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Optimal Bloom Filters and Adaptive Merging for LSM-Trees

NIV DAYAN, MANOS ATHANASSOULIS, and STRATOS IDREOS, Harvard University, USA

In this article, we show that key-value stores backed by a log-structured merge-tree (LSM-tree) exhibit an

intrinsic tradeoff between lookup cost, update cost, and main memory footprint, yet all existing designs

expose a suboptimal and difficult to tune tradeoff among these metrics. We pinpoint the problem to the fact

that modern key-value stores suboptimally co-tune the merge policy, the buffer size, and the Bloom filters’

false-positive rates across the LSM-tree’s different levels.

We present Monkey, an LSM-tree based key-value store that strikes the optimal balance between the costs

of updates and lookups with any given main memory budget. The core insight is that worst-case lookup cost

is proportional to the sum of the false-positive rates of the Bloom filters across all levels of the LSM-tree. Con-

trary to state-of-the-art key-value stores that assign a fixed number of bits-per-element to all Bloom filters,

Monkey allocates memory to filters across different levels so as to minimize the sum of their false-positive

rates. We show analytically that Monkey reduces the asymptotic complexity of the worst-case lookup I/O

cost, and we verify empirically using an implementation on top of RocksDB that Monkey reduces lookup

latency by an increasing margin as the data volume grows (50–80% for the data sizes we experimented with).

Furthermore, we map the design space onto a closed-form model that enables adapting the merging fre-

quency and memory allocation to strike the best tradeoff among lookup cost, update cost and main memory,

depending on the workload (proportion of lookups and updates), the dataset (number and size of entries), and

the underlying hardware (main memory available, disk vs. flash). We show how to use this model to answer

what-if design questions about how changes in environmental parameters impact performance and how to

adapt the design of the key-value store for optimal performance.
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1 INTRODUCTION

LSM-Tree Based Key-Value Stores. Modern key-value stores that maintain application data
persistently typically use a Log-Structured-Merge-tree (LSM-tree) [57] as their storage layer. In
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Fig. 1. Monkey is designed along a better performance tradeoff curve than the state of the art. It navigates

this curve to find the design that maximizes throughput for a given application workload and hardware.

contrast to traditional storage paradigms that involve in-place updates to persistent storage, LSM-
trees perform out-of-place updates thereby enabling (1) high throughput for updates [63] and (2)
good space-efficiency as data is stored compactly [38] (as they do not need to keep free space at ev-
ery node to allow in-place updates). They do so by buffering all updates in main memory, flushing
the buffer to secondary storage as a sorted run whenever it fills up, and organizing storage-resident
runs into a number of levels of increasing sizes. To bound the number of runs that a lookup probes
to find a target key, runs of similar sizes (i.e., at the same level) are sort-merged and pushed to
the next level when the current one becomes full. To speed up point lookups, which are common
in practice [10], every run has an associated Bloom filter in main memory that probabilistically
allows to skip a run if it does not contain the target key. In addition, every run has a set of fence
pointers in main memory that map values to disk pages of the run (effectively maintaining min-
max information for each page) and thereby allow searching a run for a target key in a single I/O.
This design is adopted in a wide number of modern key-value stores including LevelDB [44] and
BigTable [27] at Google, RocksDB [39, 40] at Facebook, Cassandra [51], HBase [8], AsterixDB [2]
and Accumulo [6] at Apache, Voldemort [55] at LinkedIn, Dynamo [36] at Amazon, WiredTiger
[70] at MongoDB, and bLSM [63] and cLSM [43] at Yahoo. Relational databases today such as
MySQL (using MyRocks [39]) and SQLite4 support this design as a storage engine by mapping
primary keys to rows as values.

The Problem: Suboptimal Design. In this article, we closely investigate the design space of
LSM-trees and show that LSM-tree based key-value stores exhibit an intrinsic tradeoff among
lookup cost, update cost, and main memory footprint (as discussed for various data structures in
[13, 14, 45]). Existing systems strike a suboptimal tradeoff among these metrics. Figure 1 shows this
graphically using cost models (described later) and the default configuration settings for several
state-of-the-art systems as found in their latest source code and documentation. Existing systems
do not strike optimal performance tradeoffs, i.e., beyond which it is impossible to improve lookup
cost without harming update cost and vice versa. As a result, they cannot maximize throughput
for a given main memory budget and application workload.

We pinpoint the problem to the fact that all LSM-tree based key-value stores suboptimally co-tune

the core design choices in LSM-trees: the merge policy, the size ratio between levels, the buffer size,

and, most crucially, the Bloom filters’ false-positive rates.

The first problem is that existing designs assign the same false-positive rate (i.e., number of
bits per element) to every Bloom filter regardless of the size of the run that it corresponds to. Our
insight is that the worst-case point lookup cost over the whole LSM-tree is proportional to the sum
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of the false-positive rates of all filters. Assigning equal false-positive rates to all filters, however,
does not minimize this sum. The reason is that maintaining the same false-positive rate across
all runs means that larger runs have proportionally larger Bloom filters, whereas the I/O cost of
probing any run is the same regardless of its size (due to each run having fence pointers in main
memory that allow direct access to the relevant secondary storage page). As a result, the Bloom
filters at the largest level take up the majority of the overall memory budget without yielding a
significant reduction in lookup cost.

The second problem is that the relationship between the different design knobs and perfor-
mance is non-linear, and so it is difficult to co-tune the various design options in the LSM-tree
design space to optimize performance. For example, the available main memory budget cannot
only be used to increase Bloom filter accuracy but it can also be used to increase the size of the
LSM-tree buffer. Since the levels’ capacities are multiples of the buffer size, this reduces the num-
ber of levels thereby improving lookup and update performance as there are fewer levels to probe
and to merge entries through. However, it is unclear how to allocate a fixed main memory bud-
get among these structures to strike the best balance. In addition, it is possible to trade between
lookup cost and update cost by varying the size ratio between the capacities of levels as well as
by switching the merge policy between leveling and tiering, which support one run per level vs.
multiple runs per level, respectively. Here again, it is difficult to predict how a given change would
impact performance given the complexity of the design space.

The Solution: Monkey. We introduce Monkey: Optimal Navigable Key-Value Store. Monkey
achieves a better performance tradeoff curve than state-of-the-art designs by using a novel ana-
lytical solution that minimizes lookup cost by allocating main memory among the Bloom filters
so as to minimize the sum of their false-positive rates. The core idea is setting the false-positive
rate of each Bloom filter to be proportional to the number of entries in the run that it corresponds
to (meaning that the false-positive rates for smaller levels are exponentially decreasing). The in-
tuition is that any given amount of main memory allocated to Bloom filters of larger runs brings
only a relatively minor benefit in terms of how much it can decrease their false-positive rates (to
save I/Os). On the contrary, the same amount of memory can have a higher impact in reducing
the false-positive rate for smaller runs. We show analytically that this method shaves a factor of
O (L) from the worst-case lookup cost, where L is the number of LSM-tree levels. The intuition is
that the false-positive rates across the levels form a geometric series, and its sum converges to a
constant that is independent of L. Since the number of levels L can be expressed in more detail as
O (log((N · E)/Mbuf )), where N is the number of entries, E is the size of entries, and Mbuf is the
size of the buffer, shaving this term out of point lookup cost has important benefits: (1) lookup cost
scales better with the number and size of entries and (2) lookup cost becomes independent of the
buffer size thereby removing the contention in how to allocate main memory between the filters
and the buffer. Therefore, Monkey scales better and is easier to tune.

Moreover, while existing designs are either rigid or difficult to tune points in the design space,
Monkey autonomously navigates its tradeoff curve to find the optimal balance between lookup cost
and update cost under a given main memory budget, application workload (lookup over update
ratio), and storage device. To do so, we map the design space and environmental parameters that
affect this balance, and we capture the worst-case cost of lookups and updates in a concise closed-
form model. We then adapt (1) the memory allocation between the Bloom filters and buffer and
(2) the merging frequency within and across levels by controlling the size ratio and the merge
policy within levels, respectively. These runtime adaptations allow us to find the best balance
between the costs of lookups and updates that maximizes throughput. While main-stream key-
value stores expose various tuning knobs, Monkey is novel in that it allows precise navigation
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of the design space with predictable results, making it easy to select the optimal key-value store
design for a particular workload and hardware.

Contributions. In summary, our contributions are as follows.

• In Section 3, we show that key-value stores backed by an LSM-tree exhibit a navigable
tradeoff among lookup cost, update cost, and main memory footprint; yet state-of-the-art
key-value stores are not tuned along the optimal tradeoff curve, because they do not allocate
main memory optimally among the Bloom filters and the LSM-tree’s buffer.

• In Section 4, we introduce Monkey, an LSM-tree based key-value store that optimizes lookup
cost by allocating main memory among the Bloom filters so as to minimize the sum of their
false-positive rates. We show analytically that this (1) improves the asymptotic complexity
of lookup cost thereby scaling better for large datasets and (2) removes the dependence of
lookup cost on the LSM-tree’s buffer size thereby simplifying system design.

• We show how to allocate main memory among the Bloom filters to optimize for any balance
between zero and non-zero-result point lookups in the workload.

• We identify the critical design knobs of the LSM-tree based key-value store design space
as well as the environmental parameters that determine worst-case performance. We then
use them to model the worst-case lookup and update costs as closed-form expressions. We
show how to use these models to adapt the merging frequency and memory allocation to
maximize the worst-case throughput.

• We also show how to use the model to answer what-if design and environmental questions.
For instance, if we change (i) the main memory budget, (ii) the proportion of reads and
writes in the workload, (iii) the number and/or size of data entries, or (iv) the underlying
storage medium (e.g., flash vs. disk), how should we adapt the LSM-tree design, and what
is the impact on performance?

• In Section 5, we evaluate Monkey using an implementation on top of RocksDB by applying
a wide range of application lookup patterns (i.e., targeting existing vs non-existing keys
and varying temporal localities). Monkey improves lookup latency by 50 − 80% in these
experiments.

Interactive Design. To provide further understanding of the impact of Monkey we provide an
interactive LSM-tree based key-value store design tool at http://daslab.seas.harvard.edu/monkey/.

2 BACKGROUND

This section provides the necessary background on LSM-trees. An LSM-tree stores key-value pairs.
A key identifies an object of the application and allows retrieving its value. For ease of presentation,
all figures in this article show only keys but can be thought of as key-value pairs.

Buffering Updates. Figure 2 illustrates an LSM-tree and a list of terms used throughout the article.
An LSM-tree consists conceptually of L levels. Level 0 refers to an in-memory buffer, and the rest
of the levels refer to data in secondary storage. An LSM-tree optimizes for inserts, updates, and
deletes (henceforth just referred to as updates) by immediately storing them in the buffer at Level
0 without having to access secondary storage (there is a flag attached to each entry to indicate if
it is a delete). If an update refers to a key that already exists in the buffer, then the original entry
is replaced in-place and only the latest one survives.

When the buffer’s capacity is reached, its entries are sorted by key into an array and flushed
to Level 1 in secondary storage. We refer to these sorted arrays in storage as runs. We denote the
number of bits of main memory allocated to the buffer asMbuf , and we define it asMbuf = P · B · E,
where B is the number of entries that fit into a disk page, P is the amount of main memory in

ACM Transactions on Database Systems, Vol. 43, No. 4, Article 16. Publication date: December 2018.

http://daslab.seas.harvard.edu/monkey/


Optimal Bloom Filters and Adaptive Merging for LSM-Trees 16:5

Fig. 2. Overview of an LSM-tree and list of terms used throughout the article.

terms of disk pages allocated to the buffer, and E is the average size of data entries. For example,
in LevelDB the default buffer size is 2MB.

The runs at Level 1 and beyond are immutable. Each Level i has a capacity threshold of B · P ·T i

entries, where T is a design parameter denoting the size ratio between the capacities of adjacent
levels. Thus, levels have exponentially increasing capacities by a factor of T . The total number of
levels L is given by Equation (1), where N is the total number of physical entries across all levels
including updates and deletions,

L =

⌈
logT

(
N · E
Mbuf

· T − 1

T

)⌉
. (1)

The size ratioT has a limiting value ofTl im , whereTl im =
N ·E

Mbuf
. The value ofT can be set anywhere

between 2 and Tl im . As T approaches Tl im , the number of levels L approaches 1.

Merge Operations. To bound the number of runs that a lookup has to probe, an LSM-tree orga-
nizes runs among the different levels based on their sizes, and it merges runs of similar sizes (i.e., at
the same level). There are two possible merge policies: leveling [57] and tiering [7, 47]. The former
optimizes more for lookups and the latter more for updates [50]. With leveling, there is at most one
run per Level i , and any run that is moved from Level i − 1 to Level i is immediately sort-merged
with the run at Level i , if one exists. With tiering, up toT runs can accumulate at Level i , at which
point these runs are sort-merged. The essential difference is that a leveled LSM-tree merges runs
more greedily and therefore gives a tighter bound on the overall number of runs that a lookup has
to probe, but this comes at the expense of a higher amortized update cost. Figure 3 compares the
behavior of merge operations for tiering and leveling when the size ratio T is set to 3.

If multiple runs that are being sort-merged contain entries with the same key, then only the
entry from the most recently-created (youngest) run is kept, because it is the most up-to-date.
Thus, the resulting run may be smaller than the cumulative sizes of the original runs. When a
merge operation is finished, the resulting run moves to Level i + 1 if Level i is at capacity.

Lookups. A point lookup starts from the buffer and traverses the levels from smallest to largest
(and the runs within those levels from youngest to oldest in the case of tiering). When it finds
the first matching entry it terminates. There is no need to look further, because entries with the
same key at older runs are superseded. A zero-result lookup (i.e., where the target key does not
exist) incurs a potentially high I/O cost, because it probes all runs within all levels. In contrast, a
range lookup requires sort-merging all runs with an overlapping key range to identify and ignore
superseded entries.

Probing a Run. In the original LSM-tree design from 1996 [57], each run is structured as a compact
B-tree. Over the past two decades, however, main memory has become cheaper, so modern designs
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Fig. 3. Before and after a recursive merge with tiered and leveled LSM-trees where the size ratio T is set to

3, and B · P , the number of entries that fit into the buffer, is set to 2.

store fence pointers in main memory with min/max information for every disk page of every run1

[40, 44]. In Appendix I, we show that the size of the fence pointers is modest: typically 3 or more
orders of magnitude smaller than the raw data size. The fence pointers enable a lookup to find
the relevant key range in a run with just 1 I/O. Given that the LSM-tree is on disk while the fence
pointers are in main memory, the overhead of searching fence pointers is not on the critical path
of performance (I/O is). Thus, a lookup initially searches the fence pointers before accessing a run
in storage. If it is a point lookup, it then reads the appropriate disk block with one I/O, or if it is a
range lookup it begins a scan from this block.

