the selectivity of fact tuples, (e) the scaling factor, and (d) the query similarity
which is modeled in our experiments by the number of possible different submitted query plans.
Queries are submitted at the same time, and are all evaluated concurrently. This single batch for
all queries allows us to minimize query admission overheads for CJOIN, and additionally allows
us to show the effects of SP, as all queries with common sub-plans arrive surely inside the WoP of
their pivot operators. We note that variable inter-arrival delays can decrease sharing opportunities
for SP, and refer the interested reader to the original QPipe paper (Harizopoulos et al., 2005) to
review the effects of inter-arrival delays for different cases of pivot operators and WoP.

Finally, in Section 4.5.4, we evaluate QPipe-SP, CJOIN-SP, and Postgres with a mix of SSB
queries and a scaling factor 30. We use PostgreSQL 9.1.4 as another example of a query-centric
execution engine that does not share among concurrent queries. We configure PostgreSQL to
make the comparison with QPipe as fair as possible. We use 32KB pages, large shared buffers
that fit the database, ensure that it never spills to the disk and that the query execution plans are
the same. We disable query result caching, which does not execute a previously seen query at all.
We do not want to compare caching of previously executed queries, but the efficiency of sharing
among in-progress queries.

4.5 Experimental Analysis

In this section, we measure performance by evaluating multiple concurrent instances of SSB
Q3.2. It is a typical star query that joins three of the four dimension tables with the fact table.
The SQL template and the execution plan are shown in Figure 4.7. We selected a single query
template for our sensitivity analysis because we can adjust the similarity of the query mix to gain
insight on the benefits of SP, and also, the GQP of CJOIN is the same for all experiments, with 3
shared hash-joins for all star queries.
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F D1

D2⋈

⋈ D3

⋈

A

SSELECT   c_city, s_city, d_year, 
         SUM(lo_revenue) as revenue
FROM     customer, lineorder, supplier, date
WHERE    lo_custkey = c_custkey
         AND lo_suppkey = s_suppkey
         AND lo_orderdate = d_datekey
         AND c_nation = [NationCustomer]
         AND s_nation = [NationSupplier]
         AND d_year >= [YearLow] 
         AND d_year <= [YearHigh]
GROUP BY c_city, s_city, d_year
ORDER BY d_year ASC, revenue DESC supplier

customer

date

Figure 4.7: The SSB Q3.2 SQL template and the query plan.
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Avg. # Cores Used 23.91 19.72 18.75 3.47

Figure 4.8: Memory-resident database of SF=1. The table includes measurements for the case of
256 queries.

4.5.1 Impact of concurrency

We start with an experiment that does not involve I/O accesses in order to study the computational
behavior of the variations. We store our database in a RAM drive. We evaluate multiple concurrent
SSB Q3.2 instances for a scaling factor 1. The predicates of the queries are chosen randomly,
keeping a low similarity factor among queries and the selectivity of fact tuples varies from 0.02%

to 0.16% per query. In Figure 4.8, we show the response times of the variations, while varying
the number of concurrent queries.

For low concurrency, QPipe successfully uses available CPU resources. Starting with as few as
32 concurrent queries, there is contention for CPU resources, due to the fact that our server has 24
cores and QPipe evaluates queries separately. Response times grow quickly and unpredictability
results in standard deviations up to 50%. For 256 queries it uses all cores at their maximum.
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The circular scans of QPipe-CS reduce contention for CPU resources and the buffer pool,
improving performance. For high concurrency, however, there are more threads than available
hardware contexts, thus increasing response times.

QPipe-CS misses several sharing opportunities at higher operators in the query plans. QPipe-SP
can exploit them. Even though we use random predicates, the ranges of variables of the SSB Q3.2
template allows QPipe-SP to share the first hash-join 126 times, the second hash-join 17 times,
and the third hash-join 1 time, on average for 256 queries. Thus, it saves more CPU resources,
and results in lower response time than the circular scans alone.

The shared operators of CJOIN offer the best performance, as they are the most efficient in saving
resources. CJOIN has an initialization overhead in comparison to the other variations, attributed
to its admission phase, which takes place before the evaluation (see Section 4.2.1). These costs
are low and the shared hash-joins in the GQP can effortlessly evaluate many instances of SSB
Q3.2. Nevertheless, admission and evaluation costs accumulate for an increasing number of
queries, thus the CJOIN line also starts to degrade.

We do not depict CJOIN-SP, as it has the same behavior as CJOIN. As we noted in Section
4.2.3, our implementation of CJOIN-SP supports sharing CJOIN packets with all join predicates
identical. This is rare due to this experiment’s random predicates.
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Figure 4.9: Same as Figure 4.8, with a disk-resident database.

Our observations apply also for disk-resident databases. In Figure 4.9, we show the results of
the same experiment with the database on disk. QPipe suffers from CPU contention, which
de-schedules scanner threads regularly resulting in low I/O throughput. Additionally, scanner
threads compete for bringing pages into the buffer pool. Response times for low concurrency
have increased, but not significantly for high concurrency, due to the fact that the workload is
CPU-bound for high concurrency. QPipe-CS improves performance (by 80%-97% for high
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concurrency) by reducing contention for resources and the buffer pool. QPipe-SP further
improves performance by eliminating common sub-plans. The shared operators of CJOIN still
prevail for high concurrency. Furthermore, we note that the overhead of the admission phase, that
we observed for a memory-resident database, is masked by file system caches for disk-resident
databases. We explore this effect in a next experiment, where we vary the scaling factor.

Implications. Shared scans improve performance by reducing contention for resources, the
buffer pool and the underlying storage devices. SP is able to eliminate common sub-plans. Shared
operators in a GQP are more efficient in evaluating a high number of queries, in comparison to
standard query-centric operators.

4.5.2 Impact of data size

In this section, we study the behavior of the variations by varying the amount of data they need to
handle. We perform two experiments: In the first, we vary the selectivity of fact tuples of queries,
and in the second, the scaling factor.
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Figure 4.10: 8 queries with a memory-resident database of SF=10. The table includes measure-
ments for 30% selectivity.

Impact of selectivity. We use a memory-resident database with scaling factor 10. The query mix
consists of 8 concurrent queries which are different instances of a modified SSB Q3.2 template.
The template is based on Q3.2, but for the year range we select the maximum possible range.
Moreover, we extend the WHERE clause of the query template by adding more options for both
customer and supplier nation attributes. For example, if we use a disjunction of 2 nations for
customers and 3 nations for suppliers, we achieve a selectivity of 2

25
3

25
7
7 ≈ 1% of fact tuples.

Nations are selected randomly over all 25 possible values and are unique in every disjunction,
keeping a minimal similarity factor. The results are shown in Figure 4.10. In this experiment,
there is no contention for resources and no common sub-plans. Thus, we do not depict QPipe
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and QPipe-CS, as they have the same behavior as QPipe-SP, and we do not depict CJOIN-SP,
as it has the same behavior as CJOIN.

Both QPipe-SP and CJOIN show a degradation in performance as selectivity increases, due
to the increasing amount of data they need to handle. Their trends, however, are different. The
response time of CJOIN increases more quickly than the response time of QPipe-SP. This is
due to two facts. Firstly, the admission phase of CJOIN is extended, as it evaluates more complex
selection predicates for all queries, whereas in circular scans, queries evaluate their predicates
independently. Secondly, and more importantly, the shared operators of a GQP inherently entail
a book-keeping overhead, in comparison to standard query-centric operators. In our case, the
additional cost of shared hash-joins includes (a) the maintenance of larger hash tables for the
union of the selected dimension tuples of all concurrent queries, and (b) bit-wise AND operations
between the bitmaps of tuples. Query-centric operators do not entail these costs, and maintain a
hash table for one query.
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Figure 4.11: Memory-resident database of SF=10 and 30% selectivity. The table includes
measurements for 256 queries.

The book-keeping overhead can be decreased significantly with careful implementation choices.
DataPath (Arumugam et al., 2010) uses a single large hash table for all shared hash-joins,
decreasing the maintenance and access costs for hash tables. Nevertheless, shared hash-joins
still need to process the union of selected tuples and perform bit-wise operations. The same
reasoning can be applied to other shared operators as well, such as a shared aggregations. A
single shared aggregation maintains a running sum for all queries. For low concurrency, it reduces
parallelization in comparison to standard query-centric aggregations that calculate a running sum
for each query.

We used 8 queries to avoid CPU contention. For higher concurrency, shared operators still prevail,
due to their efficiency in saving resources. We depict in Figure 4.11 the response times for the
case of 30% selectivity. For high concurrency, the query-centric operators of QPipe-SP contend
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for CPU resources. CJOIN is able to save more resources and outperform the query-centric
operators.

Impact of Scaling Factor. We show the same trade-off between shared operators and query-
centric operators by varying the scaling factor. We use disk-resident databases and 8 concurrent
queries with random predicates and selectivity between 0.02% and 0.16%. The results are shown
in Figure 4.12. The response times of both QPipe-SP and CJOIN increase linearly. Their slopes,
however, are different. The reasons are the same: The admission phase is extended, and shared
operators entail a book-keeping overhead.
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Figure 4.12: 8 concurrent queries with disk-resident databases. The table includes measurements
for the case of SF=100.

We also show the response time of the two variations by using direct I/O for accessing the
database on disk, to bypass file system caches. This allows us to isolate the overhead of CJOIN’s
preprocessor. As we have mentioned before, the preprocessor is in charge of the circular scan of
the fact table, the admission phase of new queries, and finalizing queries when they wrap around
to their point of entry. These responsibilities slow the circular scan significantly. Without direct
I/O, file system caches coalesce contiguous I/O accesses and read-ahead, achieving high I/O read
throughput in sequential scans, masking the preprocessor’s overhead.

Implications. For low concurrency, a GQP with shared operators entails a book-keeping overhead
in comparison to query-centric operators. For high concurrency, however, shared operators prevail
due to their efficiency in saving resources.
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4.5.3 Impact of Similarity

In this experiment we use a disk-resident database of scaling factor 1. We limit the randomness
of the predicates of queries to a small set of values. Specifically, there are 16 possible query plans
for instances of Q3.2. The selectivity of fact tuples ranges from 0.02% to 0.05%. In Figure 4.13,
we show the response times of the variations, varying the number of concurrent queries. We do
not depict QPipe, as it does not exploit any sharing and results in increased contention and high
response times for high concurrency. We remind that we do not enable SP for aggregations and
sorting, in order to focus on the effect of SP for joins.
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Figure 4.13: Disk-resident database of SF=1 and 16 possible plans. The table includes measure-
ments for 256 queries.

QPipe-SP evaluates a maximum of 16 different plans and re-uses results for the rest of similar
queries. It shares the second hash-join 1 time, and the third hash-join 238 times, on average, for
256 queries. This leads to high sharing and minimal contention for computations. On the other
hand, QPipe-CS does not share operators other than the table scan, resulting in high contention.

Similarly, CJOIN misses exploiting these sharing opportunities and evaluates identical queries
redundantly. In fact, QPipe-SP outperforms CJOIN. CJOIN-SP, however, is able to exploit
them. For a group of identical star queries, only one is evaluated by the GQP. CJOIN-SP
shares CJOIN packets 239 times on average for 256 queries. Thus, CJOIN-SP outperforms all
variations.

To further magnify the impact of SP, we perform another experiment for 512 concurrent queries,
a scaling factor of 100 (with a buffer pool fitting 10% of the database), and varying the number
of possible different query plans. The results are shown in Figure 4.14. CJOIN is not heavily
affected by the number of different plans. For the extreme cases of high similarity, QPipe-SP
prevails over CJOIN. For lower similarity, the number of different plans it needs to evaluate is
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Figure 4.14: Evaluating 512 concurrent queries with a varying similarity factor, for a SF=100. The
table includes the SP sharing opportunities (average of all iterations), in the format 1st/2nd/3rd
hash-join for QPipe-SP.

larger and performance is deteriorated due to contention for resources. CJOIN-SP is able to
exploit identical CJOIN packets and improve performance of CJOIN by 20%-48% for cases with
common sub-plans in the query mix.

Implications. We can combine SP with a GQP to eliminate redundant computations and improve
performance of shared operators for a query mix that exposes common sub-plans.

4.5.4 SSB query mix evaluation

In this section we evaluate QPipe-SP, CJOIN-SP, and Postgres using a mix of three SSB
queries (namely Q1.1, Q2.1 and Q3.2), with a disk-resident database and a scaling factor of 30.
The predicates for the queries are selected randomly and the selectivity of fact tuples is less than
1%. Each query is instantiated from the three query templates in a round-robin fashion, so all
variations contain the same number of instances for each query type.

In Figure 4.15, we depict the response times of the variations, while varying the number of
concurrent queries. As Postgres is a more mature system than the two research prototypes,
it attains a better performance for low concurrency. Our aim, however, is not to compare the
per-query performance of the variations, but their efficiency in sharing among a high number
of concurrent queries. Postgres follows a traditional query-centric model of execution, and
does not share among in-progress queries. For this reason, it results in contention for resources.
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Measurement \Variation Postgres QPipe-SP CJOIN-SP
Avg. # Cores Used 18.56 19.07 19.11
Avg. Read Rate (MB/s) 15.93 84.98 110.03

Figure 4.15: Disk-resident database of SF=30. The table includes measurements for the case of
256 queries.

QPipe-SP results in a better performance due to circular scans and the elimination of common
sub-plans. CJOIN-SP attains the best performance, as shared operators are the most efficient in
sharing among concurrent queries.

In Figure 4.16, we show the throughput of the three variations, by varying the number of
concurrent clients. Each client initially submits a query, and when it finishes, the next one is
submitted. The shared operators of a GQP are able to handle new queries with minimal additional
resources. Thus, the throughput of CJOIN-SP increases almost linearly. The throughput of
the query-centric operators of Postgres and QPipe-SP, however, ultimately decreases with an
increasing number of clients, due to resources contention.