Bloom Filters. To speed up point queries, every run has a corresponding Bloom filter [19] in
main memory. A point lookup probes a run’s filter before accessing the run in secondary storage.
If the filter returns negative, then the target key does not exist in the run, and so the lookup skips
accessing the run and saves one I/O. If a filter returns positive, then the target key may exist
in the run, so the lookup probes the run at a cost of one I/O. If the run actually contains the key,
then the lookup terminates. Otherwise, we have a “false positive,” and the lookup continues to
probe the next run. False positives increase the I/O cost of lookups. The false-positive rate (FPR)
depends on (1) the number of entries in a run and (2) the number of bits in main memory allocated
to the run’s filter. This relationship is captured by the following equation [66]2:

FPR = e−
bits

entries ·ln(2)2

. (2)

To the best of our knowledge, all LSM-tree based key-value stores use the same number of bits-per-
entry across all Bloom filters. This means that a lookup probes on averageO (e−Mfilt/N ) of the runs,
where Mf il t is the overall amount of main memory allocated to the filters. As Mf il t approaches

0 or infinity, the term O (e−Mf il t /N ) approaches 1 or 0, respectively. All implementations that we
know of use 10 bits per entry for their Bloom filters by default3 [6–8, 40, 44, 63]. The corresponding
false-positive rate is ≈1%. With this tuning, an average entry size of 128 bytes (typical in practice
[5]) entails the Bloom filters being ≈2 orders of magnitude smaller than the raw data size.

1The fence pointers may be implemented as a sorted array or as a tree.
2Equation (2) assumes a Bloom filter that uses the optimal number of hash functions ( bits

entries ln(2)) that minimizes the

false-positive rate for a given number of bits and entries.
3The false-positive rate for a Bloom filter drops at an exponential rate with respect to the number of bits allocated to it.

With 10, 20, 30 and 40 bits per entry, the FPR for a Bloom filter in the order of 10−2, 10−4, 10−7, and 10−9, respectively.

Therefore, we incur diminishing returns as we allocate more space to the filters: each additional bit wins less performance

as the false-positive rate becomes increasingly small.
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Cost Analysis. We now analyze the worst-case I/O cost complexities for updates and lookups
with tiered and a leveled LSM-trees. Our focus on worse-case analysis is motivated by the fact
that many applications today, especially in cloud settings, require stable performance [37]. For
updates, we measure the amortized worst-case I/O cost, which accounts for the merge operations
that an entry participates in after it is updated. For lookups, measure the zero-result average worst-

case I/O cost, which is the expected number of I/Os performed by a lookup to a key that does not
exist in the LSM-tree. We focus on zero-result lookups, because (1) they are common in practice
[22, 63] (e.g., insert-if-not-exist queries [63]), (2) they incur the maximum pure I/O overhead (i.e.,
read I/Os that do not find relevant entries to a lookup), and (3) their analysis is easy to extend to
non-zero-result point lookups, as we do later in the article. For the rest of the article, our use of
the terms update cost and lookup cost follow these definitions unless otherwise mentioned. We
later also model the cost of range lookups for completeness.

For a tiered LSM-tree, the worst-case lookup cost is given by O (L ·T · e−Mfilt/N ) I/Os, because
there are O (L) levels, O (T ) runs per level, the cost of probing each run is one I/O due to the fence
pointers, and we probe on average only O (e−Mfilt/N ) of the runs. The worst-case update cost is
O (L/B) I/Os, because each entry participates in O (L) merge operations, i.e., one per level, and the
I/O cost of copying one entry during a merge operation isO (1/B), since each write I/O copiesO (B)
entries into the new run.

For a leveled LSM-tree, the worst-case lookup cost is given by O (L · e−Mf il t /N ) I/Os, because
there are O (L) levels, there is one run per level, the cost of probing a run is one I/O due to the
fence pointers, and we probe O (e−Mf il t /N ) of the runs on average. The worst-case update cost is
O (T · L/B), because each update is copied O (T ) times per level and through O (L) levels overall.

Cost Analysis Extensions. Throughout the article, our analysis assumes that a key is stored
adjacently to its value within a run [40, 44]. Our work also applies to applications where there
are no values (i.e., the LSM-tree is used to answer set-membership queries on keys), where the
values are pointers to data objects stored outside of LSM-tree [56], or where LSM-tree is used as
a building block for solving a more complex algorithmic problem (e.g., graph analytics [23], flash
translation layer design [32]). We restrict the scope of analysis to the basic operations on LSM-tree
so that it can easily be applied to each of these other cases.

Other Log-Structured Designs. Our analysis and optimizations apply out-of-the-box to any
LSM-tree based key-value store with (1) sorted runs in storage, (2) fence pointers and a Bloom
filter in main memory for each run, (3) a fixed size ratio between capacities at adjacent levels,
and (4) either tiering or leveling as a merge policy within levels. We survey other log-structured
designs in Section 6.2.

3 LSM-TREE DESIGN SPACE

In this section, we describe critical tradeoffs and design contentions in the LSM-tree design space.
Our contributions in this article are enabled by a detailed mapping of this space. We introduce
a visualization for the design space, and we use this visualization to identify contentions among
design knobs. In the next section, we resolve these contentions with the design of Monkey.

A summary of the design space of LSM-trees and the impact on lookup and update costs is given
in Table 1 and illustrated in Figure 4. These costs depend on multiple design parameters: (1) the
merge policy (tiering vs. leveling), (2) the size ratio T between levels, (3) the allocation of main
memory among the buffer Mbuf and the Bloom filters, and (4) the allocation of Mfilt among each of
the different Bloom filters. The main observation is that:

The design space of LSM trees spans everything between a write-optimized log to a read-optimized

sorted array.
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Table 1. Analysis of Existing LSM-tree Designs

Technique Point Lookup Cost Update Cost

(1) Log O
(

N ·E
Mbuf
· e−Mfilt/N

)
O

(
1
B

)

(2) Tiering O
(
T · logT

(
N ·E
Mbuf

)
· e−Mfilt/N

)
O

(
1
B
· logT

(
N ·E
Mbuf

))

(3) Leveling O
(
logT

(
N ·E
Mbuf

)
· e−Mfilt/N

)
O

(
T
B
· logT

(
N ·E
Mbuf

))

(4) Sorted Array O
(
e−Mfilt/N

)
O

(
1
B
· N ·E

Mbuf

)

Fig. 4. LSM-tree design space: from a log to a sorted array.

The question is how can we accurately navigate this design space and what is the exact impact of
each design decision? To approach an answer to these questions we move on to discuss Figure 4
and the contention among the various design decisions in more detail.

Merge Policy and Size Ratio. The first insight about the design space is that when the size ratioT
is set to 2, the complexities of lookup and update costs for tiering and leveling become identical. As
we increase T with tiering/leveling, respectively, update cost decreases/increases whereas lookup
cost increases/decreases. To generate Figure 4, we plugged all combinations of the merge policy
and the size ratio into the complexity equations in Rows 2 and 3 of the table, and we plotted point
lookup cost against update cost for corresponding values of the merge policy and size ratio. We
did not plot the curve to scale, and in reality the markers are much closer to the graph’s origin.
However, the shape of the curve and its limits are accurate. The dotted and solid lines correspond
to partitions of the design space that are accessible using tiering and leveling, respectively. These
lines meet when the size ratio T is set to 2, and they grow farther apart in opposing directions as
T increases. This shows that tiering and leveling are complementary methods for navigating the
same tradeoff continuum.

As the size ratioT approaches its limit valueTl im , the number of levels L approaches 1. When L
is 1, a tiered LSM-tree degenerates to log (Row 1 of Table 1) while a leveled LSM-tree degenerates
to sorted array (Row 4 of Table 1). We illustrate both of these points as the edges of the curve in
Figure 4. To derive the lookup and update costs for a log shown in the figure, we plugged in Tl im

forT in the cost equations in Table 1 for tiering, and to get the costs for a sorted array we plugged
Tl im for T in the corresponding cost equations in Table 1 for leveling. We give further intuition
for these costs in Appendix F. A log is an update-friendly data structure while a sorted array is a
read-friendly one. In this way, LSM-tree can be tuned anywhere between these two extremes in
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terms of their performance properties. This is a characteristic of the design space we bring forward
and heavily utilize in this article.

Main Memory Allocation. The limits of the curve in Figure 4 are determined by the allocation
of main memory among the filters Mfilt and the buffer Mbuf. Getting the memory allocation right
is of critical importance. Main memory today is composed of DRAM chips, which cost ≈2 orders
of magnitude more than disk in terms of price per bit, and this ratio is increasing as an industry
trend [54]. Moreover, DRAM consumes≈4 times more power per bit than disk during runtime [68].
As a result, the main memory occupied by the Bloom filters and buffer accounts for a significant
portion of a system’s (infrastructure and running) cost and should be carefully utilized.

Design Space Contentions. Overall, we identify three critical performance contentions in the
LSM-tree design space.

Contention 1 arises in how we allocate a given amount of main memoryMfilt among the different
Bloom filters. By reallocating main memory from one filter to another, we reduce and increase the
false-positive rates of the former and latter filters, respectively. How do we optimally allocate Mfilt

among the different Bloom filters to minimize lookup cost?
Contention 2 arises in how to allocate the available main memory between the buffer and the

filters. As indicated by the cost complexities in Table 1, allocating a more main memory to the
buffer on one hand decreases both lookup cost and update cost, but on the other hand it decreases
the Bloom filters’ accuracy thereby increasing lookup cost. How do we strike the best balance?

Contention 3 arises in how to tune the size ratio and merge policy. This is complicated, because
workloads consist of different proportions of (1) updates, (2) zero-result lookups, (3) non-zero-
result lookups, and (4) range lookups of different selectivities. Decreasing the size ratio under
tiering and increasing the size ratio under leveling improves lookup cost and degrades update
cost, but the impact and rate of change on the costs of different operation types is different. How
do we find the best size ratio and merge policy for a particular application workload?

The State of the Art. All LSM-tree based key-value stores that we know of apply static and
suboptimal decisions regarding the above contentions. The Bloom filters are all tuned the same,
the Buffer size relative to the Bloom filters size is static, and the size ratio and merge policy are
also static [6–8, 40, 44, 63]. We refer to these key-value stores collectively as the state of the art.
Although they differ from each other in various respects (e.g. centralized vs. decentralized archi-
tectures, different consistency guarantees, different data models, etc.), these design aspects are
orthogonal to this work. In the next section, we introduce Monkey, which improves upon the
state of the art by resolving these contentions and being able to quickly, accurately, and optimally
navigate the LSM-tree design space.

4 MONKEY

In this section, we present Monkey in detail. Monkey is an LSM-tree based key-value store that
achieves a better performance tradeoff curve than state-of-the-art design, and it navigates this
tradeoff curve to find the best possible balance between the costs of lookups and updates for any
given main memory budget, application workload, and storage medium. It maximizes throughput
for uniformly random workloads, and it maximizes the lower-bound on throughput for all other
workloads. Monkey achieves this by (1) resolving the contentions in the LSM-tree design space and
(2) using models to optimally trade among lookup cost, update cost, and main memory footprint.
Below we give a high level summary of the main design elements and performance impact of
Monkey before we move forward to describe each one of them in depth.
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Fig. 5. The design of Monkey impacts performance in three ways: (a), it achieves a better tradeoff curve than

the state of the art by optimally allocating the Bloom filters, (b) it predicts how changes in environmental

parameters and main memory utilization reposition its tradeoff curve, and (c) it finds the point on its tradeoff

curve that maximizes worst-case throughput for a given application.

Design Knobs. Monkey transforms the design elements that impact worst-case behavior into
design knobs, and it can alter its behavior by adjusting them. Those knobs comprise: (1) the size
ratio among levelsT , (2) the merge policy (leveling vs. tiering), (3) the false-positive rates p1 . . .pL

assigned to Bloom filters across different levels, and (4) the allocation of main memory M between
the buffer Mbuf and the filters Mfilt. Monkey can co-tune these knobs to optimize throughput, or to
favor one performance metric over another if needed by the application (e.g., a bound on average
lookup or update latency). Figure 5 shows the performance effects achieved by Monkey.

Minimizing Lookup Cost. The first core design element in Monkey is optimal allocation of main
memory across Bloom filters to minimize lookup cost. The key insight is that lookup cost is pro-
portional to the sum of the false-positive rates (FPR) of all the Bloom filters. In Section 4.1, we show
how to tune filters across levels differently to minimize the cost of zero-result point lookups, and
in Section 4.4 we generalize this result to optimize for any balance between zero and non-zero-
result point lookups in the workload. Figure 5(a) shows visually the impact this change brings. It
achieves faster reads than the state of the art for any main memory budget, and so it shifts the
entire tradeoff curve vertically down.

Performance Prediction. The second design element in Monkey is the ability to predict how
changing a design decision or an environmental parameter would impact worst-case performance.
We achieve this in Section 4.2 by deriving closed-form models for the worst-case I/O costs of
lookups and updates in terms of the LSM-tree design space knobs. For instance, the models pre-
dict how changing the overall amount of main memory or its allocation would reposition the
performance tradeoff curve, as shown in Figure 5(b). We derive an analogous model for the state
of the art as a baseline and show that Monkey dominates it.

Self-design. The third design element in Monkey is the ability to holistically self-design to maxi-
mize the worst-case throughput. We achieve this in two steps. First, in Section 4.3 we use asymp-
totic analysis to map the design space and thereby devise a rule for how to allocate main memory
between the buffer and the filters. Second, in Section 4.5 we model worst-case throughput with
respect to (1) our models for lookup cost and update cost, (2) the proportion of lookups and up-
dates in the workload, and (3) the costs of reads and writes to persistent storage. We introduce an
algorithm that quickly searches the performance tradeoff curve for the balance between lookup
and update cost that maximizes the worst-case throughput. This property is visually shown in
Figure 5(c).
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Fig. 6. Overview of how Monkey allocates false-positive rates p1,p2 . . .pL to Bloom filters in proportion to

the number of key-value pairs in a given level, and a further list of terms used to describe Monkey.

4.1 Minimizing Lookup Cost

We now continue to discuss how Monkey minimizes the worst-case lookup cost. We start by fo-
cusing on zero-result point lookups, and we extend the method and analysis to non-zero-result
point lookups in Section 4.4. Figure 6 gives a list of terms that we use to describe Monkey. We
denote R as the worst-case expected I/O cost of a zero-result point lookup. We first model R and
Mfilt in terms of the false-positive rates (FPRs) of the Bloom filters across all levels of LSM-tree.
We then show how to minimize R by adjusting the FPRs across different levels while keeping Mfilt

and everything else fixed.4

Modeling Average Worst-Case Lookup Cost. The average number (i.e., expected value) of runs
probed by a zero-result lookup is the sum of the FPRs of all Bloom filters. Equation (3) expresses
this sum in terms of the FPRs p1 . . .pL assigned to filters at different levels. With leveling every
level has at most one run and so R is simply equal to the sum of FPRs across all levels. With tiering
there are at most T − 1 runs at every level (when the T th run arrives from the previous level it
triggers a merge operation and a push to the next level). The FPR for all runs at the same level in
tiering is the same because they have the same size,

R =
⎧⎪⎨⎪⎩

∑L
i=1 pi , with leveling

(T − 1) ·∑L
i=1 pi , with tiering

where 0 < pi ≤ 1.

(3)

Modeling Main Memory Footprint. We now model the total main memory footprint for the
bloom filters in terms of the FPRs p1,p2 . . .pL of the different levels. To do so, we first rearrange

Equation (2) in terms of the number of bits in a filter: bits = −entries · ln(F PR )
ln(2)2 . This equation cap-

tures the cumulative size of any number of Bloom filters that have the same FPRs, and so we can
apply it out-of-the-box for both leveling (one Bloom filter per level) and for tiering (T − 1 Bloom
filters per level). We do so by identifying and plugging in the number of entries and the FPR for
each level. As shown in Figure 2, the last level of an LSM-tree has at most N · T−1

T
entries, and in

general Level i has at most N
T L−i · T−1

T
entries, because smaller levels have exponentially smaller

capacities by a factor of T . Thus, the amount of main memory occupied by filters at Level i is at

most − N
T L−i · T−1

T
· ln(pi )

ln(2)2 bits. The overall amount of main memory allocated cumulatively to all

4We assume a fixed entry size E throughout this section; in Appendix B we give a iterative optimization algorithm that

quickly finds the optimal FPR assignment even when the entry size is variable or changes over time.
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Bloom filters is the sum of this expression over all levels, as captured by Equation (4),

Mfilt = −
N

ln(2)2
· T − 1

T
·

L∑
i=1

ln(pi )

T L−i
. (4)

Minimizing Lookup Cost with Monkey. Using Equations (3) and (4), we can calculate the aver-
age worst-case lookup cost R and main memory footprint Mfilt for any assignment of FPRs across
the different levels. To minimize R with respect to Mfilt, we first tackle the converse yet equivalent
problem for ease of exposition: finding the optimal assignment of FPRs p1 . . .pL across the dif-
ferent levels that minimizes Mfilt for any user-specified value of R. This amounts to a multivariate
constrained optimization problem. In Appendix A, we solve it by applying the method of Lagrange
Multipliers on Equations (3) and (4). The result appears in Equations (5) and (6) for leveled and
tiered designs, respectively.5 The lookup cost R is a parameter to Equations (5) and (6). Any value
for R within the domain defined in the equations can be plugged in, and the equations return the
optimal false-positive rate for each of the levels of LSM-tree to achieve a lookup cost of R using
the least possible amount of main memory. Note that the equations are undefined for R being set
to 0, the reason being that it is impossible for a Bloom filter to have a false-positive rate of 0.

Leveling

pi =
⎧⎪⎨⎪⎩

1, if i > Lfiltered
(R−Lunfiltered ) ·(T−1)

T
Lfiltered+1−i , else

for 0 < R ≤ L (5)

and 1 ≤ i ≤ L

andLfiltered = L −max(0, �R − 1�),

Tiering

pi =
⎧⎪⎨⎪⎩

1, if i > Lfiltered
R−Lunfiltered ·(T−1)

T
Lfiltered+1−i , else

for 0 < R ≤ L · (T − 1)

and 1 ≤ i ≤ L

andLfiltered = L −max(0, � R−1
T−1 �).

(6)

Figure 6 illustrates how Monkey optimally assigns FPRs to Bloom filters across different levels
using Equations (5) and (6). In general, the optimal FPR at Level i isT times higher than the optimal
FPR at Level i − 1. In other words, the optimal FPR for level i is proportional to the number of
elements at level i . The intuition is that the I/O cost of probing any run is the same regardless of
its size (due to the fence pointers we only fetch the qualifying disk page), yet the amount of main
memory needed for achieving a low FPR at deeper levels is significantly higher, since they have
exponentially more entries. It is therefore better to set relatively more bits per entry (i.e., a lower
FPR) to the filters at smaller levels. In contrast, state-of-the-art LSM-tree based key-value stores
assign the same FPR to Bloom filters across all the different levels.

The higher we set the lookup cost R, the less main memory for the Bloom filters we need. As
shown in Figure 6, the mechanism through which this works in Monkey is that for higher values
of R more of the Bloom filters at the deepest levels cease to exist as their optimal FPRs converge
to 1. We denote the number of levels with and without filters as Lfiltered and Lunfiltered, respectively
(note that L = Lfiltered + Lunfiltered). Equations (5) and (6) are adapted to find the optimal division
between Lfiltered and Lunfiltered and to prescribe FPRs to the smaller Lfiltered levels based on a smaller
version of the problem with Lfiltered levels.

In summary, Monkey minimizes the main memory footprint for the Bloom filters for a given
lookup cost R by (1) finding the optimal number of levels Lfiltered to which Bloom filters should be
allocated and (2) setting the FPR for each of these levels to be proportional to its capacity. Through
these steps it achieves the performance effect shown in Figure 5(a).

5In the next subsection, we show how to express Equations (5) and (6) in terms of Mfilt rather than R .
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4.2 Predicting Lookup and Update Costs

We now move forward to map the design space of LSM-trees in a way that allows to accurately
predict the impact of the various design decisions. To do so, we model lookup and update cost in
closed-form expressions with respect to all the design knobs in the Monkey design space. We also
demonstrate analytically that Monkey dominates the state-of-the-art designs.

Modeling Zero-Result Lookup Cost (R). To derive a closed-form expression for the zero-result
lookup cost R in Monkey, we plug the optimal false-positive rates in Equations (5) and (6) into
Equation (4), simplify, and rearrange. The complete derivation is in Appendix A.1, and the result
is Equation (7). This equation assumes a fixed entry size (we lift this restriction in Appendix B).

To demystify Equation (7), note that the additive terms Rfiltered and Runfiltered correspond to the
average number of runs probed in the levels with and without filters, respectively. Also recall that
when the size ratioT is set to 2, tiering and leveling behave identically, and so the two versions of
the equation for tiering and leveling produce the same result. For most practical applications using
mainstream key-value stores from industry, Runfiltered is equal to 0 and so the equations simplify to
just the Rfiltered component, as we show in Section 4.3.

R = Rfiltered + Runfiltered

Rfiltered =

⎧⎪⎪⎨⎪⎪⎩
T

T
T−1

T−1 · e
−

Mfilt
N ·ln(2)2 ·T Lunfiltered

with leveling

T
T

T−1 · e−
Mfilt

N ·ln(2)2 ·T Lunfiltered
with tiering

Runfiltered =
⎧⎪⎨⎪⎩
Lunfiltered, with leveling

Lunfiltered · (T − 1), with tiering
.

(7)

Next, we derive Equation (8), which gives the number of deeper levels for which there are no
filters. To do so, we first derive the threshold value Mthr eshold of main memory at which the FPR
of filters at the last level (i.e., Level L) converge to 1 (see bottom of Equation (8)). The complete
derivation is in Appendix A.1. The optimal value of Lunfiltered given by Equation (8) can be plugged
into Equation (7) to compute R,

Lunfiltered =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, Mthr eshold ≤ Mfilt⌈
logT

(
Mthr eshold

Mfilt

)⌉
, Mthr eshold

T L ≤ Mfilt ≤ Mthr eshold

L, 0 ≤ Mfilt ≤ Mthr eshold

T L

Mthr eshold =
N

ln(2)2
· ln(T )

(T − 1)
.

(8)

Modeling Worst-Case Non-Zero-Result Lookup Cost (V). Using Equation (7) for the average
worst-case zero-result lookup cost R, we can now also model the average worst-case cost V of a
non-zero-result lookup, which finds the target key in the oldest run. To model this cost, we subtract
pL , the FPR of the oldest run’s filter, and instead add 1 to account for reading one page of this run.

V = R − pL + 1. (9)

Modeling Worst-Case Update Cost (W). To model the worst-case update cost, we assume a
worst-case update pattern where an entry is updated at most once within a period of N application
updates. We show that this is indeed the worst-case workload for updates in Appendix G as it
means that no entry gets eliminated before getting merged into the largest level and so all entries
participate in the highest possible number of merge operations. In Appendix H, we use arithmetic
series to model the amortized worst-case number of merge operations that an entry participates in
per level as ≈ T−1

T
and ≈ T−1

2 with tiering and leveling, respectively . We multiply these costs by L,

ACM Transactions on Database Systems, Vol. 43, No. 4, Article 16. Publication date: December 2018.



16:14 N. Dayan et al.

Fig. 7. The lookup cost model for Monkey dominates the state of the art with any main memory budget.

since each entry gets merged across L levels, and we divide by B to get the measurement in terms
of block I/Os. Finally, we account for reading the original runs to merge them, and also that write
I/Os to secondary storage on some storage devices (e.g., flash) are more expensive than reads, by
multiplying by (1 + ϕ), where ϕ is the cost ratio between writes and reads. The overall I/O cost is
captured by Equation (10). When T is set to 2, tiering and leveling behave identically, so the two
parts of the equation produce the same result.

W =
⎧⎪⎨⎪⎩

L
B
· (T−1)

2 · (1 + ϕ), with leveling

L
B
· (T−1)

T
· (1 + ϕ), with tiering.

(10)

Modeling Worst-Case Range Lookup Cost (Q). A range lookup involves doing L or L · (T − 1)
disk seeks (one per run) for leveling and tiering, respectively. Each seek is followed by a sequential
scan. The cumulative number of pages scanned over all runs is s · N

B
, where s is the average pro-

portion of all entries included in range lookups. Hence, the overall range lookup cost Q in terms
of pages reads is as follows.

Q =
⎧⎪⎨⎪⎩
s · N

B
+ L, with leveling

s · N
B
+ L · (T − 1), with tiering.

(11)

Modeling the State of the Art. We now derive an analogous model for existing state-of-the-
art designs. The models for V ,W , and Q are the same as for Monkey, namely Equations (9), (10),
and (11), because Monkey’s core design does not alter these operations. To model the worst-case
expected point lookup I/O cost, we set all false-positive ratesp1,p2 . . .pL in Equation (3) to be equal
to each other. The complete derivation and resulting closed-form Equation (56) are in Appendix D.

Analytical Comparison. We now have two cost models for lookup cost with Monkey (Equa-
tions (7) and (8)) and with the state of the art (Equation (56)). In Figure 7, we compare Monkey
against the state of the art by plotting the zero-result lookup cost as we vary Mfilt with these equa-
tions. Although we keep the terms in the figure general, the curves are drawn for an LSM-tree
with 512GB of data; the number of entries N is 235, the entry size E is 16 bytes, the size ratio T is
4, the buffer size B · P · E is 2 MB, and we vary Mfilt from 0 to 35GB.

The lookup cost model of Monkey dominates that of the state of the art for any overall main
memory budget allocated to the filters. The reason is that Monkey allocates this memory optimally
among the Bloom filters to minimize the average number of read I/Os per lookup.

As Mfilt in Figure 7 approaches 0, Monkey and the state of the art both degenerate into an LSM-
tree with no Bloom filters, and so their curves meet. The term X in the figure is used to adjust
the terms for leveling and tiering. The two curves look identical except that the curve for tiering
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is vertically stretched upwards by a factor of T − 1, since there are T − 1 more runs per level. We
verify all of these analytical findings experimentally in Section 5.

4.3 Scalability and Tunability

We now continue by exploring and mapping the design space for Monkey using asymptotic anal-
ysis. We show that lookup cost in Monkey scales better than in the state of the art with respect
to data volume. We also show that Monkey removes the dependence of lookup cost on the buffer
size thereby simplifying design.

Complexity Analysis. Table 2 gives the worst-case lookup and update I/O cost complexities for
Monkey and for the state of the art. In Appendix J, we derive lookup complexity for Monkey
based on Equations (7) and (8). We do the same for the state of the art in Appendix D based on
Equation (56). The update cost is the same for Monkey as for the state of the art, and we analyze
it based on Equation (10).

The complexity of worst-case lookup cost for Monkey is different depending on whether Mfilt

is greater or lower than Mthr eshold . To understand why, recall that R in Equation (7) is expressed
as the sum of two additive terms, Rfiltered and Runfiltered. As long as Mfilt > Mthr eshold , there are
filters at all levels and so Runfiltered is zero and Rfiltered is the dominant term. Moreover, by plugging
in Mthr eshold for Mfilt in Equation (7), we observe that the value of Rfiltered can be at most O (1)
for leveling and at most O (T ) for tiering. However, as the number of entries N increases relative
to Mfilt, eventually Mfilt drops below Mthr eshold . At this point Runfiltered becomes non-zero and
comes to dominate Rfiltered, because its value is at least O (1) with leveling and O (T ) with tiering
when Mfilt = Mthr eshold , and it increases up to O (L) with leveling and O (L ·T ) with tiering as N
increases. Thus, the complexity of worst-case lookup cost R isO (Rfiltered) when Mfilt > Mthr eshold ,
and otherwise it is O (Runfiltered).

The condition Mfilt > Mthr eshold can be equivalently stated as having the number of bits per

element
Mfilt

N
> 1

ln(2)2 · ln(T )
T−1 . The value of 1

ln(2)2 · ln(T )
T−1 is at most 1.44 when T is equal to 2. Hence,

we can say more concretely that the complexity of worst-case lookup cost R is O (Rfiltered) when
the number of bits-per-element is above 1.44, and otherwise it isO (Runfiltered). In modern key-value
stores, the number of bits-per-element is typically 10, far above 1.44, and so for most practical
purposes the complexity of Monkey is O (Rfiltered).

To enable an apples to apples comparison, we also express the complexity of lookup cost for
the state of the art separately for when Mfilt is lower and greater than Mthr eshold (Column b and
c, respectively, in Table 2). We observe that when Mfilt is lower than Mthr eshold , the complexity of
lookup cost converges to that of an LSM-tree with no filters.

Comparing Monkey to the State of the Art. We first compare Monkey to the state of the art
when Mfilt ≥ Mthr eshold (Columns c and e in Table 2). Monkey shaves a factor of O (L) from the
complexity of lookup cost for both tiering and leveling (Rows 2 and 3 in Table 2). Note that we
express O (L) in Table 2 as O (logT (N · E/Mbuf)) as per Equation (1). In other words, lookup cost R
in Monkey is asymptotically independent of the number of levels L of the LSM-tree. The intuition
is that the FPRs for smaller levels are exponentially decreasing, and so the expected cost of probing
filters across the levels converges to a multiplicative constant. Shaving a factor ofO (L) from lookup
cost has three important benefits.

(1) As long as we scale the Bloom filters’ footprint with the number of data entries (i.e., keep

the ratio
Mfilt

N
fixed as N increases), lookup cost in Monkey stays fixed, whereas in the state

of the art it increases at a logarithmic rate. In this way, Monkey dominates the state of the
art by an increasingly large margin as the number of entries increases.
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Fig. 8. Monkey dominates the state of the art for any merge policy and size ratio.

(2) Lookup cost is independent of the entry size, and so it does not increase for data with
larger entry sizes.

(3) Lookup cost is independent of the buffer size. This simplifies design relative to the state
of the art, because we do not need to carefully balance main memory allocation between
the buffer and filters to optimize lookup performance.

Next, we compare Monkey to the state of the art when Mfilt ≤ Mthr eshold . In the state of the art
(Column b, Rows 2 and 3 in Table 2), lookup cost decreases at a logarithmic rate as Mbuf increases,
because it absorbs more of the smaller levels. In Monkey (Column d, Rows 2 and 3), lookup cost
decreases at a logarithmic rate as Mfilt increases, since more of the deeper levels have Bloom filters.
Monkey improves upon the state of the art by shaving an additive factor ofO (logT (E)) from lookup
cost, where E is the entry size. The reason is that Bloom filters are only sensitive to the number
of entries rather than their sizes. This means that lookup cost in Monkey does not increase for
datasets with larger entries.

Monkey dominates the state of the art for all datasets and designs, because it allocates main memory

optimally among the Bloom filters thereby minimizing lookup cost.

Exploring Limiting Behavior. We now focus on the limiting behavior of the lookup cost with
respect to the size ratio. This is shown in Rows 1 and 4 of Table 2. We also plot Figure 8 to help this
discussion. Figure 8 is an extension of Figure 4 from Section 2 where we mapped the design space
of LSM-trees with respect to the impact on lookup and update cost. Figure 4 includes Monkey in
addition to the existing state of the art. As T approaches its limit value of Tl im for both leveling
and tiering, the number of levels L approaches 1. When T = Tl im , Monkey and the state of the art
both degenerate into a log and a sorted array with tiering and leveling, respectively, and so their
performance characteristics converge. For all other values of T in-between, Monkey analytically
dominates the state of the art by reducing lookup cost, hence achieving a better performance
tradeoff curve. We also show these curves experimentally in Section 5.