4.6 Discussion

Shared scans and SPL. Pull-based models, similar to SPL, have been proposed for shared scans
that are specialized for efficient buffer pool management and are based on the fact that all data
are available for accessing (see Section 2.3). SPL differ because they are generic and can be used
during SP at any operator which may be producing results at run-time. It is possible, however, to
use shared scans for table scans, and use SPL during SP for other operators.

Prediction model for sharing with a GQP. Shared operators of a GQP are not beneficial for
low concurrency, in comparison to the query-centric model, because they entail an increased
book-keeping overhead (see Section 4.5.2). The turning point, however, when shared operators
become beneficial needs to be pinpointed. A simple heuristic is the point when resources become
saturated (see Table 4.1). An exact solution would be a prediction model, similar to (Johnson
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Figure 4.16: Throughput while evaluating concurrent queries with a disk-resident database of
SF=30. The table includes measurements for the case of 256 clients.

et al., 2007). This model, however, targets only sharing identical results during SP (see Section
4.3). Shared operators in a GQP do not share identical results, but part of their evaluation
among possibly different queries. A potential prediction model for a GQP needs to consider
the book-keeping overhead, and the cost of optimizing the GQP, for the current query mix and
resources.

Distributed environments. Our work focuses on scaling up and not out. Following prior work
(Arumugam et al., 2010; Candea et al., 2009; Giannikis et al., 2012; Harizopoulos et al., 2005),
we consider scaling up as a base case, because it is a standard means of increasing throughput in
DBMS. We intend to follow up with further research in parallel DBMS (Mehta et al., 1993) and
other distributed data systems (Dean and Ghemawat, 2004). For example, we can improve global
scheduling in parallel DBMS by taking sharing into account: each replica node can employ a
separate GQP, and a new query should be dispatched to the node which will incur the minimum
estimated marginal cost for evaluation.

4.7 Conclusions

In this chapter we perform an experimental study to answer when and how an execution engine
should share data and work across concurrent analytical queries. We review work sharing
methodologies and we study Simultaneous Pipelining (SP) and Global Query Plans with shared
operators (GQP) as two state-of-the-art sharing techniques. We perform an extensive evaluation
of SP and GQP, based on their original research prototype systems.

Work sharing is typically beneficial for high concurrency because the opportunities for common
work increase, and it reduces contention for resources. For low concurrency, however, there is a
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trade-off between sharing and parallelism, particularly when the sharing overhead is significant.
We show that GQP are not beneficial for low concurrency because shared operators inherently
involve an additional book-keeping overhead, compared to query-centric operators. For SP,
however, we show that it can be beneficial for low concurrency as well, if the appropriate
communication model is employed: we introduce SPL, a pull-based approach for SP that scales
better on modern multi-core machines than push-based SP. SPL is a data structure that naturally
promotes parallelism by shifting the responsibility of sharing common results from the producer
to the consumers.

Furthermore, we show that SP and GQP are two orthogonal sharing techniques and their integra-
tion allows to share operators and handle a high number of concurrent queries, while also sharing
any common sub-plans presented in the query mix. In conclusion, analytical query engines
should dynamically choose between query-centric operators with SP for low concurrency and
GQP with shared operators enhanced by SP for high concurrency.
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5 BF-Tree: Approximate Tree Indexing1

5.1 Introduction

Database Management Systems (DBMS) have been traditionally designed with the assumption
that the underlying storage is comprised of hard disks (HDD). This assumption impacts most of
the design choices of DBMS and in particular the ones of the storage and the indexing subsystems.
Data stored on the secondary storage of a DBMS can be accessed either by a sequential scan or
by using an index for randomly located searches. The most common types of indexes in modern
database systems are B+-Trees and hash indexes (Ramakrishnan and Gehrke, 2002). Other types
of indexing include bitmap indexes (O’Neil, 1987).

Tree structures like B+-Trees are widely used because they are optimized for the common storage
technology - HDD - and they offer efficient indexing and accessing for both sorted and unsorted
data (e.g. in heap files). Tree structures offer logarithmic, to the size of the data, number of
random accesses (and, as a result, lookup time) and support ordered range scans. Hash tables are
very efficient for point queries, i.e. for a single value probe, because, once hashing is completed
the search cost is constant. Indexing in today’s systems is particularly important because it needs
only a few random accesses to locate any value, which is sublinear to the size of the data (e.g.,
logarithmic for trees, constant for hash indexes).

5.1.1 Implicit Clustering

Big data analysis - often performed in a real-time manner - is becoming increasingly more popular
and crucial to business operation. New datasets including data from scientists (e.g., simulations,
large-scale experiments and measurements, sensor data), social data (e.g., social status updates,
tweets) and, monitoring, archival and historical data (managed by data warehousing systems),
all have a time dimension, leading to implicit, time-based clusters of data, often resulting in

1The material of this chapter has been the basis for a paper submitted for publication entitled "BF-Tree: Approxi-
mate Tree Indexing" (Athanassoulis and Ailamaki, 2013).
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Figure 5.1: Clustering of shipdate, commitdate, and receiptdate.

storing data based on the creation timestamp. The property of implicit clustering (Moerkotte,
1998) characterizes data warehousing datasets, which are often naturally partitioned for the
attributes that are correlated with time. For example, in a typical data warehousing benchmark
(TPCH (TPC, 2013)) for every purchase we have three dates (ship date, commit date and receipt
date). While these three dates do not have the same order for different products, the variations are
small and the three values are typically close. Figure 5.1 shows the dates of the first 10000 tuples
of the lineitem table of the TPCH benchmark when data are ordered using the creation time.

Today, real-time applications like energy smart meters (IBM, 2012) and Facebook (Borthakur,
2013) have a constant ingest of timestamped data. In addition to the real-time nature of such
applications, immutable files with historical time-generated data are stored and the goal is to offer
cheap yet efficient storage and searching. For example, Facebook has announced projects to offer
cold storage (Taylor, 2013) using flash or shingled disks (Hughes, 2013). When cold data are
stored on low-end flash chips as immutable files, they can be ordered or partitioned anticipating
future access patterns, offering explicit clustering.

Datasets with either implicit or explicit clustering are ordered or partitioned, typically, on a time
dimension. In this chapter, we design an index that is able to exploit such data organization to
offer competitive search performance with smaller index size.

5.1.2 The capacity-performance trade-off

Solid-state disks (SSD) use technologies like flash and Phase Change Memory (PCM) (Doller,
2009) that do not suffer from mechanical limitations like rotational delay and seek time. They
have virtually the same random and sequential read throughput and several orders of magnitudes
smaller read latency when compared to hard disks (Bouganim et al., 2009; Stoica et al., 2009).
The capacity of SSD, however, is a scarce resource compared with the capacity of HDD. Typically,
SSD capacity is one order of magnitude more expensive than HDD capacity. The contrast between
capacity and performance creates a storage trade-off. Figure 5.2 shows how several SSD and
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HDD devices (as of end 2013) are characterized in the trade-off according to their capacity (GB
per $) on the x-axis and the advertised random read performance (IOPS) on the y-axis. We
show two enterprise-level and two consumer-level HDD (E- and C-HDD respectively) and, four
enterprise-level and two consumer-level SSD (E- and C-SSD respectively). The two technologies
create two distinct clusters. HDD are on the lower right part of the figure offering cheap capacity
(and in all cases cheaper than SSD) and inferior performance - in terms of random read I/O per
second (IOPS) - varying from one to four orders of magnitude. Hence, instead of designing
indexes for storage with cheap capacity and expensive random accesses (for HDD), today we
need to design indexes for storage with fast random accesses with expensive capacity (for SSD).

5.1.3 Indexing for modern storage

Systems and applications requirements are heavily impacted by the emergence of SSD and
there has been a plethora of research aiming at integrating and exploiting such devices with
existing DBMS. These efforts include flash-only DBMS (Stoica et al., 2009; Tsirogiannis et al.,
2009), flash-HDD hybrid DBMS (Koltsidas and Viglas, 2008), using flash in a specialized
way (Athanassoulis et al., 2011; Chen, 2009) and optimizing internal structures of the DBMS
for flash (e.g., flash-aware B-Trees and write-ahead-logging (Agrawal et al., 2009; Chen, 2009;
Gao et al., 2011; Li et al., 2010; Roh et al., 2011)). Additionally, the trends of increasing
capacity and performance of SSD lead to higher adoption of hybrid or flash-only storage sub-
systems (Borthakur, 2013). Thus, more and more data reside on SSD and we need to access them
in an efficient way.

SSD-aware indexes are not enough. Prior approaches for flash-aware B+-Tree, however, focus
on addressing the slow writes on flash and the limited device lifetime (see Section 2.5). These
techniques do not address the aforementioned storage trade-off - between storage capacity and
performance - since they follow the same principles that B+-Trees are built with: minimize the
number of slow random accesses by having a wide (and potentially large) tree structure. Instead
of decreasing the index size at the expense of more random reads, traditional tree indexing uses
larger size in order to reduce random reads.

5.1.4 Approximate Tree Indexing

We propose a novel form of sparse indexing, using an approximate indexing technique which
leverages efficient random reads to offer performance competitive with traditional tree indexes,
reducing drastically the index size. The smaller size enables fast rebuilds if needed. We achieve
this by indexing in a lossy manner and exploiting natural partitioning of the data in a Bloom
filter tree (BF-Tree). In the context of BF-Trees, Bloom filters are used to store the information
whether a key exists in a specific range of pages. BF-Trees can be used to index attributes that
are ordered or naturally partitioned within the data file. Similarly to a B+-Tree, a BF-Tree has
two types of nodes: internal and leaf nodes. The internal nodes resemble the ones of a B+-Tree
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Figure 5.2: The capacity/performance storage trade-off.

but the leaf nodes are radically different. A leaf node of a BF-tree (BF-leaf) consists of one or
more Bloom filters which store the information whether a key for the indexed attribute exists in a
particular range of data pages. The choice of Bloom filters as the building block of a BF-Tree
allows accuracy parametrization based on (i) the indexing granularity (data pages per Bloom
filter) and (ii) the indexing accuracy (false positive probability of the Bloom filters). The former
is useful when the data are not strictly ordered and the latter can be used to vary the overall size
of the tree.

Contributions. This chapter makes the following contributions:

• We identify the capacity-performance storage trade-off.

• We introduce approximate tree indexing using probabilistic data structures, which can be
parametrized to favor either accuracy or capacity. We present such an index, the BF-Tree,
which is designed for workloads with implicit clustering tailored for emerging storage
technologies.

• We model the behavior of BF-Trees and present a study that analytically predicts their
performance and compares with B+-Trees.

• We show in our experimental analysis that BF-Trees offer competitive performance with
2.22x to 48x smaller index size when compared with B+-Trees and hash indexes.

Outline. In Section 5.2 we present a key insight which makes BF-Trees viable, in Sec-
tions 5.3 and 5.4 we present the internals of a BF-Tree. Section 5.5 presents an analytical
model predicting BF-Trees behavior and Section 5.6 presents the evaluation of BF-Trees. In
Section 5.7 we further discuss BF-trees as a general index and in Section 5.8 we discuss additional
optimizations that BF-Tree supports. Finally, Section 5.9 concludes this chapter.
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5.2 Making approximate indexing competitive

Bloom proposed (Bloom, 1970) BF as a space-efficient probabilistic data structure which supports
membership tests, with a false positive probability. On the other hand, the small size of a BF
allows for its re-computation when needed. Thus, in BF-Trees we do not employ a BF for the
entire relation. We use BF to perform a membership test for a specific range, keeping the range
of values for a single BF small in order to be feasible to recompute it.

Here, we extend the background discussion for BF of Section 2.4 by focusing on a key property
used to optimize indexing partitioned or ordered data. A BF is comprised of m bits, and it stores
membership information for n elements with false positive probability p. An empty BF is an
array of m bits all set to 0. We need, as well, k different hash functions to be used to map an
element to k different bits during the process of adding an element or checking for membership.
When an element is added, the k hash functions are used in order to compute which k out of
m bits have to be set to 1. If a bit is already 1 it maintains this value. To test an element for
membership the same k bits are read and, if any of the k bits is equal to 0, then the element is
not in the set. If all k bits are equal to 1 then the element belongs to the set with probability
1−p. Assuming optimal number of k hash functions the connection between the BF parameters
is approximated by the formula2 (Tarkoma et al., 2012):

n =−m · l n2(2)

l n(p)
(5.1)

From this formula we can derive some useful properties:

1. If a BF with size M bits can store the membership information of N elements with false
positive p, then S BFs with size M

S bits each can store the membership information of N
S

elements each with the same p.

2. Decreasing the probability of false positives has a logarithmic effect on the number of
elements we can index using a given space budget (i.e., number of bits).

Property (1) allows to divide the index into smaller BFs that incorporate location information.
This process is done hierarchically and is presented in Section 5.3 and Section 5.4. We present
a tree structure with a large BF per leaf, which contains membership information, and internal
nodes which help navigating to the desired range before we do the membership test. Each leaf
node corresponds to a number of data pages and upon positive membership test we have to search
these data pages for the desired values. In Section 5.4 we describe how we can store location
information more efficiently by storing one – small – BF per data page in the leaf nodes. The leaf
node now consists of several BFs which can be checked in parallel and produce the list of data
pages to be read more efficiently.

2When modelling the behavior of a BF we will use the given formula unless otherwise stated.
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5.3 Bloom Filter Tree (BF-Tree)

In this section we describe in detail the structure of a BF-tree, highlighting its differences from a
typical B+-Tree.