Analyzing Main Memory Allocation. We now analyze the impact of allocating main memory
between the filters and buffer on lookup and update cost. In Figure 9, we plot lookup cost and
update cost with Monkey and the state of the art as we vary the relative sizes of the buffer and the
filters.6 We define the amount of main memory excluding the fence pointers that is to be divided

between the fence pointers and buffer as M̂ bits, and so M̂ = Mbuf +Mfilt. On the x-axis (log scale),

6The limits on the y-axis are drawn for Mfilt > Mthr eshold .
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Fig. 9. Monkey simplifies design by eliminating the dependence of lookup cost on the buffer size.

we increase Mbuf at the expense of Mfilt from one disk page (B · E bits) to M̂ bits, in which case
the Bloom filters cease to exist (i.e., Mfilt = 0). While the terms in the figure are general, the curves
are drawn using our models in Subsection 4.2 for the configuration outlined at the end of the
subsection. The term X is used to adjust the y-axis for leveling and tiering.

The top part of Figure 9 reveals that Bloom filters in the state of the art actually harm lookup
performance for a significant portion of the space, because the main memory that they occupy
is better-off allocated to the buffer. Monkey removes this performance contention thereby sim-
plifying system design by making lookup cost independent of the buffer size, provided that

Mfilt >
Mthr eshold

T L as per Equation (8). As the buffer continues to grow, however, the Bloom filters
shrink and eventually cease to exist, at which point the curves for Monkey and the state-of-the-art
converge. The bottom part of Figure 9 illustrates that increasing the buffer size decreases update
cost but incurs diminishing returns as the update cost decreases at a logarithmic rate. The overall
insight is that it is desirable to set the buffer size as large as possible to reduce update cost while
still keeping it below the point where it begins to significantly harm lookup cost. We mark this in
Figure 9 as the “sweet spot.” In Section 4.5, we give a strategy for how to allocate main memory
among the filters and buffer using this insight.

4.4 Optimizing for Non-Zero-Result Point Lookups

Up until now, we only focused on allocating the Bloom filters to minimize the cost for zero-result
point lookups. We now generalize Monkey to allocate the Bloom filters so as to optimize for any
ratio between non-zero-result and zero-result point lookups in the workload. To optimize for the
worst-case non-zero-result point lookups, we focus on lookups for which the target entry is at
the largest level as they incur the maximum expected number of false positives before finding the
target key.7 Hence, we treat all non-zero-result point lookups as if they were targeting level L.

7Our optimization does not further specialize for non-zero-result point lookups to smaller levels of LSM-tree. The reason

is that the false-positive rates at smaller levels of LSM-tree with Monkey are exponentially lower, and so the number of

false positives incurred at smaller levels of the tree is not a performance bottleneck (the I/O to the target entry is).
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Insight: More Memory for Filters at Smaller Levels. With leveling, the Bloom filter at the
largest level does not benefit worst-case point lookups to existing entries as it always returns a true
positive when probed. Similarly with tiering, a non-zero-result point lookup probes on average half
of the runs at the largest level before finding the target entry and terminating. As a result, half of
the Bloom filters at the largest level with tiering on average do not yield a performance benefit.

However, with both tiering and leveling, the Bloom filter(s) at larger levels take up more mem-
ory, because they contain more entries. To see this, we denote the amount of memory taken up
by filters at Level i as Mi . We analyze Mi for Level i by plugging its capacity and its optimal FPRs
from Equation (5) or Equation (6) into Equation (2). We observe thatMi isO (Mfilt/T

L−i ), or in other
words, that filters at larger levels take up exponentially more memory.

Putting these observations together, our design of Monkey so far allocates most of the main
memory budget to the largest level to optimize for zero-result point lookups, yet most of this main
memory does not significantly benefit non-zero-result point lookups. To optimize for non-zero-
result point lookups, it is more beneficial to allocate a higher proportion of the memory budget
to filters at smaller levels to reduce the number of false positives that take place before finding
the target key. We now continue to introduce Monkeyдener al , which allocates a higher proportion
of the memory budget to smaller levels as the proportion of non-zero-result point lookups in the
workload increases. We also denote the version of Monkey that only optimizes for zero-result
point lookups from Section 4 as Monkeyzero .

Modeling Generalized Point Lookups. We first model the cost of non-zero-result point lookups.
With leveling, the expected cost is 1 + R − pL , where R is the sum of false-positive rates from
Equation (7). The reason is that a lookup issues one I/O to the largest level, and it incurs R − pL

expected I/Os due to false positives at smaller levels. With tiering, the expected cost is 1 + R − pL ·T
2

I/Os, because a lookup probes on average half of the runs at the largest level before finding the
target key. We introduce a constantv in Equation (12) to denote the ratio between non-zero-result
lookups to zero-result lookups in the workload.

v =
% non-zero-result point lookups

% zero-result point lookups
. (12)

We then weigh the costs of zero and non-zero-result lookups using v in Equation (13), where Z
denotes the expected I/O cost of a lookup.

Z =
⎧⎪⎨⎪⎩

v
v+1 · (1 + R − pL ) + 1

v+1 · R, with leveling

v
v+1 ·

(
1 + R − pL ·T

2

)
+ 1

v+1 · R, with tiering.
(13)

Optimizing FPRs. Next, we optimize the FPRs across the different levels in Equation (13) using
Equation (4) as a constraint. As before, we use the method of Lagrange Multipliers. We first derive
pL , the FPR for the largest level. The results are Equations (14) and (15) for leveling and tiering,
respectively. As the proportion of non-zero-result point lookupsv increases, the optimal value for
pL increases with both leveling and tiering as it becomes less beneficial to allocate memory to the
filter at the largest level. When we setv to zero, Equations (14) and (15) converges to Equations (5)
and (6), respectively, as we only need to optimize for zero-result point lookups in this case,

Leveling

pL =

{
(Z · (v + 1) −v ) · T−1

T
, Lunfiltered = 0

1, otherwise,

(14)

Tiering

pL =

{
Z ·(v+1)−v

T ·(v+1) · (1 −
v ·T

2·(v+1) ·(T−1) )−1, Lunfiltered = 0

1, otherwise.

(15)
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Next, we derive the optimal FPRs for smaller levels. Again, we use the method of Lagrange
Multipliers as in Appendix A. The results are Equations (16) and (17). Each of these equations has
three cases. The first case is for when memory is plentiful enough to have Bloom filters across all
levels (Lunfiltered = 0). In this case, the FPRs at smaller levels decrease as v increases as it becomes
more beneficial to invest more of the memory budget in smaller levels. The other two cases are for
when there is not sufficient memory for having filters at the largest level. In this case, both zero
and non-zero-result point lookups issue I/Os to the largest level and need to minimize the sum of
FPRs at the smaller levels with filters. As a result, the optimal memory allocation among the filters
becomes the same as before in Equations (5) and (6) (though Equations (16) and (17) look slightly
different because they are in terms of Z rather than R),

Leveling

pL−i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Z − v

v+1

)
· T−1

T · 1
T i , Lunfiltered = 0

Z−Lunfiltered

T
i−Lunfiltered

· T−1
T , 0 < Lunfiltered ≤ i

1, Lunfiltered > i

,

(16)

Tiering

pL−i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

T i ·
Z ·(v+1)−v

T ·(v+1) , Lunfiltered = 0

Z− T
2 ·

v
v+1 −

(
Lunfiltered+

1
v+1 −1

)
·(T−1)

T
1+i−Lunfiltered

, 0 < Lunfiltered ≤ i

1, Lunfiltered > i

.

(17)

Next, we find the memory thresholds ML
thr eshold

and ML−1
thr eshold

at which the FPRs at the largest
and second largest levels converge to one. We derive them by plugging the optimal FPRs from
Equations (14), (15), (16), and (17) into Equation (4), rearranging in terms of Z , and equating to
Z in Equations (14), (15), (16), and (17) when pL and pL−1 are set to 1. Using these thresholds, we
compute the optimal number of levels with no filters using Equation (18).

Lunfiltered =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ML
thr eshold

≤ Mfilt

1, ML−1
thr eshold

≤ Mfilt ≤ ML
thr eshold

1 +

⎡⎢⎢⎢⎢⎢ logT

(
M L−1

thr eshold

Mfilt

) ⎤⎥⎥⎥⎥⎥ , M L−1
thr eshold

T L ≤ Mfilt ≤ ML−1
thr eshold

L, 0 ≤ Mfilt ≤
M L−1

thr eshold

T L−1

ML−1
thr eshold =

N

ln(2)2
· ln(T )

T − 1
· 1

T

ML
thr eshold =

⎧⎪⎨⎪⎩
N

ln(2)2 ·
(

ln(T )
T−1 −

1
T
· ln

(
1

v+1

))
with leveling

N
ln(2)2 ·

(
ln(T )
T−1 −

1
T
· ln

(
1 − v

v+1 ·
T

T−1 ·
1
2

))
with tiering.

(18)

Predicting Performance. Next, we derive a closed-form equation relating the point lookup costZ
to the main main memory budget Mfilt. We do this by plugging the optimal FPPs from Equations
(14), (15), (16), and (17) into Equation (4), simplifying into closed-form, and rearranging in terms of
Z . The results are Equations (19) and (20), which enable practitioners to determine precisely how
much a given memory budget Mfilt improves point lookup cost.

Leveling

Z =
⎧⎪⎪⎨⎪⎪⎩
e−

Mfilt
N ·ln(2)2 · T

T
T−1

T−1 ·
(

1
v+1

) T−1
T + v

v+1 , ML
thr eshold

≤ Mfilt

e−
M
N ·T

Lunfiltered ·ln(2)2 · T
T

T−1

T−1 + Lunfiltered, otherwise

,
(19)

Tiering

Z =
⎧⎪⎪⎨⎪⎪⎩
e−

Mfilt
N ·ln(2)2 ·T T

T−1 ·
(
1 − v

v+1 ·
T

T−1 ·
1
2

) T−1
T + v

v+1 , ML
thr eshold

≤ Mfilt

e−
M
N ·T

Lunfiltered ·ln(2)2 ·T T
T−1 +

(
Lunfiltered − 1 + 1

v+1

)
· (T − 1) + T

2 ·
v

v+1 , otherwise
.

(20)
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Fig. 10. Optimizing lookups to existing entries further improves lookup throughput by up to 20%.

Analytic Comparison. In Figure 10, we analytically compare Monkeyдener al to Monkeyzero (which
only optimizes for zero-result point lookups) and to the state of the art in terms of lookup throughput
for different amounts of memory and as we increase the proportion of non-zero-result point lookups.
For the state of the art and Monkeyzero , we use Equation (13) for the weighted cost of a mix of zero-
result and non-zero-result point lookups in the workload, plugging in different values for R and for pL .
For the state of the art, we plugged in Equation (56) for R and Equation (53) for pL . For Monkeyzero , we
plugged in Equation (7) for R and Equation (5) for pL . For Monkeyдener al , we used Equation (19). Per-
formance is comparable across curves with the same markers but not for curves with different markers
as they are drawn for different workloads (i.e., values of v). The size ratio T is set to 2 for all schemes
in this comparison. As we are comparing cost models, we normalize all costs to Monkeyдener al to illus-
trate the magnitude in performance improvements that our models predict. We evaluate these schemes
experimentally in Section 5.

Figure 10 shows that with 1 bit per element, Monkeyzero and Monkeyдener al perform the same,
because the FPR for the largest level had converged to one and so the assignment of FPRs across
all other levels is the same. Otherwise, Monkeyдener al dominates Monkey by up to ≈20%, because
it allocates relatively more memory to filters at smaller levels to optimize for non-zero-result
point lookups. We also observe that as the proportion of non-zero-result point lookups in the
workload increases, Monkeyдener al dominates Monkey by increasing amounts. Monkeyzero and
Monkeyдener al both outperform the state of the art by up to ≈60% and ≈80%, respectively.

4.5 Holistic Optimal Design of Merge Policy, Size Ratio, and Memory

Allocation between Filters and the Buffer

We now show how to navigate the LSM-tree design space to maximize worst-case throughput.
Monkey achieves this by controlling four design parameters: the merge policy (tiering vs. leveling),
the size ratio, the amount of main memory allocated to the filters, and the amount of main memory
allocated to the buffer. We show how to tune these parameters with respect to the dataset (number
and size of entries), the workload (proportion of lookups and updates), and the storage medium
(cost ratio between reads and writes, and size of disk blocks). We model the worst-case throughput
in terms of these parameters, and we devise an algorithm that finds the design that maximizes
throughput. In Table 3 we list new terms.

Modeling Throughput. First, we model the average operation cost θ by weighting the point
lookup cost Z from Equations (19) and (20) (that model the zero and non-zero-result point lookup
cost as discussed in Section 4.4), the range lookup cost Q from Equation (11), and the update cost
W from Equation (10) by their proportion in the workload represented by the terms z, q, and w ,
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Table 3. Table of Terms Used for Self-design

Term Definition Units
v Ratio of non-zero-result point lookups to zero-result point lookups
Z Weighted point lookup cost I/O
z Percentage of point lookups in workload %
w Percentage of updates in workload %
q Percentage of range lookups in workload %

M̂ Main memory to divide between the filters and buffer bits
θ Average operation cost in terms of lookups I/O / op
Ω Time to read a page from persistent storage sec / I/O
τ Worst-case throughput op / sec

respectively. Note that z + q +w = 1. The result is Equation (21),

θ = z · Z + q ·Q +w ·W . (21)

To obtain the worst-case throughput τ , we take the inverse of the product of the average op-
eration cost θ multiplied by the secondary storage access latency Ω. The result is Equation (22),

τ = 1/ (θ · Ω) . (22)

For a given workload, dataset, and underlying hardware (z,v,q,w, s,E,N ,ϕ,B), we express
Equation (21) as a function of {T ,Mbuf,Mfilt,pol }, where policy pol can be either tiering or
leveling,

cost
(
T ,Mbuf,Mfilt,pol

)
= z · Z

(
Mfilt,T ,pol

)
+ q ·Q

(
T ,Mbuf,pol

)
+w ·W

(
T ,Mbuf,pol

)
. (23)

Optimal design is now an optimization problem where we want to find the values of the design
parameters that minimize the cost function, which in turn maximizes worst-case throughput.

Size Ratio and Merge Policy. We first introduce an algorithm that optimizes the LSM-tree size
ratio and merge policy in a design subspace where main memory allocation is fixed. When main
memory allocation is predetermined, the merge policy and size ratio are complementary means of
navigating the same tradeoff continuum. We devise a simple brute-force algorithm to check all the
possible meaningful values ofT , both for tiering and leveling to find the tuning that minimizes the
cost for fixed Mfilt and Mbuf. Instead of testing for all possible values of T , it suffices to check the
value of the cost for all values ofT that correspond to an integer number of levels between 1 (maxi-
mum value ofTl im = N /B) and �log2 (N /B)� (minimum value ofT is 2). Hence, we compute the cost

function for both tiering and leveling for all T , such that: T = N 1/L for L = 1, 2, . . . , �log2 (N /B)�.
The algorithm runs in O (log2 (N /B)) steps.