5.3.1 BF-Tree architecture

A BF-tree consists of nodes of two different types. The root and the internal nodes have the same
morphology as a typical B+-Tree node: they contain a list of keys with pointers to other nodes
between each pair of keys (see Figure 5.3). If the referenced node is internal then it has exactly
the same structure. The leaf nodes (BF-leaves), however, are different. Each leaf node contains a
BF which can be used to test any key in the corresponding range of the node, for key membership.
Finally, each leaf node contains a list of pairs <key, page id> which is used to enhance the search,
called run indexes. The run indexes serve as barriers dividing a range of pages in partitions based
on the key value, hence, both keys and page ids are ordered. Note that the data does not need to
be ordered for a partition scheme to hold, since the run indexes serve as fences. The assumption
is that, for each BF-leaf, we know either implicitly or explicitly a sub-range of pages that we need
to search in if the key in question is found to exist according to the BF. This data organization
exists when the data are ordered on the indexing key or partitioned using the indexing key. In
cases of composite indexing keys, or for attributes that have values correlated with the order of
the data, such an assumption can hold for more than one index.

BF-leaf. For simplicity and compatibility with the existing framework, the root, the internal
nodes and the leaf nodes have the same size (typically either 4KB or 8KB, we will assume 4KB
in the following discussion). The BF of a BF-leaf contains the membership information of the
values of a specific key in a range of pages. Assuming that the run indexes of a given BF-leaf are
< k1, p1 >, . . . ,< kn , pn > the membership test will answer whether a key which has value in the
interval [k1,kn] exists within the range of pages p1, . . . , pn . The run indexes can further assist the
search once the membership test is positive to eliminate searching in pages which contain keys
out of the desired range. In every BF-leaf (Figure 5.4(a)) we store the following information:

• The smallest key of the node’s BF: min_key.

• The largest key of the node’s BF: max_key.

• The number of currently indexed elements: #keys.

• A pointer to the next BF3: next_BFleaf.

• The actual BF to perform the membership test.

• A list of keys and page ids which partition the corresponding contiguous pages into smaller
sets of pages that contain sub-ranges of the leaf’s range: run indexes.

3Useful for bulk loading, the pointers between BF-Tree leaf nodes are similar to pointers between B+-Trees leaf
nodes.
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Figure 5.3: BF-tree

The search time of a BF-tree depends on three parameters:

• The height of the tree.

• The range of pages corresponding to each BF-leaf, which depends on the false positive
probability ( f pp).

• The number of run indexes per BF-leaf.

Searching for a tuple. As shown in Algorithm 1, once we have retrieved the desired BF-leaf,
we perform a membership test in the BF. This test decides whether the key we search for exists
in our dataset with probability for false positive answer f pp. The average search cost includes
the overhead of false positives, which is negligible when f pp is low as we show in Sections 5.5
and 5.6. Once we have a positive answer we have to perform a binary search on the run indexes
and start from the page closer to the desired key. Following the assumption that the data are either
ordered or partitioned by the index key, we have finally to search in the entire range of pages of
the BF-leaf before we can be sure whether the tuple exists or it was a false positive.

5.3.2 Creating and Updating a BF-Tree

For creating and updating a BF-Tree, the high-level B+-Tree algorithms are still relevant. One
important difference, however, is that, apart from maintaining the desired node occupancy, we
have to respect the desired values for the BF accuracy.

Let us assume that we have a relation R which is empty and we start inserting values and the
corresponding index entries on index key k. The initial node of the BF-Tree is a BF node, as
discussed. For each new entry we need to update i) the BF, ii) #ke y s, iii) possibly mi n_ke y

or max_ke y and in some cases iv) the run indexes. When the indexed elements exceed the
maximum number of elements that maintains the desired false positive probability f pp we have
to perform a node split. Bulk load of an entire index can minimize creation overhead since
we can precompute the values of BF-Tree’s parameters and allocate the appropriate number of
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ALGORITHM 1: Search using a BF-Tree
Search key k using BF-Tree

1: Binary search of root node; read the appropriate child node.
2: Recursive search the values of the internal node, read the appropriate child node until a leaf is

reached.
3: Read mi n_ke y and max_ke y from the leaf node.
4: if Key k between mi n_ke y and max_ke y then
5: Probe BF with key k.
6: if Key k exists in BF then
7: Binary search the run indexes.
8: Search within the matching data pages for the key (false positive with f pp).
9: else

10: Key k does not exist.
11: end if
12: else
13: Key k does not exist.
14: end if

nodes more efficiently. If the tree is in update-intensive mode, each node can maintain a list of
inserted/deleted/updated keys (along with their page information) in order to accumulate enough
number of such operations to amortize the cost of updating the BF.

ALGORITHM 2: Split a BF-Tree node
Split a BF-Tree node N to N1, N2

1: Read mi n_ke y and max_ke y of the node to be split.
2: Create new nodes N1 and N2.
3: Node split may need to propagate.
4: for k = mi n_ke y to max_ke y do
5: if Key k exists then
6: if Less than half N ’s ∈ N1 then
7: Update mi n_ke y , max_ke y , #ke y s and r un_i ndexes of N1 and insert k in N1’s BF.
8: else
9: Update mi n_ke y , max_ke y , #ke y s and r un_i ndexes of N2 and insert k in N2’s BF.

10: end if
11: end if
12: end for

The lossy way to keep indexing information for a BF-Tree increases the cost of splitting a BF-leaf.
Algorithm 2 shows that in order to split a BF-leaf we need to probe the initial node for all indexed
values. Thus, splitting a leaf node is computationally expensive, but it can be accelerated because
it is heavily parallelizable. During a node split several threads can probe the BF of the old node
in order to create the BF of the new nodes.

Algorithm 3 shows how to perform an insert in a BF-Tree. After navigating towards the BF-leaf
in question, we check the BF-leaf size. If this leaf has already indexed the maximum number of
values then we perform a node split as described above. After this step, the values of the BF-leaf
variables are updated. First, we increase the number of keys (#ke y s). Second, we may need
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ALGORITHM 3: Insert a key in BF-Tree
Insert key k (stored on page p)

1: if #ke y s +1 ≤ max_node_si ze then
2: if k ∉ [mi n_ke y , max_ke y] then
3: Extend range (update mi n_ke y or max_ke y).
4: end if
5: Increase #ke y s.
6: Insert k into node’s BF.
7: Update page list.
8: else
9: Split Node.

10: Run insert routine for the newly created node.
11: end if

to update the mi n_ke y or max_ke y accordingly. Third, the new key value is added to the BF.
Finally, we may have to re-arrange the r un i ndexes. More precisely, depending on whether the
data pages are changed (e.g. a new page is added) we can add a new run-index or re-arrange the
run indexes.

Partitioning. A BF-Tree works under the assumption that data are organized (ordered or
partitioned) based on the indexing key. We can take advantage of the order of the data if it follows
the indexing key, or an implicit order. For example, data like orders of a shop, social status
updates or other historical data are usually ordered by date. Thus, any index on the date can use
this information. Note, that we do not apply a specific order, we rather simply use the nature of
the data for more efficient indexing.

ALGORITHM 4: Search using enhanced BF-Tree
Search key k using enhanced BF-Tree

1: Binary search of root node; read the appropriate child node.
2: Recursive search the values of the internal node, read the appropriate child node until a leaf is

reached.
3: Read mi n_ke y and max_ke y from the leaf node.
4: if Key k ∈ [mi n_ke y , max_ke y] then
5: Probe all BFs with key k.
6: if Key k exists in at least 1 BF then
7: Load the matching pages (false positive with p).
8: else
9: Key k does not exist.

10: end if
11: else
12: Key k does not exist.
13: end if
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(a) BF-leaf (b) BF-leaf enhanced

Figure 5.4: BF-tree leaves

5.4 Read-optimized BF-Trees

In the previous section, we describe the structure of a BF-Tree, which aims at minimizing the size
of the index structure while maintaining similar search time. If the workload consists mostly of
analysis and read queries, the indexes can use a pre-processing step which can heavily optimize
them for read-accesses. In this section we describe an optimization for BF-Trees which can
optimize the search process within a leaf. The core idea of this enhancement is that for each data
page that is indexed in a BF-leaf, we create a - much smaller - BF that will index only the keys
of the rows that reside in this page. Note that the accuracy of a BF depends on the number of
elements inserted. Hence, we can divide the unified BF of the BF-leaf to smaller BFs maintaining
the same accuracy. As shown in Section 5.2 (property (1)) dividing a BF for N elements into S

BFs for N
S elements each, results in the same false positive probability. This property holds as

long as on average each one of the S new BFs will index the same number of elements (i.e., the
values are evenly distributed and, thus, every page hold - about - the same amount of rows). For
the remainder of the paper the term BF-Tree refers to read-optimized BF-Trees.

BF-leaf enhanced. Consider a BF-leaf in which we index the rows of N data pages. Practically,
this BF-leaf holds the meta-data described in Section 5.3, limiting the size of the BF to the
remaining space, say B bits. We create N small BFs, which we call page-level BFs (PBF), and
each one has B/N bits size (see Figure 5.4(b)). This leads to virtually the same false positive
probability with the same aggregate size. An implication of this design is that we need to know
the number of data pages corresponding to each leaf. This information however can be easily
calculated by the statistics of the data (relation cardinality, histogram of values for the indexed
attribute). The BF of a leaf-node is broken down to one page-level BF per data page. The run
indexes are not needed anymore. Instead, only the first and the last pages having a PBF in the leaf
are needed (two page ids: mi n_pi d and max_pi d). For simplicity and consistency we map
the first PBF to page mi n_pi d , the second PBF to page mi n_pi d +1 and the last PBF to page
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max_pi d . Algorithm 4 shows how to perform a search using the read-optimized BF-Tree and
Algorithm 5 how to perform an insert.

ALGORITHM 5: Insert a key in an enhanced BF-Tree
Insert key k (stored on page p)

1: if #ke y s +1 ≤ max_node_si ze then
2: if k ∉ [node_mi n, node_max] then
3: Extend range (update node_mi n or node_max).
4: end if
5: Increase #ke y s.
6: Insert k into the corresponding BF.
7: else
8: Split Node.
9: Run insert routine for the newly created node.

10: end if

Searching in an read-optimized BF-Tree. Performing a search with an read-optimized BF-Tree
is based on the search using a simple BF-Tree as far as the internal traversal of the BF-Tree.
When the enhanced BF-leaf is retrieved then instead of probing a single BF, every PBF is probed
for the search key. Since the data does not have to be ordered and we know that the search key
is mapped to the range of the current BF-leaf, every PBF may contain matching tuples. Hence,
after probing every PBF we retrieve the pages corresponding to positive matches and we verify
whether the search key exists in the pages as with the simple BF-Tree.

Bulk loading BF-Trees. Similarly to other tree indexes, the build time of a BF-Tree can be
aggressively minimized using bulk loading. In order to bulk load a BF-Tree the system creates
packed BF-leaves with PBF and builds the remaining of the tree on top of the leaves level during
a new scan of the leaves. Hence, bulk loading requires one pass over the data and one pass over
the leaves of the BF-Tree. Bulk loading applies for the BF-Trees that are not read-optimized as
well.

5.5 Modeling BF-Trees and B+-Trees

In this section we present an analytical model to capture the behavior of BF-Trees and compare
them with B+-Trees regarding size and performance.

5.5.1 Parameters and model

Table 5.1 presents the key parameters of the model. Most of the parameters are sufficiently
explained in the table, however, a number of parameters are further discussed. For a BF-Tree the
average occurrence of a value of the indexed attribute (av g car d) plays an important role since
no new information is stored in the index (effectively reducing its size). Moreover, the desired
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false positive probability ( f pp) allows us to design BF-Trees with variable size and accuracy
for exactly the same dataset. Two more parameters characterize BF-Trees: indexed values per
leaf (BF ke y sper pag e) which is a function of the f pp and data pages per leaf (BF pag eslea f )
which is a function of the first and it is related to performance since it is the maximum amount
of I/O needed when we want to retrieve a tuple indexed in a BF-leaf. Finally, for the I/O cost
there are three parameters, traversing the index (randomly), i d xIO, random accesses to the data
(d at aIO) and sequential access to the data (seqDt IO). That way, we can alter the assumptions
of the storage used for the index and the data: either keep them in the same medium (e.g., both
on SSD) or store the index on the SSD and the data on HDD.

Table 5.1: Parameters of the model

Par ameter name Descr i pti on
pag esi ze pagesize for both data and index
tuplesi ze (fixed) size of a tuple
notuples size of the relation in tuples
av g car d avg cardinality of each indexed value
ke y si ze size of the indexed value (bytes)
ptr si ze size of the pointers (bytes)
f anout fanout of the internal tree nodes

BPl eaves number of leaves for the B+-Trees
BPh height of the B+-Trees

BPsi ze size of the B+-Trees
f pp false positive probability for BF-Trees

BF ke y sper pag e indexed keys per BF leaf
BF pag eslea f data pages per leaf

BF l eaves number of leaves for the BF-Tree
BF h height of the BF-Tree

BF si ze size of the BF-Tree
mP number of matching pages per key

BPcost cost of probing a B+-Tree
BF cost cost of probing a BF-Tree

BF ROcost cost of probing an enhanced BF-Tree
i d xIO cost of a random traversal of the index

d at aIO cost to access randomly data
seqDt IO cost to access sequentially data

costROF P cost of a read-optimized false positive
seqScan cost to seq. access a partition

Equation 5.2 is used to calculate the f anout of the internal nodes of both BF-Trees and B+-Trees.
In Equation 5.3 we calculate the number of leaves of a B+-Tree needed based on the data and the
indexing details, while the height of the B+-Tree is calculated with the Equation 5.4.

f anout = pag esi ze

ptr si ze +ke y si ze
(5.2)
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BPl eaves =
notuples · ( ke y si ze

av g car d +ptr si ze)

pag esi ze
(5.3)

BPh = dlog f anout (BPl eaves)e+1 (5.4)

In order to calculate the leaves of a BF-Tree we first need to calculate the different keys that a BF
of a BF-leaf can index (solving in Equation 5.5, Equation 5.1 assuming the bits available in a page)
and then plug in this number in Equation 5.6 where we make sure that we correctly calculate the
size of the BF-Tree by discarding multiple entries of the same index key. Equation 5.7 calculates
the height of the BF-Tree, and Equation 5.8 uses the number of different indexed values per
BF-leaf to calculate the the number of data pages per BF-leaf.

BF ke y sper pag e =−pag esi ze ·8 · ln2(2)

ln( f pp)
(5.5)

BF l eaves = notuples

av g car d ·BF ke y sper pag e
(5.6)

BF h = dlog f anout (BF l eaves)e+1 (5.7)

BF pag eslea f = BF ke y sper pag e ·av g car d · tuplesi ze

pag esi ze
(5.8)

Next, Equations 5.9 and 5.10 estimate the sizes of the trees.

BPsi ze = pag esi ze · (BPl eaves + BPl eaves

f anout
) (5.9)
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BF si ze = pag esi ze · (BF l eaves + BF l eaves

f anout
) (5.10)

Equation 5.11 calculates the average number of pages to be retrieved after a probe with a match
(mP). Equation 5.12 calculates the cost of probing a B+-Tree and reading the tuple from its
original location. Note that for small av g car d the matching pages are equal to 1. If there is
no match, mP is equal to 0. Equation 5.13 calculates the probing cost when using the simple
BF-Tree, assuming that on average the number of probes to existing keys is equal to the number
of probes to non-existing keys. The term seqScan corresponds to the fact that there should be a
sequential scan of the partition in order to find the matching tuples (hence, this happens when
there is a match) and the term f pp · seqScan corresponds to the fact that when there is no match,
but there is a false positive, the partition should be searched in its entirety as well.

mP = dav g car d · tuplesi ze

pag esi ze
e (5.11)

BPcost = BPh · i d xIO +mP ·d at aIO (5.12)

BF cost = BF h · i d xIO + seqScan + f pp · seqScan ⇒
BF cost = BF h · i d xIO + (1+ f pp) · seqScan (5.13)

Finally, Equation 5.14 calculates the cost of searching with the enhanced BF-Tree. In this
equation we need to reintroduce the term mP , which is the number of matching pages when there
a positive search on the index. We calculate the cost of a false positive as the cost to retrieve
sequentially the false positively attributes pages since all these pages are calculated in search
time and will be given to the disk controller as a list of sorted disk accesses.

BF ROcost =BF h · i d xIO +mP ·d at aIO + f pp ·BF pag eslea f · seqDt IO ⇒

BF ROcost =BF h · i d xIO +mP ·d at aIO + 8 ·av g car d · ln2(2) · f pp · seqDt IO

tuplesi ze · ln( f pp)
(5.14)
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Figure 5.5: Analytical comparison of BF-Tree vs. B+-Tree.

Figure 5.5 presents key
comparisons between a
B+-Tree and the BF-Trees
of a given attribute as an
example. In fact, we as-
sume 4KB pages of 256
bytes long tuples with the
indexed attribute of size 32
bytes and pointers of size
8 bytes. The relation in
this case has size 1GB and
the index is stored on SSD
and the main data on HDD.
The I/O cost is depicted
by using the appropriate
values of i d xIO, d at aIO,
and seqDt IO. In partic-
ular we use i d xIO = 1,
d at aIO = 5, and seqDt IO = 2, modelling an SSD which has random accesses five times
faster than random accesses on HDD and two times faster than sequential accesses on HDD. On
the x axes of Figures 5.5(a), (b), (c) we vary the desired false positive probability. Figure 5.5(a)
shows the read-optimized BF-Tree response time normalized with the B+-Tree response time.
We see that BF-Tree can offer better search time for f pp ≤ 0.01. Figure 5.5(b) shows the read-
optimized BF-Tree response time normalized with the simple BF-Tree response time, which
shows that in order to have competitive performance we have to use the read-optimized BF-Tree.
Hence in Section 5.6 we implement and experiment with the read-optimized BF-Tree. Finally,
Figure 5.5(c) shows the capacity gain between the BF-Tree (both variations use the same space)
and the B+-Tree, which is corroborated by our experimentation.

5.5.2 Discussion on BF-Tree size and compression

The analysis presented in the previous section regarding the size of the BF-trees and the B+-
Trees assumes that the B+-Trees have packed nodes, hence, the comparison takes into account
the minimal size of uncompressed dense trees. In this setup, BF-Trees can be up to 10x to
130x smaller than B+-Trees for f pp between 0.0001% and 30%. These numbers are largely
corroborated by the experimental results presented in Section 5.6, which shows that approximate
indexing offers competitive performance or performance benefits still having significant capacity
gains in terms of the index size. In this study we do not consider, however, compression, which is
an orthogonal technique to decrease the index size. Compression can decrease the size of both a
BF-Tree and a B+-Tree, although, it is more likely to have better results in the B+-Tree since the
BFs themselves have relatively small compression ratio.
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Several compression techniques have been proposed for B+-Trees: prefix-key compression, delta
encoding of keys and/or pointers, and LZ77 compression are typical examples. Aggressively
compressing with LZ77 can lead to up to 50% compression rate, however, BF-Trees can achieve
one to two order of magnitudes smaller index sizes compared with uncompressed B+-Trees
because they use workload knowledge to build the index. Hence, using BF-Tree to minimize
index size can outperform the capacity gains of standard index compression techniques.

5.6 Experimental evaluation

We implement a prototype BF-Tree and we compare against a traditional B+-Tree and an in-
memory hash index. The BF-Trees are parametrized according to the false positive probability
for each BF, which affects the number of leaf nodes needed for indexing an entire relation and,
consequently, the height of the tree. The BF-Tree can be built and maintained entirely in main
memory or on secondary storage. The size of a BF-Tree is typically one or more orders of
magnitude smaller than the size of a B+-Tree, so we examine cases where the BF-Tree is entirely
in main memory and cases where the tree is read from secondary storage. We use stand-alone
prototype implementations for both B+-Trees and hash indexes. The code-base of the B+-Tree
with minor modifications serves as the part of the BF-Tree above the leaves. BF-Trees can
be implemented in every DBMS with minimal overhead since they require to add support for
BF-leaves, and build their methods as extensions of the typical B+-Tree methods.

5.6.1 Experimental Methodology

In our experiments we use a server running Red-Hat Linux with 2.6.32 64-bit kernel. The
server is equipped with 2 6-Core 2.67GHz Intel Xeon CPU X5650 and 48GB of main memory.
Secondary storage for the data and indexes is either a Seagate 10KRPM HDD - offering 106MB/s
maximum sequential throughput for 4KB pages - or a OCZ Deneva 2C Series SATA 3.0 SSD -
with advertised performance 550MB/s (offering as much as 80kIO/s of random reads). Data on
secondary storage (either HDD or SSD) are accessed with the flags O_DIRECT and O_SYNC
enabled, hence without using the file system cache.

We experiment with a synthetic workload comprised of a single relation R and with TPCH data.
For the synthetic workload, the size of each tuple is 256 bytes, the primary (PK) key is 8 bytes
and the second attribute we index (ATT1) has size 8 bytes as well, having, however, each value
repeated 11 times on average. Both attributes are ordered because they are correlated with the
creation time. For the TPCH data, we use the three date columns of the lineitem table with scale
factor 1. The tuple size is 200 bytes and the indexed attribute is shipdate on which the tuples are
ordered. Each date of the shipdate is repeated 2400 times on average. Every experiment is the
average of a thousand index searches with a random key. The same set of search keys is used
in each different configuration. In the experiment we vary the (i) the false positive probability
( f pp) to understand how the BF-Tree is affected by different values and (ii) the indexed attribute
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in order to show how BF-Tree indexing behaves for a PK and for a sorted attribute. The BFs
are created using 3 hash functions, typically enough to have hashing close to ideal. Throughout
the experiments the page size is fixed to 4KB. Hence, in order to vary the f pp, the maximum
number of keys per BF-leaf is limited accordingly using Equation 5.1.

When the B+-Tree or the hash index is used during an index probe, the corresponding page is
read and, consequently, the tuple in question is retrieved using the tuple id. For the BF-Tree
probes, the system reads the BF-leaf which corresponds to the search key and then probes all BFs
(one for each data page). The pages for which the answer is positive (potentially, false positive)
are sequentially retrieved from the disk and searched for the search key. If it is a primary key
search, as soon as the tuple is found the search ends and the tuple is output to the user. If the
indexed attribute is not unique then each page is read entirely and if the last tuple has the same
search key as the query then the next page is checked as well.

5.6.2 BF-Tree for primary key

We first experiment with indexing the primary key (PK) of R having size 1GB. Each index key
exists only once and the data pages are ordered based on it. All index probes in the experiment
match a tuple, hence every probe retrieves data from the main file.

(a) BF-Tree performance varying fpp (b) B+-Tree/Hash Index performance

Figure 5.6: BF-Tree and B+-Tree performance for the PK index for five storage configurations
for storing the index and the main data.

Build Time and size. The build time of the BF-Tree is one order of magnitude smaller than the
build time of the corresponding B+-Tree following roughly the difference in size between the
two trees shown in Table 5.2. The bulk creation of the BF-Tree first creates the leaves of the
tree in an efficient sequential manner and then builds on top the remainder of the tree (which is
2-3 orders of magnitude smaller) to navigate towards the desired leaf. The principal goal of the
BF-Tree, however, is to minimize the required space. Varying the f pp from 0.2 to 10−15 the size
of a BF-Tree is 48x to 2.25x time smaller than the corresponding B+-Tree. Both grow linearly
with the number of data pages indexed in terms of the total number of nodes. The capacity gain
as a percentage of the size of the corresponding B+-Tree remains the same for any file size.
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Table 5.2: B+-Tree & BF-Tree size (pages) for 1GB relation

Variation f pp Size for PK Size for ATT1
B+-Tree 19296 1748
BF-Tree 0.2 406 38
BF-Tree 0.1 578 54
BF-Tree 1.5 ·10−7 3928 358
BF-Tree 10−15 8565 786

Table 5.3: False reads/search for the experiments with 1GB data

f pp False reads for PK False reads for ATT1
0.2 13.58 701.15
0.1 1.23 80.93

1.9∗10−2 0.11 4.75
1.8∗10−3 0 0.36

1.72∗10−4 0.01 0.04

Response time. Figure 5.6(a) shows on the y-axis the average response time for probing the
BF-Tree index of a 1GB relation using the PK index. Every probe reads a page from the main file
and returns the corresponding tuple. On the x-axis we vary the f pp from 0.2 to 10−15. As the
f pp decreases (from the left-to-right on the graph) the BF-Tree is getting larger but it offers more
accurate indexing. The five lines correspond to different storage configurations. The lines with
the solid color represent experiments where data are stored on the HDD and the index either in
memory (black), on the SSD (red) or on the HDD (blue). The dotted lines show the experiments
where data are stored on SSD and the index either in memory (black) or on SSD (red). In order to
compare the performance of BF-Tree with that of a B+-Tree and a hash index we show in Figure
5.6(b) the response time of a B+-Tree using the same storage configurations and the hash index
when index resides in memory. Note that in this experiment the B+-Tree and every BF-Tree has
height equal to 3.

Data on SSD. When the index resides in memory and data reside on SSD BF-Tree manages
to match the B+-Tree performance for f pp ≤ 1.8 ·10−3, leading to capacity gain 12x. This is
connected with the number of falsely read pages per search (see Table 5.3), which are virtually
zero for f pp ≤ 1.8 ·10−3. We observe, as well, a very slow degradation of performance as f pp is
getting close to 10−15, which is attributed the larger index size (see Table 5.2); for every positive
search we have to read more leaves. We compare the in-memory search time with a hash index
which performs similarly to the memory-resident B+-Tree and hence the optimal BF-Tree. When
index is on SSD as well, increased f pp can be tolerated leading to capacity gain 33x with a
low performance gain (1.08x), while we can still observe significant capacity gain (12x) with
1.77x lower response time, for f pp = 0.002. In the latter case we observe that a higher number
of falsely read pages is tolerated because their I/O cost is faster amortized by of the I/O cost to
retrieve the index.
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Data on HDD. If the index is stored in memory and data on HDD, the PK BF-Tree can still
provide significant capacity gains. The BF-Tree matches the B+-Tree for f pp ≤ 1.56 · 10−6,
offering similar indexing performance while requiring 6x less space, but it is already competitive
for f pp = 0.02 providing capacity gain 19x. The in-memory hash index search shows similar
performance to the memory-resident B+-Tree and hence the optimal BF-Tree. If the index is
stored on SSD, the BF-Tree outperforms B+-Tree for f pp ≤ 10−3 offering 12x smaller index
size. Finally, if the index is stored on HDD as well then the height of trees dominate performance.
Having to read from disk the pages of the two trees (starting from the root) leads to a BF-Tree
which can outperform the corresponding B+-Tree even for f pp = 0.1 (leading to more than 33x
smaller indexing tree). This case however is not likely to be realistic because the nodes of the
higher levels of a B+-Tree reside always in memory.

Figure 5.7: The break-even points when indexing PK

Break-even points. A
common observation for
all storage configurations
is that there is a break-even
point in the size of a BF-
Tree for which it performs
as fast as a B+-Tree. Fig-
ure 5.7 shows on the y-
axis the normalized perfor-
mance of BF-Trees com-
pared with B+-Trees. The
x-axis shows the capacity
gain: the ratio between the
size of the B+-Tree and the
size of the BF-Tree for a
given f pp. For normalized performance higher than 1, the BF-Tree outperforms the B+-Tree (it
has lower response time), for lower than 1 the other way around, and for values equal to 1, the
BF-Tree has the same response time as the B+-Tree. The cross-sections between the line with
normalized performance equal to 1 and the five lines for the various storage configuration give
us the break-even points. As the I/O cost increases (going from memory to SSD or from SSD
to HDD) the break-even point shifts towards larger capacity gains, since less accuracy can be
tolerated as long as it requires more CPU time (for example probing more BFs, or scanning more
tuples in memory) instead of more random reads on the storage medium.