Main Memory Allocation. The algorithm described above can be used as-is when the main mem-
ory allocation is predetermined. State-of-the-art key-value stores frequently use a fixed amount
of memory for the buffer, and the remaining of the memory goes to Bloom filters, often targeting
using 10 bits per element. Prior research proposed an educated rule-of-thumb where 95% of main
memory was allocated for Bloom filters and 5% for the buffer [31]. Here we show how to find the
optimal main memory split. We formulate this as an optimization problem where merge policy
and frequency is set, and then we optimize solely for main memory allocation. We later combine
the two optimization steps by nesting the main memory allocation between the Bloom filters and
the buffer with the merge tuning (size ratio and merge policy).
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ALGORITHM 1: Holistic Optimal Design

HolisticDesign (M̂ ; z,v,q,w, s,E,N ,ϕ,B)

min_cost = ∞;

design {policy,T ,Mbuf,Mfilt};
for int L = 1; L ≤ �log2 (N /B)�; L++ do

T = N 1/L ;

// Check cost for leveling

Mfilt = optimalMemoryForFilters (M̂,T , “leveling”; z,v,q,w, s,E,N ,ϕ,B);

Mbuf = M̂ −Mfilt;

current_cost_L = cost (T ,Mbuf,Mfilt, “leveling”) // Equation (23) for leveling

if current_cost_L < min_cost then

design.T = T ; design.policy = “leveling”; design.Mbuf = Mbuf; design.Mfilt = Mfilt;

min_cost = current_cost_L;

end

// Check cost for tiering

Mfilt = optimalMemoryForFilters (M̂,T , “tiering”; z,v,q,w, s,E,N ,ϕ,B);

Mbuf = M̂ −Mfilt;

current_cost_T = cost (T ,Mbuf,Mfilt, “tiering”) // Equation (23) for tiering

if current_cost_T < min_cost then

design.T = T ; design.policy = “tiering”; design.Mbuf = Mbuf; design.Mfilt = Mfilt;

min_cost = current_cost_T ;

end

end

return design ;

Given the workload, the underlying hardware, the size ratio, and the merge policy we formulate
a new optimization problem to decide how to split the available main memory between Bloom
filters and the buffer. We consider the cost from Equation (23) as a function of memory for filters

Mfilt where Mfilt +Mbuf = M̂ and where T and M̂ are parameters,

cost
(
Mfilt;T , M̂,pol

)
= z · Z

(
Mfilt;T ,pol

)
+ q ·Q

(
M̂ −Mfilt;T ,pol

)
+w ·W

(
M̂ −Mfilt;T ,pol

)
.

(24)
Achieving optimal memory allocation is now formalized as finding the number of bits allocated

to Bloom filters Mfilt that minimizes the cost function in Equation (24). The cost functions can be
refactored to be easier to manipulate their derivatives with respect to Mfilt (the full derivation is
in Appendix C):

cost
(
Mfilt

)
= αpol · e−β ·Mfilt + γpol · ln �� δ

M̂ −Mfilt

�� +C, (25)

where α and γ have different values for leveling and tiering and β , δ , and C have the same value
for both tiering and leveling, as follows:

αlevel inд = z · T
T

T−1

T−1 ·
(

1
v+1

) T−1
T , αt ier inд = z ·T T

T−1 ·
(
1 − v

v+1 ·
T

T−1 ·
1
2

) T−1
T , (26)

γlevel inд =
q+w · (T−1)·(1+ϕ )

2·B
ln(T ) , γt ier inд =

q ·(T−1)+w · (T−1)·(1+ϕ )
T ·B

ln(T ) , (27)

β = ln(2)2

N
, δ = N · E · T−1

T
, C = z · v

v+1 + q · s ·
N
B
. (28)
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Fig. 11. Achieving the optimal design comes by combining multiple optimizing steps. Here we see the con-

tribution in terms of normalized performance of optimizing each design dimension of the LSM-tree: Bloom

filter allocation, main memory allocation, merge policy, and size ratio. Finally, putting everything together in

a multi-parametric optimization, allows us to get the holistically optimal behavior across the whole spectrum

of available main memory.

The value of Mfilt that minimizes Equation (25) cannot be expressed analytically (see Appen-
dix C), hence, we devise an efficient and accurate numerical process that finds for which Mfilt

the cost is minimized using the quickly converging iterative Newton-Raphson method. In Appen-
dix C.1 we discuss more details about this process and its convergence guarantees. This algorithm

runs in O (log10 (M̂/B)) steps.

Holistic Design. In this section up to now we presented a design process that consists of two
steps: first tune for size ratio and merge policy and only then for main memory allocation. This
strategy, however, misses opportunities for deeper optimization where the interplay of main mem-
ory allocation, size ratio, and merging policy can give us an overall better result. To that end we
introduce MonkeyHolistic, shown as Algorithm 1. Every iteration of the algorithm includes the
search for the optimal memory allocation so the overall complexity of the holistic tuning process

is O (log2 (N /B) · log10 (M̂/B)).

Impact of Holistic Design. Holistic design offers the optimal design across all knobs for any
parameterization with respect to workload, underlying hardware, and available resources (main
memory and storage devices). Figure 11(a)–(d) compare MonkeyHolistic with the state of the art,
as we vary the available memory (bits per element) on the x-axis. The different lines in each figure
show how each optimization step towards MonkeyHolistic affects the overall performance. In the
top of every figure we show with black the optimal design. For example, in Figure 11(a) the first
point is tuned to “L4” and “0%.” This means that the optimal design is leveling with size ratioT = 4,
and the memory allocation for Bloom filters is 0%. The blue labels correspond to the MonkeyHybrid
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depicted with a blue line. For each of the four figures we see that the performance of the state
of the art (black line with marker ∗) can be further optimized first by using optimal Bloom filter
allocation (dashed line), and then by optimizing the memory allocation (solid line) while still using
state-of-the-art design with respect with size ratio (T = 10) and merge policy (leveling). As we
have more memory, however, it makes sense to use tiering, because most of the runs that do
not contain useful data will not be read by more efficient Bloom filters (the dotted line). This
shows that to achieve the optimal we might have to select between leveling and tiering as well.
The blue line shows the performance benefit achieved by optimizing for size ratio and merge
policy and still maintaining the rule-of-thumb memory allocation. For read-heavy and read-mostly
(Figure 11(b)–(d)) workloads the 95–5% rule-of-thumb gives close-to-optimal performance except
when the available memory increases to more than 20 bits per element. At this point it is preferable
to increase the size ratio aggressively and tune the memory between the buffer and the Bloom filter
in a different manner. For a write-mostly workload (Figure 11(a)) the blue line is slightly worse than
optimal across the spectrum, since it loses the opportunity to optimize for lower values of memory,
where the optimal solution is to reduce memory allocation for filters down to 0% when needed.
The key observation of this analysis is that to optimally tune an LSM-tree we need to perform
multi-parametric optimization taking into account all possible design decisions at the same time,
rather than solving many optimization problems iteratively.

Holistic Design with SLAs. Using this algorithm, we can also impose upper-bounds on lookup
cost or update cost to support different service-level agreements (SLAs). To do so, the algorithm
discards configurations for which either lookup or update cost exceeds an imposed upper-bound.

5 EXPERIMENTAL ANALYSIS

We now proceed to experimentally evaluate Monkey against state-of-the-art designs. We first show
that Monkey’s method of optimizing the Bloom filters significantly reduces lookup cost across the
whole design space and for various workloads. We then demonstrate Monkey’s ability to navigate
the design space to find the design that maximizes throughput for a given application workload.

Hardware Platform. Our experimental platform was an AWS EC2 “m4.large” instance, which
is equipped with 2 CPUs, 8GB of DRAM, and both an SSD-based and HDD-based storage vol-
ume. Specifically, the SSD-based secondary storage volume is an instance of the EBS type “io1”
with 25,000 provisioned IOPS, and the HDD-based one, of the EBS type “st1” which is opti-
mized for throughput and can deliver 149–450MB/s. Both storage devices had a bandwidth cap at
450MB/s.

Software Platform. We implemented Monkey on top of RocksDB, which is a well-known and
widely used LSM-tree based key-value store, representative of the state of the art. The current
implementation of RocksDB supports leveling but not tiering, and it assigns the same FPR to fil-
ters across all levels. We used a RocksDB API that enables scheduling merge operations from the
application code to implement tiering. Furthermore, we embedded our algorithm from Appen-
dix B) to find and set the optimal FPRs for the different Bloom filters depending on the level that
the corresponding run is being created in. The default configuration is as follows: Size ratio is
2 (the size ratio at which leveling and tiering behave identically); buffer size is 1MB; the overall

amount of main memory allocated to all Bloom filters is
Mfilt

N
= 5 bits per element8 (though Monkey

8Though designs in industry typically use 10 bits per entry, we use 5 bits per entry by default, because Monkey with 5 bits

per entry achieves approximately the same performance or better than the state of the art with 10 bits per entry. We show

this experimentally.
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allocates these bits differently across different levels). We vary these configuration knobs through-
out the evaluation. Furthermore, we enabled direct I/O and disabled the block cache to be able to
fully control the memory budget across all experiments. This represents a worst case scenario
where there is not enough memory for a cache and it allows us to measure the impact of Monkey
on the pure LSM-tree structure. In Appendix E, we show that Monkey maintains its advantages
when there is enough memory to devote to a block cache.

Default Workloads. The goal of our experiments is to evaluate Monkey against the state of the
art under worst-case workloads (i.e., that maximize the I/O overhead for both lookups and up-
dates). The reason is that many applications today require predictable performance, and so it is
important to be able to provide guarantees that the system will not perform worse than a given
SLA under any possible workload. For lookups, the worst-case workload pattern is when the target
keys are uniformly randomly distributed both across the key space and across time, because this
pattern minimizes the probability that a target entry is in one of the caches along the I/O stack.
This maximizes the probability of issuing I/O to storage. For updates, we show in Appendix G
that the worst-case pattern can be approximated using uniformly randomly distributed insertions
across a much larger key space than the data size, as this causes most inserted entries to participate
in the highest possible number of merge operations. Unless otherwise mentioned, all workloads
that we use throughout this evaluation are uniformly randomly distributed across the key space
and across time. This is in line with the default settings of the Yahoo Cloud Service Benchmark
(YCSB) [30], which is widely used today for experimenting with LSM-tree based key-value stores
[56, 60–63, 71]. Unless otherwise mentioned, every experiment is preceded by an initialization
phase where we insert 1GB of key-value entries to an empty database where each entry is 1KB in
size. The domain of keys is approximately one thousand times larger than the number of entries in
all of our experiments, so relatively few entries get overwritten during the initialization phase. We
begin with experiments that only evaluate point lookup performance to demonstrate the impact of
Monkey’s Bloom filters’ allocation strategy in isolation. We then continue to evaluate mixed work-
loads consisting of both lookups and updates and demonstrate the impact of Monkey’s adaptive
merging and holistic memory allocation between the Bloom filters and the buffer.

Metrics. We repeat each experimental trial (data loading and queries) three times. For each trial,
we measure the average lookup and update latency and the average number of I/Os per operation.
The error bars in our figures represent one standard deviation for latency across trials.

Model Validation. For most of the experiments, we included a side-by-side comparison with the
I/O cost models that we derived throughout the article. We did this by multiplying the number
of I/Os predicted by our cost models for each of the trials by the average I/O latency as mea-
sured on our hardware platform. In Appendix L, we elaborate on the equations we used to predict
performance across the different experiments. The reliability of our I/O cost models in general
demonstrates that I/O was indeed the bottleneck throughout the experiments with both HDD and
SSD.

Monkey Scales Better with Data Volume. In this set of experiments, we show that Monkey
improves lookup latency by an increasing margin as the data volume grows. The first experiment
doubles the data size for every iteration and measures average latency across 16K zero-result point
lookups. Results are shown in Figure 12(A). The curves initially meet with 212 entries as there is
only 1 level in LSM-tree, and so the Bloom filters allocation of Monkey is the same as for RocksDB.
Lookup latency for the RocksDB increases at a logarithmic rate as the number of data entries in-
creases, as predicted by our cost model in Section 4.3. The reason is that with more data entries the
number of levels in the LSM-tree increases at a logarithmic rate, and lookup latency for RocksDB
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Fig. 12. Monkey improves lookup cost under any (A) number of entries, (B) entry size, and amount of memory

for zero-result, (C) for SSD and (D) for HDD, and non-zero-result point lookups, (E) for SSD and (F) for HDD.

is proportional to the number of levels. In contrast, Monkey maintains a stable lookup latency as
the number of entries increases, as also predicted by our cost models. The reason is that Monkey
assigns exponentially decreasing FPRs to filters at smaller levels, and so the average number of
I/Os per lookup converges to a constant that is independent of the number of levels. Overall, Mon-
key dominates RocksDB by up to 60%, and its margin of improvement increases as the number of
entries grows. This demonstrates the asymptotic improvement that the Bloom filters optimization
provides, shaving a logarithmic factor from point lookup cost.

Figure 12(B) depicts results for a similar experiment, with the difference that this time we keep
the number of data entries fixed and we instead increase the entry size. This has the same impact
on performance and for the same reasons as described above.

Monkey Needs Less Main Memory. In this set of experiments, we show that Monkey matches
the performance of RocksDB using significantly less main memory. We set up this experiment
by repeating the default experimental setup multiple times, each time using a different number
of bits-per-entry ratio allocated to the filters, and measuring average latency across 16K point
lookups. Figure 12(C), (D), (E), and (F) show the results for both zero-result and non-zero-result
point lookups across an SSD and an HDD. Across all experiments, when the number of bits per
entry is set to 0, both Monkey and RocksDB degenerate into an LSM-tree with no filters, and so
lookup cost is the same. As we increase the number of bits per entry, Monkey significantly reduces
lookup latency. Eventually, the filters for both systems become so accurate that the number of false
positives approaches zero, at which point the curves nearly converge.

Figure 12(E) and (F) on the right side for non-zero-result point lookups show results for two
versions of Monkey, Monkeyzero and Monkeyдener al . The former is based on Section 4.1 and op-
timizes for zero-result point lookups, whereas the latter is based on Section 4.4 and finds the op-
timal Bloom filters allocation for any proportion between zero-result and non-zero-result point
lookups in the workload. As there are no zero-result point lookups in the workload, the workload
in this experiment is a special case where the Bloom filter at the largest level is not useful, and so
Monkeyдener al allocates the main memory budget only to filters at Levels 1 to L − 1. With 1 bit per
entry, the memory budget Mfilt with Monkeyzero is below Mthr eshold , meaning that it has no filter
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Fig. 13. Monkey improves lookup cost for any (A) mix between zero-result and non-zero-result point lookups

and (B) temporal skew for lookups. It enables better tradeoffs between the costs of updates and lookups—(C)

for SSD and (D) for HDD—and it navigates the tradeoff to find the design that maximizes throughput for

point queries (E) and range queries (F).

for the largest level, and so the behavior of Monkeyzero and Monkeyдener al is identical. As main
memory increases, Monkeyдener al improves on Monkeyzero by allocating its entire memory bud-
get to filters at levels 1 to L − 1 thereby eliminating more false positives. By so doing, it improves
lookup latency on Monkeyzero by ≈10%.

Systems in industry typically use 10 bits per entry across all Bloom filters. The experiments show
that Monkey matches this performance with ≈6 bits per entry for zero-result point lookups and
with ≈4 bits per entry for non-zero-result point lookups (though the asymptotic improvement of
Monkey implies that the margin of improvement increases as a function of the number of entries).