Warm caches. Figure 5.8(a) summarizes the data presented in Figures 5.6(a) and (b) by showing
the B+-Tree response time alongside with the fastest BF-Tree response time for an index probe
on the PK index. The five sets of bars correspond to the five storage configurations previously
described for experiments with cold caches (i.e., one I/O operation for every node that is accessed).
In order to see the efficacy of BF-Trees with warm caches, in Figure 5.8(b) we summarize in
a similar way the response time of B+-Trees and the best response time of the fastest BF-Tree.
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Figure 5.8(b) has only three sets of bars because, trivially, the first two sets of bars would be
exactly the same. In the experiments with warm caches, only accessing the leaf node would cause
an I/O operation, hence, the height of the tree is not a crucial factor for the response time any
more. Moreover, since, typically, the B+-Tree is higher, its performance improvement with warm
caches is higher compared to the BF-Tree performance improvement. Comparing the third set of
bars of Figure 5.8(a) with the first set of bars of Figure 5.8(b) – both corresponding to the storage
configuration when both index and data reside on SSD – we observe that having warm caches
results in 2x improvement for B+-Tree and only 25% improvement for BF-Tree, however, still
leading to a 10% faster BF-Tree. For the SSD/HDD configuration the improvement is small for
both indexes because the bottleneck is now the cost to retrieve the main data. Last but not least,
when both index and data reside on HDD, the cost of traversing the index is significantly reduced
by almost 2x for B+-Tree and about 33% for BF-Tree, resulting in a 17% faster BF-Tree.

(a) Cold caches (b) Warm caches

Figure 5.8: BF-Tree and B+-Tree performance for PK index: cold caches vs. warm caches.

By having warm caches, the fundamental difference is that the height of three plays a smaller
part in the response time. Nevertheless, the response time of BF-Tree is lower than the one of
B+-Tree in every storage configuration because of the lightweight indexing. The gain in response
time depends on the behavior of the storage for the index and for the data. When index and data
are stored on the same medium (i.e., both on SSD, or both on HDD) there is small room for
improvement, however, when data reside in a slower medium than index, having a lightweight
index makes a larger difference.

Partitions of not ordered data with ordered fences. We perform experiments using different
data organization. In particular, we shuffle the data respecting, however, the fence of the partition
(i.e., the minimum and the maximum value of every BF-leaf). For arbitrary permutations of the
keys the behavior of the BF-Tree on average is the same as for the ordered case. This can be
explained by the way BF-Tree works. Once we locate the appropriate leaf (i.e., partition), we
probe all PBFs to find the correct page. We only read the correct page (and some false positives
with the appropriate f pp probability), irrespectively of the order we probe the PBFs.
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5.6.3 BF-Tree for non-unique attributes

In the next experiment we index a different attribute which does not have unique values. In
particular, in the synthetic relation R the attribute ATT1 is a timestamp attribute. In this experiment
14% of the index probes, on average, have a match.

Build time and Size. The build time of a BF-Tree is one order of magnitude or more lower than
the one of a B+-Tree. This is attributed to the difference in size which for attribute ATT1 varies
between 46x and 2.22x, for f pp from 0.2 to 10−15, offering similar gains with the PK index.

(a) BF-Tree performance varying fpp (b) B+-Tree/Hash Index performance

Figure 5.9: BF-Tree and B+-Tree performance for ATT1 index for five storage configurations for
storing the index and the main data.

Response time. Figure 5.9(a) shows on the y-axis the average response time for probing the
BF-Tree using the index on ATT1, as a function of the f pp. For the B+-Tree every probe with
a positive match will read all the consecutive tuples that have the same value as the search key.
When the BF-Tree is used for the positive matches (regardless whether they are false positives or
actual positive matches) the corresponding page is fetched and every tuple of that page has to
be read and checked whether it matches the search key (as long as the key of the current tuple
is smaller than the search key). The f pp varies from 0.2 to 10−15. Similarly to the previous
experiment, the five lines correspond to different storage configurations. As in Section 5.6.2, the
lines with the solid color represent experiments where data are stored on the HDD and the index
either in memory (black), on the SSD (red) or on the HDD (blue). The dotted lines show the
experiments where data are stored on SSD and the index either in memory (black) or on SSD
(red). We compare the performance of BF-Tree with that of a B+-Tree and a hash index (Figure
5.9(b)) using the same storage configurations (the hash index always reside in memory). For
this experiment the B+-Tree has 3 levels while, the BF-Trees have 2 levels for f pp > 1.41 ·10−8

and 3 levels for f pp ≤ 1.41 ·10−8 Because of the difference in height amongst the BF-Trees
we observe a new trend. For all configurations that the index probe is a big part of the overall
response time (i.e., the SSD/SSD and the HDD/HDD) we observe a clear increase in response
time when the height of the tree is increased (Figure 5.9(a)). In other configurations this is not
the case because the index I/O cost is amortized by the data I/O cost. This behavior exemplifies
the trade-off between f pp and performance regarding the height of the tree and is later depicted
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in Figure 5.10 when the best case for BF-Tree gives 2.8x performance gain for HDD and 1.7x
performance gain for SSD while the capacity gain is 5x-7x.

Data on SSD. When the data reside on the SSD and the f pp is high (0.3 to 10−3) there is very
small difference between storing the index on SSD or in memory. The reason behind that is that
the overhead of reading and discarding false positively retrieved pages dominates the response
time. Thus, in order to match the response time of the B+-Tree when index is on SSD the f pp

has to be 2 ·10−3, giving capacity gain 12x, while the in memory BF-Tree never matches the
in-memory B+-Tree nor the hash index.

Data on HDD. The increased number of false positives per index probe (Table 5.3) has increased
impact when data are stored on HDD. Every false positively retrieved page incurs an additional
randomly located disk I/O. As a result, in order to see any performance benefits the false positively
read pages have to be minimal. When the index resides in memory, the BF-Tree outperforms the
B+-Tree and the hash index for f pp ≤ 2 ·10−6. The break-even point when the index resides on
the SSD is shifted for higher f pp (2 ·10−3) because a small number of unnecessary page reads
can be tolerated as they are being amortized by the cost of accessing the index pages on the SSD.
This phenomenon has bigger impact when the index is stored on the HDD. The break-even point
is now further shifted and for capacity gain 12x there is already a performance gain of 2x.

Figure 5.10: The break-even points when indexing ATT1

Break-even points. Sim-
ilarly to the PK index,
the ATT1 BF-Tree indexes
have break-even points,
shown in Figure 5.10.
Qualitatively, the behavior
of the BF-Tree for the five
different storage configu-
rations is similar but the
break-even points are now
shifted towards smaller ca-
pacity gains. The reason
being mainly the increased
number of false positively
read pages. In order for the
BF-Tree to be competitive it needs to minimize the false positives. On the other hand, the impact
of increasing the false positive (and thus, reducing the tree height) is shown by the sudden
increase in performance gain particularly for the HDD/HDD (blue line) and the SSD/SSD (dotted
red line).

Benefits for HDD. Our experimentation shows that using BF-Trees when data reside on HDD
can lead to higher capacity gains before performance starts decreasing. In fact this is not
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possible with the simple BF-Trees (Section 5.3) and it is made possible because we use the
read optimized BF-Trees (Section 5.4). The symmetric way to see this, is that with the same
capacity requirements using BF-Trees on top of HDD gives higher performance gains (in terms
of normalized performance). This is largely a result of the enhancement algorithm of BF-Trees
which minimizes the occurrence of random reads, the main weak point of HDD.

Warm caches. Similarly to the PK experiments, we repeat the ATT1 experiments and we present
the results with warm caches. Figure 5.11(a) summarizes the results of Figures 5.9(a) and
(b), while Figure 5.11(b) presents the results with warm caches. As in the PK index case, the
improvement for the B+-Tree is higher than the improvement for BF-Tree. In addition, for the
storage configuration that both index and data reside on SSD, B+-Tree is, in fact, faster than
BF-Tree by 30% because the overhead of the false positives overthrow the marginal benefits
of the lightweight indexing. For the other two configurations, however, BF-Tree is faster (2.5x
for SSD/HDD and 1.5x for HDD/HDD) because any additional work is hidden by the cost of
retrieving the main data which now reside on HDD.

(a) Cold caches (b) Warm caches

Figure 5.11: BF-Tree and B+-Tree performance for ATT1 index: cold caches vs. warm caches.

5.6.4 BF-Tree for TPCH

Figures 5.12(a) thought (e) show the response time of a hash index, a B+-Tree and the optimal
BF-Tree for the TPCH table lineitem for index probes on the shipdate attribute (on which it is
partitioned). Similarly to the five configurations previously described, Figures 5.12(b) though (e)
have five sets of columns, while Figure 5.12(a) has three because data are never read (hit rate is
0%) - and the impact of false positives is negligible. In these figure the y-axes show response time
in a logarithmic scale. BF-Tree performance for different f pp has very low variation, because
of the fact that the high cardinality of each date results in short trees. We observe, however,
large differences in the behavior of BF-Trees vs. the one of B+-Trees for different hit rates.
Figure 5.12(a) shows that when all index probes end up requesting data that do not exist, BF-Tree
is faster than both hash index and B+-Tree when the index is in memory. When the index is kept
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(a) TPCH 0% hits (b) TPCH 100% hits

(c) TPCH 5% hits (d) TPCH 10% hits

(e) TPCH 25% hits (f) Normalized response time

Figure 5.12: BF-Tree for point queries on TPCH dates varying hit rate.

in secondary storage a similar behavior is observed. This effect is pronounced for HDD where
each additional level of the tree is adding a high overhead. On the other hand in Figure 5.12(b)
we see that when the hit rate is 100% the BF-Tree cannot keep up with neither the hash index
for the in-memory setup nor the B+-Tree. When the index is on SSD, however, the performance
penalty is lower since the overhead of additional random reads on SSD is smaller than what it is
on HDD.

Figures 5.12(c), (d), and (e) depict the response times for other values of hit rate: 5%, 10% and
25% respectively. As the hit rate increases the response time of the BF-Tree increases and for
10% or more BF-Tree response time is higher than B+-Tree response time. Figure 5.12(f) shows
the same data from a different perspective, by plotting on the y-axis the normalized response time
(BF-Tree response time normalized to B+-Tree response time) for the five storage configurations,
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varying the hit rate from 0% to 25%. When the bars are lower than one BF-Tree is faster which
happens for every configuration for hit rate 0% or 5%. One additional observation is that if
both data and index are stored in the same medium (i.e., both on SSD or both on HDD) the
performance penalty is smaller. Hence, for hit rate 10%, using the configuration SSD/SSD the
best BF-Tree is 20% slower than the B+-Tree and using the configuration SSD/SSD the best
BF-Tree is 10% faster than the B+-Tree (instead of 1.6 to 3x slower which is the case for the other
three configurations). The explanation is that for these two configurations the cost of traversing
the B+-Tree dominates the overall response time and BF-Tree is competitive because of its shorter
height. In the above experiments the BF-Trees were 1.6x-4x smaller than the B+-Trees.

5.6.5 Summary

In this section we compare BF-Trees with B+-Trees and hash indexes in order to understand
whether BF-Trees can be both space and performance competitive. We show that depending on
the indexed data and the storage configuration there is a BF-Tree design that can be competitive
with B+-Trees both in terms of size and response time. Moreover, for the in-memory index
configurations, BF-Trees are competitive against hash indexes as well. The number of false
positively read pages has an impact in each and every one of the five storage configurations.
When data reside on SSD the number of falsely read pages affect the performance only when it
dominates the response time. Random reads do not hurt SSD performance, hence, the BF-Tree
performance drops gradually with the number of false positives. When data are stored on HDD
the performance gains are high for no false positives but drop drastically as soon as unnecessary
reads are introduced.

5.7 BF-Tree as a general index

5.7.1 BF-Tree vs. interpolation search

The datasets used to experimentally evaluate BF-Tree are either ordered or partitioned. For
the case that data are ordered a good alternative candidate would be to use binary search or
interpolation search (Perl et al., 1978). Interpolation search can be very effective for canonical
datasets achieving log (log (N )) search time, in the specific case that the values are sorted and
evenly distributed.4 B+-Trees performance serves as a more general upper bound since binary
search average response time is log2(N ) and B+-Trees average response time is l ogk (N ), where
N is the size of the dataset and the k is the number of <key, pointer> pairs a B+-Tree page can
hold. In addition, B+-Trees serve as a baseline for comparing the size of an index structure used
to enhance search performance.

BF-Trees can be used as a general index which is further discussed in this section. Data do not
need to be entirely ordered (being partitioned is enough), hence, BF-Tree is a more general access

4A more widely applicable version of interpolation search has also been discussed (Graefe, 2006a).
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method than interpolation search.

5.7.2 Range scans

In addition to the evaluation with point queries here we discuss how BF-Tree support range scans.
In fact, we show that BF-Trees or read-optimized BF-Trees have competitive performance for
range scans.

Figure 5.13: IOs for range scans using BF-Trees vs. B+-Trees.

The BF-leaf corresponds
to one partition of the main
data. When a range scan
spanning multiple BF-Tree
partitions is evaluated, the
partitions are either en-
tirely part of the range, be-
ing middle partitions, or
part of the boundaries of
the range, being boundary
partitions. The boundary
partitions, typically, are
not part of the range in
their entirety. In this case,
the range scan shows a read overhead. An optimization - only possible for the read-optimized
BF-Trees - is to enumerate the values corresponding to the boundary partitions and probe the
PBF in order to read only the useful pages. Note that within the partition the pages do not need to
be ordered on the key. Such an optimization, however, is not practical when the values have a
theoretically indefinite domain, or even a domain with very high cardinality. Figure 5.13 shows
the number of I/O operations on the main data when executing a range scan using a BF-Tree,
normalized with the number of I/O operations needed when a B+-Tree is used. In the x-axis the
f pp is varied from 0.3 to 10−12. The four lines correspond to different ranges, varying from
1% to 20%. We use the synthetic dataset described in Section 5.6, and the indexed attribute is
the primary key. A key observation is that as the f pp decreases the partitions hold less values,
hence, the overhead of reading the boundary partitions decreases. Hence, we observe that for
f pp ≤ 10−4 for ranges larger than 5% there is negligible overhead. In the case of 1% range scan
with f pp ≤ 10−6, the overhead is less than 20%, and for f pp ≤ 10−12 the overhead is negligible
for every size of the range scan.

5.7.3 Querying in the presence of inserts and deletes

Both inserts and deletes affect the f pp of a BF. In particular, if every BF is allowed to store
additional entries for the values falling into their range the f pp is going to gradually increase. If
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we assume M bits for the BF, and a given initial f pp, then using Equation 5.1, we calculate that
such a BF indexes up to N =−M · ln2(2)/ln( f pp) elements. If we allow to index more elements,
i.e., increase N , the effective f pp will in turn increase following a near linear trend for small
changes of N (note that the new_N is the number of indexed elements after a number of inserts,
hence new_N = N + i nser t s):

new_ f pp = e
−M ·l n2(2)

new_N , and because,

−M · l n2(2) = N · ln( f pp)

we have,

new_ f pp = e
N

new_N ln( f pp) = f pp
N

new_N = f pp
N

N+i nser t s = f pp
1

1+ i nser t s
N ⇒

new_ f pp = f pp
1

1+i nser t_r ati o (5.15)

The new_ f pp depends on the number of inserts. Equation 5.15 does not depend on the BF size,
nor on the number of elements. It depends on the initial f pp and on the relative increase of
indexed elements (i nser t_r ati o = i nser t s

N ).

The behavior of a BF in the presence of inserts is depicted in Figure 5.14. The x-axis is the insert
ratio, i.e., the number of inserts as a percentage of the initially indexed elements and the y-axis
is the resulting f pp. The are three lines corresponding to initial f pp equal to 0.01% (black
line), 0.1% (red dotted line), and 1% (blue dashed line) respectively. In the x-axis the insert ratio
varies between 0 and 60x, meaning that the inserted elements were 60 times more than the initial
elements. The new_ f pp for every initial f pp initially increases super-linearly and for insert
ratio more than 15x it continues to increase sub-linearly. The most interesting part of the graph,
however, is the initial part that the insert ratio is a small percentage of the initial elements of the
BF.
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Figure 5.14: False positive probability ( f pp) in the presence of inserts.

Figure 5.15: False positive probability ( f pp) in the presence of
inserts (zoomed in).

Hence, in Figure 5.15 we
zoom in the x-axis for in-
sert ratio 0 to 12%. We
observe that all three lines
have a liner trend, and
more importantly, the line
corresponding to 0.01%

has a small increase even
for 12% increase of the in-
dexed elements. For exam-
ple, starting from f pp =
0.01%, for 1% more el-
ements, new_ f pp ≈ 0.011%,
and for 10% more elements, new_ f pp ≈ 0.23%.

Similarly, for deletes the f pp increases because we artificially introduce more false positives.
In fact, the number of deletes affects directly the f pp. If we remove 10% of the entries,
new_ f pp = f pp +10%. The above analysis assumes no space overhead. On the other hand,
we can maintain the desired f pp by splitting the nodes when the maximum tolerable f pp is
reached. That way inserts will not affect querying accuracy (as described in Section 5.3). We can
maintain a list of deleted keys in order to avoid increasing the f pp, which are used to recalculate
the BF from the beginning when such a list has reached the maximum size. A different approach
is to exploit variations of BFs that support deletes (Bender et al., 2012; Rothenberg et al., 2010)
after considering their space and performance characteristics.
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5.8 Optimizations

Exploiting available parallelism. With the current approach the BFs of a leaf node are probed
sequentially. A BF-leaf may index several hundreds data pages leading to an equal number of
BFs to probe. These probes can be parallelized if there are enough CPU resources available.
In the conducted experiments we do not see a bottleneck in BF probing, however, for different
applications, BF-Trees may exhibit such a behavior.

Complex index operations with BF-Trees. In this chapter, we cover how the index building
and the index probing are performed and we briefly discuss how updates and deletes are handled.
Traditional indexes, however, offer additional functionality. BF-Trees support index scans
similarly to a range scan. Since data are partitioned, with one index probe we find the starting
point of the scan, and then a sequential scan is performed. Index intersections are also possible.
In fact, the false positive probability for any key after the intersection of two indexes will be the
product of the two probabilities (for each index), and hence, typically much smaller than any of
the two.

5.9 Conclusions

In this chapter, we make a case for approximate tree indexing as a viable competitor of traditional
tree indexing. We propose the Bloom filter tree (BF-Tree) which is a tree structure able to index
a relation with sorted or partitioned attributes. BF-Trees parametrize the accuracy of the indexing
as a function of the size of the tree. Thus, B+-Trees are the extreme where accuracy and size are
maximum. BF-Trees allow to decrease the accuracy and, hence, the size of the index structure
by introducing (i) a small number of unnecessary reads and (ii) extra work to locate the desired
tuple in a data page. We show, however, through both an analytical model and experimentation
with a prototype implementation, that the introduced overhead can be amortized, hidden, or even
superseded by reducing the I/O accesses when a desired tuple is retrieved. Secondary storage
is moving from HDD - with slow random accesses and cheap capacity - to the diametrically
opposite SSD. BF-Trees achieve competitive performance and minimize index size for SSD, and
even when data reside on HDD, BF-Trees index it efficiently as well.
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6 Graph Data Management using Solid-
State Storage1

6.1 Introduction

Solid State Storage (a.k.a. Storage Class Memory (Freitas, 2009)) is here to stay. Today, a well
known Solid State Storage technology is NAND flash. Another technology on the horizon is
Phase Change Memory (PCM). Both can be used in chip form, for example, as a small storage
element in a portable device. The read and write latencies of PCM cells are very low, already
in the same ballpark as DRAM (Chen et al., 2011; Doller, 2009). For large scale storage, many
chips can be packaged into a single device that provides the same functionality as disk drives,
supporting the same basic APIs. SSDs can provide much faster random I/O than magnetic disks
because there is no mechanical latency between requests. We focus here on database applications
that demand enterprise level storage in this form factor.

NAND flash technology is relatively mature and represents the state-of-the art in the marketplace.
Companies have been building storage devices out of flash chips for two decades, and one
can find a huge variety of flash-based devices from consumer to enterprise storage. PCM is a
relative newcomer, and until now there has been little opportunity to evaluate the performance
characteristics of large scale PCM devices. In this chapter we provide insights on where solid
state devices can offer a big advantage over traditional storage and highlight possible differences
between two representative technologies, flash and PCM.

As discussed earlier, flash devices have superior random read performance compared to magnetic
hard-drives but suffer from several limitations. First, there is a significant asymmetry in read and
write performance. Second, only a limited number of updates can be applied on a flash device
before it becomes unusable; this number is decreasing with newer generations of flash (Abraham,
2010). Third, writing on flash not only is much slower than reading and destructive of the device,
but it has proven to interfere with the redirection software layers, known as Flash Translation
Layers (FTL) (Bouganim et al., 2009).

1The material of this chapter has been the basis for the ADMS 2012 "Path Processing using Solid State Stor-
age" (Athanassoulis et al., 2012).
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PCM addresses some of these challenges. The endurance of PCM cells is significantly higher
than NAND flash (Ovonyx, 2007), although still not close to that of DRAM. Unlike NAND flash,
PCM does not require the bulk erasure of large memory units before it can be rewritten. Moreover,
while cost is still uncertain, for our purposes, we assume normal cell size competitiveness and
standard volume economics will apply to this technology as it ramps into high volume.

The most pronounced benefit of solid state storage over hard disks is the difference in response
time for random accesses. Hence, we identify dependent reads as an access pattern that has the
potential for significant performance gains. Latency-bound applications like path processing
(Gubichev and Neumann, 2011) in the context of graph processing, or RDF-data processing
are typical examples of applications with such access patterns. The Resource Description
Framework (RDF) (RDf, 2013) data model is widely adopted for several on-line, scientific or
knowledge-based datasets because of its simplicity in modelling and the variety of information it
can represent.

We find that PCM-based storage is an important step towards better latency guarantees with no
bandwidth penalties and we identify a trade-off between maximizing bandwidth and minimizing
latency. In order to measure the headroom of performance benefit (decrease of response time) in
long path queries we implement a simple benchmark and we compare the response times when
using flash and PCM. We observe that PCM can yield 1.5x to 2.5x smaller response times for
any bandwidth utilization without any graph-aware optimizations2 some of which we leave for
future work. We take this observation one step further and we design a new data layout suitable
for RDF data and optimized for a solid state storage layer. The proposed layout increases the
locality of related information and decreases the cost of graph traversals by storing more linkage
information (i.e., metadata about how to navigate faster when a graph is traversed).

6.1.1 Contributions

We have the following main contributions:

• We devise a custom benchmark to highlight the qualitative and quantitative differences
between two representative solid state devices (flash and PCM).

• We find that PCM can natively support higher workload parallelization with near-zero
latency penalty — an observation that can be used to shift the algorithm design.

• We find that applications with dependent reads are natural candidates for exploiting PCM-
based devices. Our graph-based benchmark allows us to measure the benefit that path
traversal queries can have from such devices.

2Such optimizations, in addition to the new data layout presented in this chapter, include complementary pages
comprised of auxiliary data structures such as: (i) cached attributes, (ii) aggregate links, (iii) node popularity, (iv) node
priority and (v) reverse links.
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• We develop RDF-tuple, a new data layout for RDF data which is compatible with traditional
DBMS.

• We use the RDF-tuple data layout and we develop a prototype RDF repository to illustrate
a specific application that can benefit from PCM storage. Our prototype corroborates the
opportunity analysis performed using the graph-based benchmark.

Our PCM device is a prototype, with a device driver having limited sophistication. It is possible
that the commercial version of this PCM device could perform better when brought to market.

6.1.2 Outline

The rest of the chapter is organized as follows. Section 6.2 presents the custom graph benchmark
and identifies potential performance improvements when using PCM in path processing. Section
6.3 presents the RDF repository and shows that it can achieve the anticipated improvements.
Section 6.4 discusses further opportunities and limitations that PCM presents. Section 6.5
includes the details of the queries used in our experiments, and we conclude in Section 6.6.

6.2 Path Processing

Current PCM prototypes behave as a “better” flash (Jung et al., 2011), in the sense that they have
faster and more stable reads. We argue that the best way to make the most of this behavior
is in the domain of applications with dependent reads. Hence, we create a simple benchmark
that performs path traversals over randomly created graphs to showcase the potential benefits of
using PCM as secondary storage for such applications. (More information about performance
characteristics of the devices we used can be found in Chapter 2, Section 2.1.5).

Table 6.1: Description of the benchmark

Dataset Randomly generated graph
Degree Randomly between 3 and 30
# nodes 1.3M (approximately)

Size on disk 5GB

Custom graph-based benchmark. We cre-
ate a benchmark that we call the Custom graph-
based benchmark. We model path traversal
queries by graph traversal over a custom built
graph. The graph (see description in Table
6.1) is stored in fixed-size pages (each page
has one node) and the total size of the graph is
5GB. Each node has an arbitrary number of edges (between 3 and 30). The path traversal queries
are implemented as link following traversals of a random edge in each step. Each query starts
from a randomly selected node of the graph and it follows at random one of the descendant nodes.
When multiple queries are executed concurrently, because of the absence of buffering, locality
will not yield any performance benefits. Each query keeps reading a descendant node as long as
the maximum length is not reached.
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Table 6.2: Hardware specification of the PCM device

Brand Micron
PCM type Single Level Cell (SLC)
Integration 90nm
Size 12GB
Interface PCI-Express 1.1x8
Read Bandwidth 800MB/s (random 4K)
Write Bandwidth 40MB/s (random 4K)
H/W Read Latency 20µs (4K)
H/W+S/W Read Latency 36µs (4K)
H/W Write Latency 250µs (4K)
H/W+S/W Write Latency 386µs (4K)
Endurance 106 write cycles per cell

Experimental setup. We use a
74GB FusionIO ioDrive (SLC) (Fu-
sionIO, 2010) and a 12GB Mi-
cron PCM prototype (SLC). The
PCM device offers 800MB/s max-
imum read bandwidth, 20µs hard-
ware read latency3 (for 4K reads)
and 250µs hardware write latency
(for 4K writes), while the endurance
is estimated to be 106 write cy-
cles. While PCM chips can be byte-
addressable the PCI-based PCM pro-
totype available to us uses 4KB
pages for reads and writes4.

Table 6.3: Hardware specification of the flash device

Brand FusionIO
NAND type Single Level Cell (SLC)
Integration 30-39nm
Size 74GB
Interface PCI-Express x4
Read Bandwidth 700MB/s (random 16K)
Write Bandwidth 550MB/s (random 16K)
Mixed Bandwidth 370MB/s (70R/30W random 4K mix)
IOPS 88,000 (70R/30W random 4K mix)
H/W Read Latency 50µs Read (512b)
H/W+S/W Read Latency 72µs (4K)
H/W+S/W Write Latency 241µs (4K)
Endurance 24yrs (@ 5TB write-erase/day)

The flash device offers
700MB/s read bandwidth
(for 16K accesses) and
hardware read latency as
low as 50µs in the best
case. The details about
the two devices can be
found in Tables 6.2 and
6.3. The system used
for the experiments was
a 24-core 2.67GHz Intel
Xeon X5650 server with
the 74GB ioDrive and the
12GB PCM device. The
operating system is Ubuntu Linux with the 2.6.32-28-generic x86_64 kernel and the total size of
available RAM is 32GB.

Table 6.4: Custom graph benchmark parameters.

Path length 2, 4, 10, 100 nodes per query
Concurrent threads 1, 2, 4, 8, 16, 32, 64, 96, 128, 192

Page Size 4K, 8K, 16K, 32K
Page processing time 0µs, 50µs, 100µs

Experimental evaluation. We
present a set of experiments based
on the custom graph benchmark. We
compare flash and PCM technology
as secondary storage for path queries.
We vary the page size (and conse-
quently node size), the length of the

3Software read latency is about 16–17µs, which is negligible compared to magnetic disk I/O latency, but is close
to 50% of the total latency for technologies like PCM.