Monkey Is Better for Mixed Point Lookup Workloads. In Figure 13, we show that Monkey
dominates the state of the art for any ratio of zero-result to non-zero-result point lookups. With
only zero-result point lookups, Monkeyzero and Monkeyдener al behave exactly the same, and so
their performance characteristics are identical. As the proportion of non-zero-result point lookups
increases to 70% and beyond, however, Monkeyдener al outperforms Monkeyzero by allocating in-
creasingly more memory to smaller levels and thereby eliminating more false positives for non-
zero-result point lookups.

Monkey Improves Lookup Latency across Temporal Skews. This experiment shows that
Monkey significantly improves lookup latency for non-zero-result lookups across a wide range
of temporal locality in the query workload. In Figure 13(B), we compare RocksDB, Monkeyzero

and Monkeyдener al as we vary temporal skew for non-zero-result point lookups. The x-axis in
the experiment corresponds to the Level i in LSM-tree that the non-zero-result point lookups are
targeting. Lookups to Level i target entries whose age is between B · P ·T i and B · P ·T i+1 in terms
of update order. Within a given level, the lookups are uniformly randomly distributed across the
key space. When the lookups target Level 1, all schemes perform the same, because there is no
opportunity for false positives to occur. As the target level increases, lookup latency for RocksDB
degrades linearly, because each additional level increases the probability of false-positive rates by
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a fixed amount. With Monkeyzero and Monkeyдener al , lookup performance stays approximately
the same until Level 6, because hardly any false positives take place at these smaller levels. Beyond,
Monkeyдener al outperforms Monkeyzero as it eliminates relatively more false positives at smaller
levels than Monkeyzero does.

Monkey Achieves a Better Tradeoff Curve. In this experiment, we show that Monkey pushes
the tradeoff curve of the state of the art and is therefore able to navigate a better tradeoff con-
tinuum between update cost and zero-result lookup cost. We set up this experiment by repeating
the experimental setup multiple times, each time using a different configuration of size ratio and
merge policy and plotting the average latencies of lookups and updates and against each other
for Monkey and RocksDB. To measure the full amortized update cost, we issue 1M uniformly ran-
domly distributed insertions, i.e., the same as the initial number of entries in the LSM-tree. To
measure worst-case point lookup cost, we measure latency across 16K zero-result point lookups.
The result is shown in Figure 13(C) and (D) for SSD and HDD, respectively. The key observation is
that for any configuration, Monkey achieves a significantly lower lookup cost than RocksDB due
to the optimization of its Bloom filters, as predicted by our analysis in Section 4.3. Hence, Monkey
shifts the tradeoff curve downwards. As a result, Monkey improves lookup cost by up to 50% in
this experiment, and this gain can be traded for an improvement of up to 70% in update cost by
adjusting the size ratio and merge policy to become more update-friendly.

Monkey Navigates the Design Space to Maximize Throughput. In our next set of exper-
iments, we demonstrate Monkey’s ability to navigate the design space to find a configuration
that maximizes throughput for a given application workload. We set up the first experiment as
follows. We repeat the default experimental setup multiple times, with the difference that dur-
ing the query processing phase we vary the ratio of zero-result lookups to updates from 10% to
90%, and we perform the experiment by issuing 1M lookup/update operations. We present the
results in Figure 13(E) on an SSD. The figure compares three variants of Monkey to show the
performance improvement gained from each individual design decision: Monkeyдener al only op-
timizes the Bloom filters, Monkeyadaptive merдinд also adapts the size ratio and merge policy, and
Monkeyf ully naviдable also adapts the memory allocation between the Bloom filters and buffer.
We show the optimal configurations chosen by Monkeyadaptive merдinд and Monkeyf ully naviдable

above the corresponding points in the figure.T stands for tiering, L stands for leveling, the number
alongside is the size ratio, and the number on top is the number of bits per entry allocated to the
Bloom filters.
Monkeyдener al dominates RocksDB by reducing the number of false positives. Furthermore,

Monkeyadaptive merдinд dominates Monkeyдener al by merging more or less when the propor-
tion of lookups vs. updates is higher or lower, respectively. Monkeyf ully naviдable improves on
Monkeyadaptive merдinд by using more write-optimized merging and reallocating memory from
the buffer to the Bloom filters to make up for having more runs to potentially have to probe. Over-
all, Monkeyf ully naviдable improves throughout by at least 50% in all cases relative to RocksDB by
finding the best design.

In Figure 13(F), we vary the proportion between small range lookups (with a selectivity of
≈0.001% of the dataset) and updates in the workload. As there are no point lookups in this ex-
periment, the Bloom filters do not yield any performance benefit, and so Monkeyf ully naviдable

allocates the space that the Bloom filters would otherwise consume to the buffer to improve up-
date cost. Moreover, Monkeyf ully naviдable switches to increasingly read-optimized merging as
the proportion of small range lookups increases. An intriguing observation is that the curve for
Monkey is bell shaped. The reason is that as a workload tends towards a single operation type,
the more possible it is to achieve a higher throughput as a single configuration handles most
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Table 4. Default Designs for Mainstream LSM-tree Based Key-value Stores in Industry

LevelDB RocksDB Cassandra HBase Accumulo

Size ratio (T ) 10 fixed 10 4 2 4

Merge policy Leveled fixed Leveled fixed Tiered semi-fixed Leveled Leveled

Bits per entry (Mfilt/N ) 10 10 10 10 11

Buffer size (Mbuf) 2MB 64MB ∝M 128MB 1GB

operations well. Overall, Monkey dominates RocksDB by up to ≈50% as the proportion of short
range lookups increases.

6 RELATED WORK

6.1 LSM-Tree Based Key Value Stores

As LSM-tree based key-value stores in industry [7, 27, 40, 43, 44, 51, 63, 70], Monkey uses Bloom
filters in main memory to probabilistically enable lookups to skip probing runs of the LSM-tree
that do not contain a target key. State-of-the-art LSM-tree based key-value stores assign the same
false-positive rate to every Bloom filter regardless of the size of the run that it corresponds to [7,
27, 40, 43, 44, 51, 63, 70]. In this work, we observe that worst-case lookup cost is proportional to
the sum of the false-positive rates of all filters. Assigning equal false-positive rates to all of them,
however, does not minimize this sum.

In contrast, Monkey minimizes the sum of false-positive rates by setting the false-positive rate
for each Bloom filter to be proportional to the number of entries in the run that it corresponds to
(meaning that runs at smaller levels have exponentially lower false-positive rates). This reduces
the asymptotic complexity of worst-case lookup cost by a logarithmic factor of the size of the data.

Holistic Design. Table 4 gives the default design knobs for several mainstream key-value stores
in industry: LevelDB, RocksDB, Cassandra, HBase, and Accumulo. We explain in detail how we
obtained the values in this table in Appendix K. Some systems restrict the design knobs and thereby
only include a subset of the design space. For example, LevelDB hard codes the size ratio to 10 and
only enables a leveled merge policy. RocksDB enables tuning the size ratio, but it only allows a
leveled merge policy. Cassandra allows tiering with any size ratio, but for leveling it fixes the size
ratio to 10. As a result, these systems do not enable the entire tradeoff spectrum between the costs
of lookups and updates. Across all these systems, the balance between lookup cost, update cost and
main memory footprint depends on a combination of interdependent design and environmental
parameters that must be precisely co-tuned.

In this way, designing a key-value store instance for a particular application is effectively a trial
and error process that depends on intuition and experience of highly qualified engineers. Mon-
key represents a step to make this process more automatic and effortless. First, it understands and
manages new design knobs that influence worst-case lookup cost, update cost, and main memory
footprint, allowing it to assume new design that was not always possible before. Second, it uses
worst-case closed-form models that enable optimizing throughput automatically by optimally set-
ting those new knobs. Finally, it answers what-if questions regarding how changes in environ-
mental parameters (workload and hardware) affect performance.

Recent complementary work [53] uses a numeric method to estimate update cost in a leveled
LSM-tree when there is a skew in the update pattern. We do one step further here; we model both
lookup cost and update costs under both leveled and tiered LSM-trees thereby enabling a holistic
design over the entire design space.
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Scheduling Merge Operations. To maintain stable performance, all LSM-tree based key-value
stores spread the work done by merge operations over time. Some designs pace merge opera-
tions directly with respect to application updates [17, 52, 63]. Others partition a run into multiple
files (i.e., often called Sorted String Tables or SSTables for short) and merge one file at a time
with the set of files in the next level that have overlapping ranges [7, 27, 40, 43, 44, 49, 51, 63, 67,
70]. Other recent work proposes speeding up merging using dedicated servers [1] and SSD paral-
lelism [69]. Since our work focuses on the total amount of work done by merge operations rather
than how this work is scheduled, any of the above techniques can be used in conjunction with
Monkey.

Reducing Merge Overheads. Various complementary approaches have been devised to reduce
merge overheads. Recent designs partition runs into segments (typically called SSTables) and prior-
itize merging the segment with the least key range overlap with the next level [16, 65, 67]. Another
approach opportunistically merges parts of runs that had recently been scanned and are therefore
already in memory [59]. Other designs [25, 29, 56] store large entries in a separate log to avoid
their inclusion in merging. Accordion packs entries more densely into the buffer to make flushing
and merging less frequent [20], while TRIAD keeps frequently updated entries in the buffer to
avoid repeatedly merging them [16]. Monkey is able to leverage such techniques while in addition
also adapting the size ratio, the merge policy, and the memory allocation among the buffer and
other memory resident structures to find the best cost balance between the overheads of merging
and lookups

Dostoevsky [33] builds on top of Monkey by introducing Lazy Leveling, a merge policy that
relies on having lower false-positive rates at smaller levels to relax merging at those levels. This
improves write cost while maintaining the same bound on point lookup cost. In this way, the Bloom
filters’ optimization opens up new avenues for making merging for key-value stores cheaper.

6.2 Other Key-Value Store Designs

Fractional Cascading. Some variants of LSM-tree use fractional cascading [28] rather than fence
pointers to ensure a cost of 1 I/O per run [17, 52]. The key idea is to embed the first key in every
storage block X of a run within the next younger run alongside a pointer to block X. This enables
a lookup to skip from a given run immediately to the relevant key range in the next run with one
I/O. Variants of this method partition runs into individual block-sized nodes thereby de-amortizing
merge overheads [9, 21, 24, 48, 58]. Designs using fractional cascading are generally incompatible
with in-memory Bloom filters. The reason is that if we use a Bloom filter to skip probing a run, we
cannot use the pointers in the run that we skipped to narrow down the search in the next run. As
a result, the cost complexity for point lookups for such schemes isO (L) with leveling andO (L ·T )
with tiering. In contrast, our work relies on using more main memory in the form of fence pointers
and Bloom filters to reduce I/O for point lookups to O (e−Mfilt/N ) with leveling and O (T · eMfilt/N )
with tiering.

Unbounded Largest Level. Some log-structured designs have fixed capacities for smaller levels
and an unbounded capacity for the largest level [11, 12, 54]. Such designs can be thought of as
consisting of a small log and a larger sorted array. When the log reaches a fixed size threshold of
X entries, it gets merged into the sorted array. In such designs, update cost is O (N /X ), meaning
it increases linearly with respect to the data size N . In contrast, Monkey uses an LSM-tree based
design where the number of levels grows at a logarithmic rate with respect to N . Since every
entry gets merged a constant number of times per level, update cost is logarithmic in the data size:
O (logT (N )). In this work, we restrict the scope of analysis to the latter class of designs.
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Log-Structured Hash-Tables. Many key-value store designs have been proposed where key-
value pairs are stored in a log in secondary storage, and there is a hash table in main mem-
ory that maps from application keys to the location of the corresponding key-value entry in the
log [3, 4, 15, 26, 34, 35, 64]. Such designs have an update cost of O (1/B), which is cheaper than
with LSM-tree based designs. The two main problems with log-based designs are that (1) they do
not support efficient range lookups as the entire dataset has to be scanned for every query and
(2) storing a mapping for every entry consumes a lot of main memory. By contrast, LSM-tree based
designs support efficient range lookups, and the mapping in main memory is at the granularity
of blocks (i.e., for the fence pointers) rather than entries, thus taking up significantly less main
memory.

In-Memory Stores. Key-value stores such as Redis [61] and Memcached [42] store application
data in main memory rather than persistently in secondary storage. We have focused on mapping
the design space of persistent key-value stores in this article, and so this work is orthogonal to
in-memory efforts. However, given that similar tradeoffs exist in a pure in-memory environment
to minimize cache-misses, we expect that a similar study to map the design space of in-memory
key-value stores can be beneficial.

7 CONCLUSION

We show that LSM-tree based key-value stores exhibit an intrinsic tradeoff among lookup cost,
update cost, and main memory footprint. We show how to achieve a better performance tradeoff
curve by allocating the Bloom filters in a way that minimizes the sum of their false-positive rates.
In addition, we show that it is possible to devise closed-form models to navigate the design space to
find the holistic design that maximizes throughput under a given main memory budget, application
workload, and storage medium.

We introduced the particular design knob of variable Bloom filter false-positive rates across
different levels to achieve better performance tradeoffs. In Dostoevsky [33], we leveraged having
much lower false-positive rates at smaller levels to relax merging and thereby achieving even better
tradeoffs. However, the design space of key-value stores is even broader [45, 46], and new types
of approximate set membership (ASM) structures continue to emerge [18, 41, 72]. Future work
includes introducing and studying further design knobs, showing how to optimize them as well
as how they combine with different ASM structures, and thereby continuing to push and improve
the performance and space tradeoff curves for key-value stores.

APPENDIX

A OPTIMAL FALSE POSITIVE RATES

In this appendix, we derive the optimal false-positive rates (FPRs) p1 . . .pL by optimizing lookup
cost R in Equation (3) with respect to the main memory footprint Mfilt in Equation (4). To do so,
we use the method of Lagrange Multipliers to find the FPRs that minimize Equation (4) subject
to Equation (3) as a constraint. We show the detailed derivation for leveling, and we then give
the result for tiering as it is a straightforward repetition of the process with the formulation of
Equation (3) for tiering. We first express Equation (3) for leveling and Equation (4) in the standard
form:

д(pL . . .p1,R) = pL + pL−1 + · · · + p1 − R

y (pL . . .p1,N ,T ) = − N

ln(2)2
· T − 1

T
·

L∑
i=1

ln(pi )

T L−i
.
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We can now express the Lagrangian in terms of these functions:

L (pL . . .p1,N ,T ,R, λ) = y (pL . . .p1,N ,T ) + λ · д(pL . . .p1,R).

Next, we differentiate the Lagrangian with respect to each of the FPRsp1 . . .pL , and we set every
partial derivative to 0. Thus, we arrive at the following system of equations:

N

ln(2)2 · λ ·
T − 1

T
= PL−i ·T i .

We equate these equations to eliminate the constants.

PL ·T 0 = PL−1 ·T 1 = · · · = P1 ·T L−1.

We now express all of the optimal FPRs in terms of the optimal FPR for Level L: PL .

PL−i =
PL

T i
.

Next, we express Equation R in terms of onlyT and PL by plugging these FPRs into Equation (3).
We observe that R is now expressed in terms of a geometric series. We simplify it using the formula
for the sum of a geometric series up to L elements.

R =
pL

T 0
+
pL

T 1
+ · · · + pL

T L−1

= pL ·
( 1

T
)L − 1

1
T
− 1

.
(29)

We now rearrange and express generically in terms of the FPR for Level i . The result appears in
Equations (30) and (31) for leveled and tiered LSM-trees, respectively. These equations take R, T
and L as parameters, and they return FPR prescriptions for any Level i such that the least possible
amount of main memory Mfilt is used to achieve the user-specified value of R.