4It is noteworthy that, unless the s/w stack is optimized, smaller page accesses will make the impact of s/w latency
a bigger issue as the percentage of s/w latency over the total page read latency will increase (Akel et al., 2011).
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Figure 6.1: Latency for 4K, 8K, 16K, 32K page size when varying concurrent queries. Note the
logarithmic scale on both axes.

path, the number of concurrent requests and the page processing time, all of them summarized in
Table 6.4. The variation of the values for each parameter plays a different role: different path
lengths help us reveal if there is a cumulative effect when a query over a longer path is evaluated;
different numbers of concurrent threads show the impact of multiple I/O requests on flash and
PCM; different page sizes (a.k.a. access granularity) signify which is the best mode of operation
for each device; and varying page processing time helps us understand what is the benefit when
the workload is “less” I/O-bound. We observe that varying the path length leads to the same
speedup because the reduced latency remains the same throughout the execution of the query
regardless of the length of the query. Moreover, higher page processing time reduces gradually
the benefit of PCM, which is expected since the longer IO time for the flash device is amortized
over the page processing time. In particular, when page processing is increased from 0µs to
100µs the maximum speedup that PCM offers is reduced by 20%.

Figure 6.1 presents the average latency and Figure 6.2 the average bandwidth during the execution
of the custom graph benchmark, when we vary the page size and the number of concurrent threads.
The page processing time for the presented experiments is set to 0µs and the path length to 100
nodes.

Figure 6.1 shows the average read latency per I/O request (y-axis) as a function of the number of
concurrent threads issuing queries (x-axis) for different page sizes (different graphs). The red
lines correspond to PCM and the blue lines to flash. In all four cases (page size equal to 4K,
8K, 16K, 32K) PCM shows lower I/O latency but the best case is when the page size is smallest,
i.e., 4K. Extrapolating this pattern we anticipate that when PCM devices have smaller access
granularity (512-byte pages are part of the roadmap) the benefit will become even larger.

In Figure 6.2 we see the bandwidth achieved when running the custom graph benchmark. Simi-
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Figure 6.2: Bandwidth for 4K, 8K, 16K, 32K page size when varying concurrent queries

larly to the previous graphs, the x-axis of the different graphs represents the number of threads
issuing concurrent requests, the y-axis is bandwidth and different graphs correspond to different
page sizes. The capacity for both devices is roughly 800 MB/s. The PCM device reaches very
close to the maximum sustained throughput (close to 800MB/s) with 4K pages when 16 queries
are issued concurrently. When the page size is increased the maximum can be achieved when 4-8
queries are issued concurrently. When increasing the page size and the number of concurrent
queries any additional (small) benefit has a high cost in increased latency. On the other hand,
flash has qualitatively different behavior. For each page size the maximal bandwidth is achieved
with 32 concurrent queries and a bigger page size is needed for a better result. Using the iostat
and sar Linux tools we were able to verify that when 32 queries are issued concurrently, the full
potential of the flash device can be achieved by increasing the I/O queue size to 64 (which is the
maximum possible) without having delays due to queuing. Thus, having 32 concurrent queries is
considered to be the sweet spot where flash has the optimal bandwidth utilization. Going back
to the latency figures we can now explain the small bump for 16 threads. In fact, the observed
behavior is not a bump at 16 threads but an optimal behavior at 32 threads. This phenomenon is
highlighted in Figure 6.3.

In Figure 6.3 we present the speedup of the query response time for different values of path
length and number of concurrently issued queries. The speedup varies between 1.5x and 2.5x
having the maximum number of 16 threads. We observe as well that the length of the query
does not play any important role. The sudden drop in speedup for 32 threads is attributed to
the previously described sweet spot for flash for this number of concurrent queries. When we
increased page processing time from 0µs to 100µs the maximum speedup was reduced from 2.5x
to 2.0x. Figure 6.4 shows a different way to read the data from Figure 6.1. On the x-axis we vary
the page size (4K, 8K, 16K, 32K) and on the y-axis we present the latency per I/O when we run
the custom graph benchmark. The solid bars correspond to experiments using 4 threads and the
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Figure 6.3: Custom path processing benchmark: Speedup of PCM over flash

checkered bars to experiments using 16 threads, the red color represents PCM and the blue color
flash. There are several messages to be taken from this graph. First, when page size is equal to
4K (the best setting for both devices) using PCM leads to the highest benefit in latency (more
than 2x speedup). Secondly, we observe that the average latency per I/O when using PCM with
16 threads is almost the same (7% higher) compared to average latency per I/O when using flash
with 4 threads. In other words we can have 4 times more queries accessing 4 times more data
with the similar latency per group of I/O (which corresponds to 4 reads for flash and 16 reads
for PCM). This observation can be used to create search algorithms for PCM which can take
advantage of near-zero penalty concurrent reads, which we outline in Section 6.4. Similarly,
for 8 concurrent threads reading 4K pages from PCM the latency is 57µs and for 2 concurrent
threads reading 4K pages from flash the latency is 65µs allowing PCM to fetch 4 times more data
in less time. Finally, we see that the benefits from PCM decrease as we increase page size, which
help us make the case that we should expect even higher benefits when PCM devices offer finer
access granularity.

Figure 6.5 presents the bandwidth as a function of page size. Even for 4K page size, PCM
can achieve 22% higher bandwidth with 4 threads than the flash device with 16 threads. If we
compare the 16-thread cases, we can almost saturate PCM with 4K page size. On the other
hand, we are unable to saturate the flash device even with 32K page size. The last two figures
demonstrate that a PCM device can show important latency and bandwidth benefits, relative to
flash, for workloads with dependent reads.

6.3 RDF processing on PCM

In this section we describe our prototype RDF repository, called Pythia. We identify the need to
design an RDF-processing system which takes into account the graph-structure of the data and
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Figure 6.4: Latency per page request size for PCM and flash, varying page size and number of
concurrent threads issuing requests.

Figure 6.5: Bandwidth for PCM and flash, varying page size and number of concurrent threads
issuing requests.
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has the infrastructure needed to support any query over RDF data. Pythia is based on the notion
of an RDF-tuple.

6.3.1 The RDF-tuple

An RDF-tuple is a hierarchical tree-like representation of a set of triples given an ordering of
subject, predicate, and object. In Pythia, we will store RDF-tuples for two complementary
hierarchies: the subject/predicate/object (SPO) hierarchy and the object/predicate/subject (OPS)
hierarchy. Each triple will thus be represented in two places, the SPO-store and the OPS-store.

In the SPO store, the root of the tree contains the information of the common subject of all
triples. The children of the subject-node are the property-nodes, one for each property that is
connected with the given subject. For each property-node, its children are in turn the identifiers
of object-nodes that are connected with the subject of the root node through the property of its
parent property-node. The RDF-tuple design allows us to locate within a single page5 the most
significant information for any given subject. Furthermore, it reduces redundancy by omitting
repeated instances of the subject and predicate resources. Conceptually, the transformation
of RDF triples to an RDF-tuple in the SPO-store is depicted in Figure 6.6. The OPS-store is
analogous.

Figure 6.6: RDF-tuple in the SPO-store

We chose to materialize the SPO and OPS hierarchy orders in Pythia, but not other orders such
as PSO. This choice is motivated by our observation that the large majority of use cases in the
benchmarks of Section 2.6.1 need subject-to-object or object-to-subject traversal. Usually the
query had a subject (or object) in hand and needed to find connections of given types to other
objects (subjects). Rarely did the query specify a predicate and ask for all object/subject pairs.
We thus avoid the extra storage requirements of representing additional versions of the data, at
the cost of occasionally needing a more expensive plan for a predicate-oriented query.

We envision RDF-tuples to be stored as a tuple with variable length in a database page containing

5See Section 6.3.2 for a discussion of tuples that don’t fit in a page.
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many such tuples. Figure 6.7 shows how an RDF-tuple is laid out within a page.

Figure 6.7: RDF-tuple layout

We employ a standard slotted page scheme with variable size tuples, but the internal tuple
organization is different from prior work. An RDF-tuple is organized in two parts: the metadata
part (first three lines of Figure 6.7) and the resource part (the remaining lines). In the metadata
part the above tree structure is stored with internal tuple pointers (offset) to the representation of
the nodes and the resources. The offsets to the resources point to the appropriate locations in the
resource part of the tuple. In more detail, the metadata part consists of the following variables:

• the length of the tuple,

• the offset of the subject’s resource,

• the number of predicates,

• for each predicate the offset of the predicates resource and an offset to the objects (for the
combination of subject and predicate),

• for each predicate’s objects: the number of objects, the object’s resource offset, a flag
saying whether the resource is stored locally and the page id and tuple id for every object
as a subject.

In this representation there are several possible optimizations. For example, the resource of the
predicate can typically be stored in a dictionary because in every dataset we analyzed the number
of different predicates is very small (in the order of hundreds). Moreover, in the case that the
object is a literal value (e.g., a string constant) the value can be stored in a separate table with a
unique identifier.

6.3.2 The Internals of Pythia

The SPO-store and the OPS-store are each enhanced by a hash index; on the Subject for the SPO
store and on the Object for the OPS store. There is a separate repository for “very large objects”
(VLOBs), i.e., RDF-tuples which require more storage than what is available in a single page.
VLOBs are important when the dataset includes objects that are connected with many subjects
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Figure 6.8: Pythia Architecture

and create a huge RDF-tuple for the OPS store. (Imagine the object “human”; a variety of other
subjects will be linked with this using the predicate “is-subclass-of”, leading to a huge OPS
RDF-tuple.) Additionally, we employ two dictionaries mainly for compression of the RDF-tuples:
the Literals dictionary and the Predicate dictionary. The former is used when a triple consists of
a literal value as an object and the latter is used to avoid storing the resource of the predicates
multiple times in the two stores. In the majority of RDF datasets the variability of predicates is
relatively low leading to a small Predicate dictionary, always small enough to fit in memory. On
the other hand, different datasets may lead to a huge Literal dictionary and may need a more
complex solution.

Figure 6.8 presents the architecture of the prototype RDF repository Pythia we designed and
experimented with. The grayed parts (SPO-store, OPS-store and VLOB-store) reside in secondary
storage. The remaining parts are stored in persistent secondary storage, but are maintained in
RAM during the time the system is running.

6.3.3 Experimental Workload

We use the popular dataset Yago2 (Hoffart et al., 2011) to investigate the benefits of the proposed
approach in an environment with dependent reads. Yago2 is a semantic knowledge base derived
mainly from Wikipedia, WordNet and GeoNames. Using the RDF-tuple design for the SPO- and
OPS-stores, we store the initial 2.3GB of raw data (corresponding to 10M entries and 460M
facts) into a 1.5GB uncompressed database (the SPO-store and OPS-store together account for
1.3GB, and VLOBs account for 192MB). The large objects can be aggressively shrunk down
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by employing page-level compression, an optimization which we leave for future work. When
the system operates the in-memory structures require 121MB of RAM for the hash indexes and
569MB of RAM for the dictionaries, almost all of it for the Literals dictionary. Another future
optimization for the literals is to take into account the type and store them in a type-friendly
compressible way. In the SPO store more than 99% of the RDF-tuples fit within a 4K page.

We hard-code and experiment with six queries over the Yago2 dataset:

1. Find all citizens of a country that have a specific gender.

2. Find all events of a specific type that a given country participated in.

3. Find all movies of a specific type that a given actor participated in.

4. Find all places of a specific type that are located in a given country (or in a place ultimately
located in this country).

5. Find all ancestors of a given person.

6. Find all ancestors with a specific gender of a given person.

The equivalent SPARQL code for these queries can be found in Section 6.5.

The first three queries search for information of the given subject or object; in other words they
are searching for local knowledge. The last three queries require a traversal the graph in an
iterative mode to compute the correct answer. The last three queries typically require dependent
reads.

6.3.4 Experimental Evaluation

We used the same 24-core Intel Xeon X5650 described previously. Similarly to the previous
experiments, we experimented using as back-end storage a state-of-the-art 80GB FusionIO
flash device (SLC) and a 12GB Micron PCM device prototype. The workload for the first two
experiments was a mix of the six aforementioned queries with randomized parameters. We
executed the workload using either flash or PCM as main storage in anticipation of a benefit
similar to what our custom graph benchmark showed in Section 4.

Figure 6.9 shows the throughput achieved by Pythia when Flash (red bars) or PCM (blue bars) is
used for secondary storage for a varying number of threads submitting queries concurrently. The
black line shows the relative speedup when PCM is employed.
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Figure 6.9: Bandwidth for Pythia for 1, 2, 4, 8, 16, 32 concurrent clients
submitting queries

In this experiment
we corroborate the
performance benefit
achieved in the sim-
ple benchmark with
a more realistic sys-
tem and dataset. Both
devices scale close
to linearly until 4
threads (7KQ/s for
PCM and 4.5KQ/s
for flash leading to
1.56x speedup), while
for higher number the
PCM device is more
stable showing speedup from 1.8x to 2.6x.

Figure 6.10: Latency for Pythia for 1, 2, 4, 8, 16, 32 concurrent clients submitting queries

Figure 6.10 shows the response time achieved by Pythia when Flash (red bars) or PCM (blue bars)
is used for secondary storage for a varying number of threads submitting queries concurrently.
The black line shows the relative speedup when PCM is employed. In terms of response time
PCM is uniformly faster than flash from 1.5x to 2.0x.

6.3.5 Comparison with RDF-3X

In this section we compare Pythia with RDF-3X (Neumann and Weikum, 2008) showing that our
approach is competitive against the research prototype considered to be the current state-of-the-
art. We instrument the source code of RDF-3X with time measurement code and we time the
pure execution time of the query engine of RDF-3X without taking into account the parsing or
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Figure 6.11: Query latency using Pythia for Q1, Q2 and Q3

optimization phases. We compare the response time of three queries when we execute them using
Pythia and RDF-3X. We store the Yago2 data on PCM and we use the following three queries to
understand whether Pythia is competitive with an established RDF repository.

Q1. Find all male citizens of Greece.

Q2. Find all OECD member economies that Switzerland deals with.

Q3. Find all mafia films that Al Pacino acted in.

Figure 6.11 shows that Pythia (blue bars) performs equally well or faster than RDF-3X (red
bars) for all three queries. For Q1 Pythia is 4.45x faster, which can be attributed to the fact that
the gender information for every person is stored in the same page as the rest of the person’s
information, thus incurring no further IOs to read it. In Q2 the benefit of Pythia is about 4.69x for
the same reason: the information about whether a country is an OECD member is stored in the
same page with the country. The third query incurs a higher number of IOs in both cases because
we have to touch both the SPO- and OPS-stores, hence Pythia and RDF-3X perform almost the
same (RDF-3X is 3% faster).

6.4 PCM Opportunities

Any device that can handle concurrent requests in parallel can be kept busy if there are enough
independent I/O streams. Under such conditions, the device will saturate its bandwidth capabil-
ities. When there are too few independent I/O streams to saturate the device with a single I/O
request per stream, one might allow each I/O stream to submit multiple concurrent requests.

When the access pattern requires dependent reads, identifying concurrent I/O units for a single
stream can be challenging. Roh et al. (Roh et al., 2011) consider a B+-tree search when multiple
individual keys are being searched at the same time. If multiple child nodes of a single internal
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node need to be searched, I/Os for the child nodes can be submitted concurrently. This is a
dependent-read pattern in which multiple subsequent reads may be dependent on a single initial
read. Roh et al. demonstrate performance improvements for this workload on several flash
devices. They implemented an I/O interface that allows the submission of several I/O requests
with a single system call, to reduce software and hardware overheads.

Both PCM devices and flash devices can handle a limited number of concurrent requests with a
minor latency penalty. For our PCM device running with 8 concurrent threads, we can achieve
roughly double the bandwidth and half the latency of the flash device, without significantly
increasing the latency beyond what is observed for single-threaded access. Thus our PCM device
has the potential to outperform flash when I/O streams can submit concurrent I/O requests.

6.4.1 Algorithm redesign

A graph-processing example of such a workload is best-first search (BestFS). In best-first search,
the priority of nodes for subsequent exploration is determined by an application-dependent
heuristic, and nodes at the current exploration fringe are visited in priority order. Breadth-first
search (BFS) and depth-first search (DFS) are special cases in which the priority function is
suitably chosen. On a device that efficiently supports n concurrent I/O requests, we can submit
the top n items from the priority queue as an I/O batch, effectively parallelizing the search. The
children of the newly fetched nodes are inserted into the priority queue for the next round of the
search algorithm.

In particular, BestFS, implements a hardware optimized BFS with DFS performance guarantees.
The main concepts of a BestFS are (i) the I/O parallelism of the device and (ii) the heuristic to
be used. The execution of BestFS proceeds as follows. The search begins from a given node
of the graph, and all the neighboring nodes are imported in the ToExamine queue, where they
are ordered based on the heuristic used. Then, n nodes are serviced in parallel. The number n

is dictated by the I/O parallelism of the device. When, n nodes are services in parallel they are
fetched by storage in the same time as a single node, and then the addresses of their descendants
are imported in the ToExamine queue, when all the nodes are re-ordered based on the heuristic
used. This process continues iteratively, until we find the node we are looking for. It is worth
mentioning that, a BestFS execution can reach the furthest descendant in the same time as DFS if
the execution is I/O bound because every batch of reads happens in the same time as a single
read. In this time, however, the BestFS is capable of testing more than the nodes consisting of the
path to the furthest descendant having performed, in fact, a partial BFS.

6.5 SPARQL code for test queries

In this section we present the equivalent SPARQL version of the queries implemented during
the evaluation of Pythia in Section 6.3. These queries are used to compare against the research
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prototype RDF-3X (Neumann and Weikum, 2008) using the pathfilter operator introduced in the
literature (Gubichev and Neumann, 2011).

1. Find all citizens of a country that have a specific gender.
SPARQL: select ?s where { ?s <isCitizeonOf> country. ?s <hasGender> gender }

2. Find all type events that a country participated in.
SPARQL: select ?s where { country <participatedIn> ?s. ?s <type> eventType }

3. Find all type movies that an actor participated in.
SPARQL: select ?s where { ?s <type> movieType. actor <actedIn> ?s }

4. Find all places of a specific type that are located in a country (or in a place ultimately
located in this country).
SPARQL: select ?s where { ?s <type> placeType. ?s ?path country. pathfilter(containsOnly(??path,
<isLocatedIn>)) }

5. Find all ancestors of a person.
SPARQL: select ?s where { ?s ??path person.
pathfilter(containsOnly(??path, <hasChild>)) }

6. Find all ancestors having gender gender of a person.
SPARQL: select ?s where { ?s ??path person. ?s <hasGender> gender. pathfilter(containsOnly(??path,
<hasChild>)) }

Q1. Find all male citizens of Greece.
select ?s where { ?s <hasGender> <male>. ?s <isCitizenOf> <Greece> }

Q2. Find all OECD member economies that Switzerland deals with.
SPARQL: select ?s where
{ ?s <type> wikicategory_OECD_member_economies.
<Switzerland> <dealsWith> ?s }

Q3. Find all mafia films that Al Pacino acted in.
SPARQL: select ?s where { ?s <type> wikicategory_Mafia_films. <Al_Pacino> <actedIn>
?s }

6.6 Conclusions

In this chapter we present a new physical data layout for RDF data motivated by the rapid evolution
of the available storage technologies. We use as our secondary storage two representative solid-
state storage devices: a state-of-the-art flash device (fusionIO) and a real-life PCM-based (Micron)
prototype. The proposed data layout called RDF-tuple is suitable for general RDF queries and
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is implemented and tested in a prototype storage engine called Pythia, showing competitive
performance when compared with the research state-of-the-art system RDF-3X. RDF-tuple can
natively store RDF information in a DBMS friendly way and exploit both existing DB algorithms
and custom graph-based algorithms.

Our experiments with solid-state storage show that graph processing can take advantage of it
naturally because they employ dependent reads. Commercial scale PCM technology is relatively
new, but we see that it is already competitive against mature flash devices. A key observation is
that a PCM device with a very basic device driver can outperform a mature flash rival in terms of
the read latency and read bandwidth of a single device. Our experimentation with a custom graph
benchmark shows that using an early prototype PCM device can yield significant performance
benefits over flash when running path traversal queries (1.5x-2.5x).
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7 The Big Picture

In this thesis we set the stage for efficient scaleup data analytics by building hardware-aware
and workload-aware system design. We integrate non-volatile solid-state storage in the data
management system hierarchy and we build algorithms that use workload characteristics to offer
better performance and increased functionality. We study different datasets and workloads taken
from, or similar, to typical data analytics applications.

The reason to choose this research direction stems from the increasing importance of data analytics
in modern applications, including business, research, governmental and scientific applications.
The means of collecting and storing information evolves, creating new challenges in supporting
modern analytics applications. Hence, the question of how to store and how to analyze data
is of paramount importance. At the same time, the underlying hardware is evolving and new
storage and processing technologies become available allowing for radical system and algorithm
redesign.

In this chapter we summarize the contributions of this thesis and we discuss a number of
interesting research topics related with the current hardware trends and data analytics.

7.1 What we did

In this thesis we build algorithms and tools and we design systems that use solid-state storage in
order to address the requirements of modern data analytics: fast query response times ensuring
data freshness, support for increasing concurrency, efficient storage, indexing and accessing
of both archival and knowledge-based datasets. We demonstrate the importance of exploiting
new storage technologies in concert with algorithms tailored for data analytics applications. By
exploiting analytical query patterns and solid-state storage we offer efficient online updates with
near-zero overhead in query response times. For workloads with increased concurrency, we show
that work sharing allows us to use less resources offering better throughput and very small latency
penalty. Moreover, we demonstrate that using the data organization we can offer space efficient
and competitive indexing. Finally, we show that in order to integrate knowledge-based data, a
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new data-layout offering both locality for the properties of each subject, and fast linkage retrieval,
provides faster response times than the state-of-the-art.

This thesis is a crucial step towards modern data analytics, studying the impact of both hardware-
aware optimizations and workload-aware design. In this thesis we discuss the importance of the
storage trends on the way we store, query and analyze data, while at the same time we show
the performance and functionality benefits when pre-existing workload knowledge is taken into
account for the system design. In the center of the proposed work is the understanding that the
constant evolution of storage creates the need to study and reconsider database system design
since the characteristics of secondary storage are weaved with the traditional DBMS design. To
that extent, we discuss in this chapter new research directions that lie ahead stemming from the
changes in storage technologies yet to come. In addition, we discuss one fundamental trend in
data analytics which will drive the design of future engine: concurrency in workloads.

7.2 Storage is constantly evolving: Opportunities and challenges

The past decade we have witnessed a tremendous shift in the database systems design fueled by
the emergence of multicore architectures and deeper memory hierarchies as a direct consequence
of the increasing gap between processor and memory speeds. Today we observe an equally
important technological shift in the storage layer, which motivated part of the work presented
in this thesis. Flash devices are already used in enterprise deployments but the optimal way
to exploit such devices depends on the application. In fact, flash and other solid-state devices
are used in a wide range of ways, varying from an intermediate caching layer (following the
trend of deeper storage hierarchies) to stand-alone storage. Additionally, new technologies - with
Phase Change Memory and Memristor on the edge of being commercially available - create new
opportunities and new challenges for research on database system design.

In fact solid-state devices based on flash technology are bound to face two challenges: the
capacity and endurance walls. As the integration granularity of CMOS chips has become finer
it is increasingly difficult to pack more flash capacity (i.e., floating gates) in the same surface.
Companies building storage devices project that there are a few more generations of increasing
the storage density for flash. In order to delay the capacity wall, flash device vendors shifted
from single-level cell (SLC) devices to multi-level cell (MLC) devices which store more than one
bit per storage cell. This strategy is causing the endurance wall because erase blocks of MLC
devices can sustain 2-3 orders of magnitude less erasures than the ones of SLC devices before
they become unreadable. Designing systems that use flash devices for persistent storage in the
presence of this constantly shifting tradeoff between endurance and capacity is an open research
topic.
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7.2.1 Persistent main memory: Database Management Systems vs. Operating
Systems

Storage technologies that are still under research and development - like Phase Change Memory -
are expected to offer fine-grained addressability and non-volatility. In order to design a system
with persistent main memory, however, these two properties are not enough. Similarly to the
consistency and durability properties of database transactions, programs that operate on top of
persistent main memory need to have data structures that can ensure consistency of the persistent
data. In some cases durability may not be necessary, but when durability is pursued there is need
for a mechanism for consistency. First, in the micro-architectural level current systems do not
guarantee the order that writes in memory are performed nor whether a write that returned to the
calling function is completed. Second, unless the response time of accessing a chip of a future
persistent main memory is in the same order as today’s main memory it will be impossible to
exploit the fine-grained addressability because the cost of accessing the persistent memory has to
be amortized. Addressing the research problems of persistent main memories require research on
the micro-architectural level and on the application level in tandem.

7.2.2 Software stack is too slow

The recent advancements in storage technologies have revealed a very important characteristic of
the software stack sitting on top of the storage devices. The software layers of operating system
and file system have been designed having in mind response times in the order of milliseconds
(or more) from the main storage devices (Akel et al., 2011; Caulfield et al., 2012). Today,
however, solid-state storage devices have one or more orders of magnitude faster response times.
Production flash devices have response times in the order of 50µs and Phase Change Memory
prototypes in the order to 20µs (Athanassoulis et al., 2012), making the latency from the software
layers (the software latency) comparable with the access latency for reading from or writing to the
device (the hardware latency). Trimming down the software layer can be achieved, for example,
by exposing directly the device to the application, or by building new lightweight file systems.

7.3 Ever increasing concurrency in analytics

The nature of analytical queries is expanding from offline analysis to ubiquitous queries. For
example, asking from our smartphone the current consumption of minutes and data of our monthly
plan initiates a personalized analytical query. Moreover, in recent research it is documented that
customers of data analytics products indicate that they will have to routinely execute several
hundreds of concurrent queries in the near future (Candea et al., 2011). A report in trends in
data warehousing published in 2012 (Russom, 2012) anticipates at least one order of magnitude
increase in concurrent users submitting queries in data analytics systems over the next few
years. Hence, rethinking the query-centric approach and building query engines tailored for high
concurrency is key to deliver the data analytics engines of the future.
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7.3.1 Extending support of work sharing

A first step towards data analytics engines supporting high concurrency is the recent introduction
of work sharing approaches. A detailed comparison of two such approaches is presented in this
thesis. This analysis paves the way for more query engines to integrate work sharing techniques
in order to exploit both planned and ad hoc sharing. Work sharing in production systems needs a
more sophisticated multi-query optimization method and meticulous optimization depending on
the hardware and software platform.

7.3.2 Column-stores and high concurrency

Column-store systems have been designed in order to support analytical workloads, however,
ever increasing concurrency is creating new challenges. A study of the behavior of three popular
column-store systems when running analytical queries with increasing concurrency (Alagiannis
et al., 2013) shows that the tested systems cannot sustain stable performance, after they become
saturated, which is attributed to the lack of aggressive dynamic resource reallocation. For
increasing concurrency the throughput is decreased drastically but the available processors are
not always fully utilized. Inefficiencies of the query engines and the lack of aggressive dynamic
resource reallocation or of CPU-aware admission control leads to queries underutilizing available
resources. This behavior leaves room for further research aiming at efficiently supporting high
concurrency in column-stores. Work sharing is no stranger to column-stores, however, we argue
that query operators in column-stores can be redesigned in order to facilitate ad-hoc and planned
sharing as a means to achieve better scalability.
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