Leveling

pi =
R

T L−i
· T L−1

T L − 1
· (T − 1)

for 0 < R ≤ T L − 1

T L−1
· 1

T − 1
(30)

and 1 ≤ i ≤ L,

Tiering

pi =
R

T L−i
· T L−1

T L − 1

for 0 < R ≤ T L − 1

T L−1
(31)

and 1 ≤ i ≤ L.

The key difference between Equations (30) and (31) is that the optimal false-positive rate pre-
scribed to any Level i is (T − 1) times lower under tiering than under leveling. The reason is that
with tiering each level contains (T − 1) runs, and so the false-positive rate has to be (T − 1) times
lower to keep R fixed.

Supporting the Whole Range for R. The highest possible value of R is the number of runs in
the LSM-tree: L and L · (T − 1) for leveling and tiering, respectively. Nevertheless, Equations (30)

and (31) are undefined when R is set above T L−1
T L−1 · 1

T−1 under leveling and T L−1
T L−1 under tiering. The

reason is that as R grows beyond these bounds, the FPR prescriptions begin to exceed 1. This
violates the constraint that a false-positive rate can be at most 1.

We now show how to adapt Equations (30) and (31) to handle larger values of R. The first key
insight is that the FPR at level i is strictly greater than the FPR at level i − 1. This means that as
R grows, pi converges to 1 before pi−1. Therefore, as R increases the FPRs converge to 1 for the
different levels in the order of largest to smallest. Hence, we can denote Lunfiltered as the number
of levels from level L and smaller whose FPRs converged to 1, whereas Lfiltered is the number of
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levels from Level 1 and larger with FPRs lower than 1. This partitioning of the levels is shown in
Figure 6. Note that L = Lfiltered + Lunfiltered.

The second key insight is that the sum of FPRs for the filtered levels Lfiltered can never be greater
than 2 with leveling or 2 · (T − 1) with tiering, because the FPR at the largest of these levels with
filters is at most 1, and the rest of the FPRs are exponentially decreasing. This means that if R is
greater than these bounds, then Lunfiltered must be non-zero. In fact, it implies that Lunfiltered is equal

to max(0, �R − 1�) with leveling and to max(0, � R−1
T−1 �) with tiering.

The third key insight is that we can now apply Equations (30) and (31) on a smaller version
of the problem with Lunfiltered levels with Bloom filters and where the sum of false positives for
these levels is R − Lunfiltered with leveling and R − Lunfiltered · (T − 1) with tiering. Our adaptations
appear in Equations (32) and (33), respectively. We use Lu to denote Lunfiltered in these equations
for brevity.

Leveling

pi =
⎧⎪⎨⎪⎩

1, if i > L − Lu

R−Lu

T (L−Lu )−i ·
T (L−Lu )−1 ·(T−1)

T (L−Lu )−1
, else

for 0 < R ≤ L (32)

and 1 ≤ i ≤ L

andLu = max (0, �R − 1�) ,

Tiering

pi =
⎧⎪⎨⎪⎩

1, if i > L − Lu

R−Lu ·(T−1)
T (L−Lu )−i · T (L−Lu )−1

T (L−Lu )−1
, else

for 0 < R ≤ L · (T − 1) (33)

and 1 ≤ i ≤ L

andLu = max
(
0,
⌊

R−1
T−1

⌋ )
.

Simplification. As the number of levels L grows, Equations (30) and (31) converge to Pi =
R

T L−i+1 ·
(T − 1) with leveling and to Pi =

R
T L−i+1 with tiering. These simplified equations already accurately

approximate the optimal false-positive rates when L is ≈5 or above. We can use this insight to
simplify Equations (32) and (33) into Equations (5) and (6), which appear in Section 4.1. For practical
analysis and implementations, we recommend using Equations (32) and (33).

A.1 Modeling Memory Footprint and Lookup Cost

We now show how to derive a closed-form model for main memory utilization for the filters Mfilt

and for lookup cost R in Monkey. We begin with the assumption that there are filters at all levels,
but we later extend the model to also support the case where there are no filters at all levels (i.e.,
Lunfiltered = 0). Our step-by-step example is for leveling, but the case for tiering is identical, except
we need to use Equation (6) rather than Equation (5). We first plug in the optimal false-positive
rates in Equation (5) (for leveling) into Equation (4), which gives the main memory utilization by
the Bloom filters with respect to the false-positive rates,

Mfilt = −
N

ln(2)2
· T − 1

T
· ��

L∑
i=0

1

T i
· ln

(
R · T − 1

T 1+i

)�� .
We then apply logarithm operations to get the following:

Mfilt = −
N

ln(2)2
· T − 1

T
· ln ��R

1+ 1
T +

1
T 2 +· · · · (T − 1)1+ 1

T +
1

T 2 +· · ·

T
1

T 0 +
2

T 1 +
3

T 2 +· · ·
�� .

To simplify the above equation, we apply the formula for the sum of geometric series to infinity
on the exponents of the numerator, and we apply the sum of an geometric series to infinity on the
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exponents of the denominator. We get the following after some further simplification.

Mfilt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N

ln(2)2
· ln �� T

T
T−1

R · (T − 1)
�� with leveling

N
ln(2)2 · ln

(
T

T
T−1

R

)
with tiering.

(34)

We now extend this equation to the case where Lunfiltered > 0. In this case, the filters for Bloom
filters whose FPRs converged to zero take up no space, and so we only need to find the amount of
space occupied by filters in the smaller Lfiltered levels. To do so, we adjust Equation (34) by applying

it on a smaller version of the problem with N /T Lunfiltered entries (i.e., the number of entries in the
smaller Lfiltered levels), and we discount the I/Os to the unfiltered levels by subtracting the number
of runs in those levels from R,

Mfilt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N

ln(2)2 ·T Lunfiltered
· ln �� T

T
T−1

(R − Lunfiltered) · (T − 1)
�� for leveling

N

ln(2)2 ·T Lunfiltered
· ln

(
T

T
T−1

R−Lunfiltered ·(T−1)

)
for tiering.

(35)

Lookup Cost. We now rearrange Equation (34) to be in terms of lookup cost R,

Rfiltered =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T

T
T−1

T − 1
· e−

Mfilt
N ·ln(2)2

with leveling

T
T

T−1 · e−
Mfilt

N ·ln(2)2
with tiering.

(36)

The above equation is still not adapted to the case where Mfilt is so low that some of the filters
at deeper levels cease to exist. To adapt it to this case, we first find the threshold point Mthr eshold

at which the FPR for filters at the highest level has converged to 1. To do so, we plug in the bounds
for R that are T

T−1 and T under tiering and leveling, respectively, into Equation (34). The result
simplifies into the following for both leveling and tiering,

Mthr eshold = N · 1

(T − 1)
· ln(T )

ln(2)2
.

As M drops below Mthr eshold , every time that it is reduced by a factor ofT , the filters at the next
deeper level converge to 1. Thus, we can compute the number of levels with no filters as shown
in Equation (37),

Lunfiltered =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, Mthr eshold ≤ Mfilt⌈

logT

(
Mthr eshold

Mfilt

) ⌉
, Mthr eshold

T L ≤ Mfilt ≤ Mthr eshold

L, 0 ≤ Mfilt ≤ Mthr eshold

T L

. (37)

Now, in the largest levels with no filters, we need to probe every run, which costs Lunfiltered

I/O with leveling and (T − 1) · Lunfiltered I/O with tiering. In the levels with filters, the average
number of runs we must probe is equivalent to the sum of their false positives, and so we can
apply Equation (36) on a smaller version of the problem with N /T Lunfiltered levels. This becomes
Equation (7) in Section 4.2.

B OPTIMIZING THE FILTERS

In Section 4.1 we showed that the optimal FPRs are proportional to the number of entries in each
level. Our analysis assumed that the entry size is fixed, and so we could easily infer the number of
elements in each level and thereby allocate the optimal FPR to its filters. In practice, however, the
average entry size may be variable, or it may change over time. If this is the case, then we can no

ACM Transactions on Database Systems, Vol. 43, No. 4, Article 16. Publication date: December 2018.



16:36 N. Dayan et al.

longer infer the number of elements in each level. To handle this, we extend the implementation
of Monkey to record the number of entries for each run as metadata. We then use this metadata
to find the optimal false-positive rates using Algorithm 2 (and auxiliary Algorithms 3 and 4).
Algorithm 2 takes as parameters (1) the overall amount of main memory Mfilt to allocate the
Bloom filters, and (2) a runs vector with one pair for each run where runs[i].entries is the number
of entries and runs[i].bits is the number of bits allocated to the Bloom filter of the ith run. The
algorithm iteratively moves main memory among the different Bloom filters until the sum of their
false positives is minimized. This algorithm does not need to run often, and it takes a fraction of
a second to execute on our experimentation platform.

ALGORITHM 2: Allocate Mfilt to minimize the sum of FPRs.

AutotuneFilters (Mfilt, runs)

Δ = Mfilt;

runs[0] = Mfilt;

R = runs .lenдth − 1 + eval (runs[0].bits, runs[0].entries );

while Δ ≥ 1 do

Rnew = R;

for int i = 0; i < runs .lenдth − 1; i++ do

for int j = i + 1; i < runs .lenдth; j++ do

Rnew = TrySwitch(runs[i], runs[j],Δ,min);

Rnew = TrySwitch(runs[j], runs[i],Δ,min);

end

end

if Rnew == R then

Δ = Δ/2;

R = Rnew ;

end

return R;

ALGORITHM 3: Moves Δ bits to run1 from run2 if it reduces R.

TrySwitch (run1, run2, Δ, R)
Rnew = R − eval (run1.bits, run1.entries ) − eval (run2.bits, run2.entries ) + eval (run1.bits +
Δ, run1.entries ) + eval (run2.bits − Δ, run2.entries );

if Rnew < R and run2.bits − Δ > 0 then

R = Rnew ;

run1.bits += Δ;

run2.bits −= Δ;

return R;

ALGORITHM 4: Returns the false-positive rate of a Bloom filter.

eval (bits, entries)

return e−(bits/entr ies ) ·ln (2)2
;

C OPTIMIZING MEMORY ALLOCATION

We want to find the optimal memory allocation between Bloom filters and the buffer that mini-
mizes the workload cost: cost (x ) = z · Z (x ) + q ·Q (x ) +w ·W (x ), where x is the memory given to
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Bloom filters. Throughout these derivations, we use the following equations. The terms Zlevel inд ,
Qlevel inд , andWlevel inд are used to calculate the leveling cost and the terms Zt ier inд ,Qt ier inд , and
Wt ier inд are used for the tiering cost.

Zlevel inд (x ) = e−
x
N ·ln(2)2 · T

T
T−1

T − 1
·
(

1

v + 1

) T−1
T

+
v

v + 1

Zt ier inд (x ) = e−
x
N ·ln(2)2 ·T

T
T−1 ·

(
1 − v

v + 1
· T

T − 1
· 1

2

) T−1
T

+
v

v + 1

Qlevel inд (x ) = s · N
B
+ L(x ), Qt ier inд = s ·

N

B
+ L(x ) · (T − 1) (38)

Wlevel inд (x ) =
(T − 1) · (1 + ϕ)

2 · B · L(x ), Wt ier inд =
(T − 1) · (1 + ϕ)

T · B · L(x )

where L(x ) =
ln

(
N ·E
M̂−x
· T−1

T

)
ln (T )

.

Factoring the Cost Function for Leveling. We first use the above terms for leveling to refactor
the cost function with respect to x , the memory given to Bloom filters.

cost (x , “leveling”) = z · Zlevelinд (x ) + q ·
(
s · N

B
+ L(x )

)
+w · (T − 1) · (1 + ϕ)

2 · B · L(x ) (39)

= z · ��e− x
N ·ln(2)2 · T

T
T−1

T − 1
·
(

1

v + 1

) T−1
T

+
v

v + 1
�� + q · s · NB +

(
q +w · (T − 1) · (1 + ϕ)

2 · B

)
· L(x )

= z · T
T

T−1

T − 1
·
(

1

v + 1

) T−1
T

· e−
x
N ·ln(2)2

+
q +w · (T−1) ·(1+ϕ )

2·B
ln (T )

· ln
(
N · E
M̂ − x

· T − 1

T

)
+ z · v

v + 1
+ q · s · N

B
.

Factoring the Cost Function for Tiering. We proceed to refactor the cost function for tiering with
respect to x , the memory given to Bloom filters,

cost (x , “tiering”) = z · Zt ier inд (x ) + q ·
(
s · N

B
+ L(x ) · (T − 1)

)
+w · (T − 1) · (1 + ϕ)

T · B · L(x )

= z · ��e− x
N ·ln(2)2 ·T

T
T−1 ·

(
1 − v

v + 1
· T

T − 1
· 1

2

) T−1
T

+
v

v + 1
��

+ q · s · N
B
+

(
q · (T − 1) +w · (T − 1) · (1 + ϕ)

T · B

)
·

ln
(

N ·E
M̂−x
· T−1

T

)
ln (T )

(40)

= z ·T
T

T−1 ·
(
1 − v

v + 1
· T

T − 1
· 1

2

) T−1
T

· e−
x
N ·ln(2)2

+ z · v

v + 1
+ q · s · N

B

+

(
q · (T − 1) +w · (T−1) ·(1+ϕ )

T ·B

)
ln (T )

· ln
(
N · E
M̂ − x

· T − 1

T

)
.

Equations (39) and (40) can be written more compactly as

cost (x ,pol ) = αpol · e−β ·x + γpol · ln
(

δ

M̂ − x

)
+C, (41)
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where

αlevelinд = z · T
T

T−1

T−1 ·
(

1
v+1

) T−1
T , αt ier inд = z ·T T

T−1 ·
(
1 − v

v+1 ·
T

T−1 ·
1
2

) T−1
T , (42)

γlevelinд =
q+w · (T−1)·(1+ϕ )

2·B
ln(T ) , γt ier inд =

q ·(T−1)+w · (T−1)·(1+ϕ )
T ·B

ln(T ) , (43)

β = ln(2)2

N
, δ = N · E · T−1

T
, C = z · v

v+1 + q · s ·
N
B
. (44)

For the remainder of this section, we will refer to both cost functions (costT (x ) for tiering and
costL (x ) for leveling) as cost (x ), and we will differentiate only when needed.

Finding the optimal memory allocation now can be achieved by finding the xmin that minimizes
the function in Equation (41). To find xmin we first prove that the cost function cost (x ) is convex

in the interval [0, M̂ ). We only care for x ∈ [0, M̂ ), because the memory used for Bloom filters is
necessarily greater or equal to zero and up to the overall memory available, making sure we can
use a small portion for the buffer. To prove convexity we calculate the first and second derivatives.

cost ′(x ) = −α · β · e−β ·x + γ · 1

M̂ − x
, (45)

cost ′′(x ) = α · β2 · e−β ·x + γ · 1

(M̂ − x )2
. (46)

For the useful ranges of values for all the parameters of the model, the terms α , β , γ , δ , and C
are all positive, hence cost ′′(x ) > 0 for x ∈ [0, M̂ ). As a result, the minimum cost is given when
cost ′(x ) = 0. Solving the latter in Equation (47) gives us the optimal memory allocation.

cost ′(x ) = 0⇒ −α · β · e−β ·x + γ · 1

M̂ − x
= 0⇒ e−β ·x =

γ

α · β ·
1

M̂ − x
⇒

x =
1

β
· ln

(
α · β
γ
· (M̂ − x )

)
. (47)

C.1 Finding the Optimal Memory Allocation using the Newton-Raphson Method

Equation (47) does not have an analytical solution. However, solving it is equivalent to finding the
root of a function h(x ), which is defined as the difference between the left part and right part of
Equation (47),

find x0 s .t ., h(x0) = 0 for h(x ) = x − 1

β
· ln

(
α · β
γ
·
(
M̂ − x

))
. (48)

To guarantee that h(x ) has a solution in the interval [0, M̂ ) we study its monotonicity using its
first derivative, and its values at the end of the interval. The derivative is shown in Equation (49),

h′(x ) = 1 + 1/
(
β ·

(
M̂ − x

))
. (49)

Since β > 0 the derivative is always positive for x ∈ [0, M̂ ), henceh(x ) is monotonically increas-
ing. To guarantee that we have a solution we need h(x ) to have opposite sign at the beginning and

the end of the interval h(0) · h(M̂ ) < 0. We start from the extreme for x ≈ M̂ . Since x cannot be
equal to M̂ we consider h(M̂ − ε ) for ε → 0 (from above, i.e., ε > 0),

h
(
M̂ − ε

)
= M̂ − ε − 1

β
· ln

(
α · β
γ
·
(
M̂ −

(
M̂ − ε

)))
= M̂ − ε − 1

β
· ln

(
α · β
γ
· ε

)
. (50)
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We know that α , β,γ > 0, hence limε→0 h(M̂ − ε ) = M − (−∞) = +∞. As a result, to have a so-

lution in [0, M̂ ) we need h(0) < 0,

h(0) = 0 − 1

β
· ln

(
α · β
γ
·
(
M̂ − 0

))
= − 1

β
· ln

(
α · β
γ
· M̂

)
. (51)

Since α , β,γ > 0, h(0) < 0 means

− 1

β
· ln

(
α · β
γ
· M̂

)
< 0⇒ ln

(
α · β
γ
· M̂

)
> 0⇒ α · β

γ
· M̂ > 1⇒ M̂ >

γ

α · β . (52)

Furthermore, if M̂ =
γ

α ·β , then h(0) = 0, which means that the optimal memory allocation is

to give no memory to Bloom filters. Note that we have derived a minimum amount of memory
needed to start using Bloom filters, and this minimum amount of memory needed depends on the
workload, the underlying hardware, and the current tuning with respect to size ratio and merge
policy. With respect to finding the value of x0 as in Equation (48), we now know:

• if M̂ ≤ γ

α ·β then x0 = 0, that is all memory goes to the buffer.

• if M̂ >
γ

α ·β then we need to find the root of h(x ). This can be found using bisection or at a

much faster convergence rate using the Newton-Raphson method.

Newton-Raphson Method. Now we present how to use the Newton-Raphson numerical method

to find the root of h(x ) when it exists in the range [0, M̂ ). To avoid numerical instabilities and since

x = M̂ is not an acceptable solution, we start by considering the maximum possible value of x in

[0,M ), which in fact is M̂ −minimum_paдe_size when we only use one page for the buffer.

If h(M̂ −minimum_paдe_size ) ≤ 0, then the solution is in the range [M̂ −
minimum_paдe_size,M ), and we will assign x0 = M −minimum_paдe_size , because this is
the maximum amount of main memory that makes sense to use for Bloom filters; we need at least
one page for the buffer.

If h(M̂ −minimum_paдe_size ) > 0, then the solution is in the range [0, M̂ −
minimum_paдe_size], and we use the Newton-Raphson method to find the root, starting

from x0 = M̂ −minimum_paдe_size . Since the function is convex and monotonically increasing,
the Newton-Raphson will converge if it starts from the right side of the root. Finally, now we

execute the iterative numerical method using: xn = xn−1 − h (xn−1 )
h′ (xn−1 ) . The overall algorithm is

shown in Algorithm 5.
It can be shown that the convergence rate of the algorithm is quadratic, which can be pessimisti-

cally captured by assuming that with every new iteration the accuracy is increased by one decimal
digit. Since our target accuracy is given by splitting memory in the granularity of a page size the

algorithm needs O (log10 (M̂/B)) steps to reach the desired accuracy.
Algorithm 5 finds the roots of h(x ) solving Equation (48), which in turn gives is the value that

solves Equation (47). This value minimizes the cost function(s) of Equation (41) and gives us the
optimal memory allocation between Bloom filters and the buffer.

D BASELINE

In this Appendix we model the expected zero-result point lookup I/O cost for the state-of-the-art
Rar t . First we derive equations that reflect how the state of the art assigns FPRs to filters with both
leveling and tiering. We do so by setting all false-positive rates p1,p2 . . .pL in Equation (3) to be
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ALGORITHM 5: Final Optimal Memory Allocation

optimalMemoryForFilters (M̂,T ,policy; z,v,q,w, s,E,N ,ϕ,B)

error_tolerance =
minimum_paдe_size

M̂
; //stop optimizing when the granularity reaches the page size

calculate: α = αpolicy //Equation (42)

calculate: γ = γpolicy //Equation (43)

calculate: β,δ ,C //Equation (44)

if M̂ ≤ γ
α ·β then

Mfilt = 0;

else

x0 = M̂ −minimum_paдe_size;

if x0 ≤ 0 then

//this might happen only M̂ is very small

Mfilt = 0;

else
//the iterative Newton-Raphson algorithm

// using Equation (48)

if h(x0) ≤ 0 then

//early termination because the solution is very close to M̂
Mfilt = M̂ −minimum_paдe_size;

else

error = M̂ ;

while error > error_tolerance · M̂ do

x1 = x0 − h (x0 )
h′ (x0 ) ; // using Equations (48) and (49)

error = |x1 − x0 |;
x0 = x1;

end

Mfilt = x1;

end

end

end

return Mfilt;

equal to each other, simplifying, and rearranging. The results are Equations (53) and (54).

Leveling

pi =
Rar t

L
(53)

for 0 < Rar t ≤ L,

Tiering

pi =
Rar t

L · (T − 1)
(54)

for 0 < Rar t ≤ L · (T − 1).

Second, we plug the false-positive rates in Equations (53) and (54) into Equation (4) and sim-
plify by applying logarithm operations and sums of geometric series. The result is shown in
Equation (55),

Mfilt =
N

ln(2)2
·
(
1 −T −L

)
· ln

(
L

Rar t

)
. (55)

As L grows, Equation (55) converges into the following:

Mfilt =
N

ln(2)2
· ln

(
L

Rar t

)
.
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Fig. 14. Monkey maintains its advantages with a block cache. It utilizes it to query recently touched keys.

We can now rearrange in terms of R, for both leveling and tiering.

Rar t =

⎧⎪⎪⎨⎪⎪⎩
L · e−

Mfilt
N ·ln(2)2

, with leveling

L · (T − 1) · e−
Mfilt

N ·ln(2)2
, with tiering.

(56)

Hence, the complexity of Rar t is O (L · e−Mfilt/N ) for leveling and O (L ·T · e−Mfilt/N ) for tiering.

E CACHING

In the main part of the article, both RocksDB and Monkey do not use a cache. We do that by
explicitly disabling the block cache from within RocksDB. We use this setup to isolate the impact
of the new strategy for Bloom filter allocation to assess the potential of Monkey and its impact
on the pure LSM-tree structure. In this experiment, we enable the block cache and we show that
Monkey (1) maintains its advantage and (2) can utilize a cache when recently accessed keys are
queried.

We set-up this experiment as follows. We activate the block cache feature of RocksDB, which
caches recently accessed data blocks (16KB in our setup). We use three different settings whereby
the block cache size is 0%, 20%, and 40% of the overall data volume. We repeat the default data
loading setup from the main part of the article. Once data are loaded, we warm up the cache using
non-zero-result lookups with different temporal localities. To control temporal locality, we use the
temporality coefficient c (as in the experiment for Figure 12(D) in Section 5) whereby c percent
of the most recently updated entries receive (1 − c ) percentage of all lookups. When the cache is
warm (i.e., full), we continue issuing the same workload and measure average lookup time. In this
way, we test for various workloads in terms of how frequently accessed keys we query. By varying
this parameter we are able to test various cases in terms of the utility of the cache.

The results are shown in Figure 14. Figure 14(A) serves as a reference by depicting performance
when no cache is used. This is the same as we have observed in previous experiments with Monkey
outperforming RocksDB across the whole workload range. We observe the same overall behavior
with Monkey outperforming RocksDB across the two other graphs in Figure 14(B) and (C) when
the cache is enabled. The difference here is that when we query very recently accessed keys, these
keys will likely be in the cache. As a result, as we query more recently accessed items, both Monkey
and RocksDB nearly converge. Monkey can utilize the cache for frequently accessed items in the
same way as RocksDB. An additional property is that even when lookups mostly target a small
set of entries with a cumulative size that is much smaller than the overall cache size (e.g., when
c is set to 0.9 in Figure 14(B) and (C)), Monkey still maintains a small advantage (that collectively
for many queries becomes important). The reason is that the cache cannot store the full set of
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frequently accessed entries and thereby eliminate I/O for accessing them; it is a block cache and
so it stores one 16KB data block for every recently accessed 1KB key-value entry.9

Overall, Monkey utilizes the cache and maintains its performance advantage due to better allo-
cation of the false-positive rates across the Bloom filters. The Bloom filters and the cache mitigate
different sources of latency: false positives and true positives, respectively. In this work, we fo-
cused on optimizing the Bloom filters to reduce and control the rate of I/Os due to false positives.
Further investigation could also be beneficial to tune the cache to reduce I/Os due to true positives.

F I/O COSTS FOR LOG AND SORTED ARRAY

In this Appendix, we give intuition for the I/O costs for a log and sorted array in Figures 4 and 8.
The zero-result point lookup cost for a sorted array is O (e−Mfilt/N ), because the false-positive rate
(FPR) is O (e−Mfilt/N ) and accessing the sorted array costs one I/O due to the fence pointers. The
update cost for a sorted array isO ( N ·E

Mbuf
· 1/B) I/Os, because every time that the buffer fills up with

a data volume of Mbuf bits and spills to storage, a merge operation involving the entire data volume
of N · E bits take place, and we divide by B to give the unit in terms of storage blocks. The zero
result point lookup cost for a log isO ( N ·E

Mbuf
· e−Mfilt/N ), because there are O ( N ·E

Mbuf
) runs on disk, and

the access probability for each of them isO (e−Mfilt/N ). The update cost for a log isO (1/B), because
every entry gets written once to disk, and we divide by B to give the unit in blocks.

G WORST-CASE WORKLOAD FOR UPDATES

In this appendix, we provide a proof for why the worst case workload for updates is when an
entry gets updated at most once within a period of N updates. If an entry gets updated once per
every window of B · P ·T j or fewer updates overall, then it never gets beyond level j + 1, because
a more recent update with the same key causes it to get discarded. Therefore, the update cost for
the entry is O (j/B) I/O with tiering and O (T · j/B) I/O with leveling. For example, if an entry that
gets merged once every window of B · P updates (the buffer size), then it always gets eliminated
by a more recent entry in level 1, and so the amortized I/O cost is O (1/B) I/O with tiering and
O (T /B) I/O with leveling. Now let’s suppose all entries updated by the application are updated
again every period of B · P ·T j updates. In this case, merge operations in the system never recurse
beyond Level j + 1, because the resulting run is never large enough to spill to level j + 1 as most
entries get eliminated by more recent versions. Thus, the overall update cost for any update in is
O (j/B) I/O with tiering and O (T · j/B) I/O with leveling. Using this cost model, we observe that
update cost is maximized when J is equal to L, as this means that merge operations recurse to
the largest level and incur the highest possible overhead. When j is set to L, then every entry gets
updated once per window of N updates, which is the worst-case that we initially defined. This
concludes the proof.

We can approximate a worst-case workload for updates by issuing uniformly randomly dis-
tributed insertions across a much larger key space than the data size. This ensures that the most
entries do not get replaced, so most inserted entries incur the highest possible I/O overhead over
time.

H DERIVING UPDATE COST

In this Appendix, we show how to derive update cost. With leveling, the jth run that arrives at
a level triggers a merge operation involving the existing run at the level, which is the merged
outcome of the previous (T − j ) runs that arrived since the last time the level was empty. To get

9Caching entries instead of blocks may be more effective though there may be side-effects with cache maintenance.
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the overall write-amplification per level due to merging before a level runs out of capacity, we

thus sum up
∑T−1

j=1 (T − j ). This is an arithmetic sequence that sums up to T ·(T−1)
2 . We divide by

the number of runs at a level T to get the average write-amplification across all the runs, thus
resulting in T−1

2 . For tiering, the cost of writing runs at a level before it reaches capacity is
∑T−1

j=1 1,

and we divide byT to get the average write-amplification per level per run: T−1
T

. We then multiply
both expressions by the number of levels L and by the cost ratio between writes and reads to
storage (1 + ϕ), and we divide by the block size B to get the measurement in I/Os. The outcome is
Equation (10).

I FENCE POINTERS SIZE

In this Appendix, we derive the proportion between the size of the fence pointers and the raw
data size. Every fence pointer is a 2-tuple of size |FP | consisting of (1) an application key and (2)
a pointer to some corresponding storage block in some run that begins with this given key. As
the total number of blocks in LSM-tree is N

B
and there is one fence pointer for every block, the

overall amount of space taken by the fence pointers is |F P | ·N
B

. We divide this expression by the raw

data size N · E to get the proportion between the fence pointers size and the raw data size as |F P |
B ·E ,

where B · E is the block size. Now, suppose that each fence pointer consists of a 16-byte key and
an 8-byte pointer to storage, and that each disk block size is 16KB. In this case, the fence pointers
take up 0.1% of the raw data size, which is three orders of magnitude smaller than the data size.
This ratio may be even lower as the keys in the fence pointers are typically compressed.

J COMPLEXITY ANALYSIS OF POINT LOOKUP COST WITH MONKEY

Here we analyze the cost of zero-result point lookups in Monkey based on Equations (7) and (8) in
Section 4.2. We start with the case where Mf il ter s > Mthreshold, meaning there are Bloom filters for
all levels. In this case,Runfiltered is zero, and so we focus on analyzing the cost contribution ofRfiltered .

With leveling, Rfiltered in Equation (7) is T
T

T−1

T−1 · e
−

Mfilt
N ·ln(2)2

I/O, which simplifies toO (e−Mfilt/N ) I/O,

because T
T

T−1

T−1 is a small constant for any value of T . With tiering, Rfiltered Equation (7) is T
T

T−1 ·

e−
Mfilt

N ·ln(2)2
I/O, which simplifies to O (T · e−Mfilt/N ) I/O as the expression T

T
T−1 simplifies to O (T )

asymptotically with respect toT . These expressions are maximized when Mfilt is set to Mthr eshold ,
in which case they become O (1) and O (T ) for leveling and tiering, respectively. Hence, Rfiltered is
at most O (1) with leveling and at most O (T ) with tiering.

We now analyze Monkey when Mthr eshold/T
L < Mf il ter s ≤ Mthr eshold , the case where we do

not have Bloom filters for a subset of the larger levels. First, we note from Equations (7) and (8)
that when Mf il ter s is equal to Mthr eshold , the value of Runfiltered is O (1) with leveling and O (T )
with tiering. Second, we note that Runfiltered increases monotonically as Mf il ter s decreases. Third,
we recall from above that Rfiltered is in general at most O (1) with leveling and at most O (T ) with
tiering. These three observations imply that Runfiltered dominates Rfiltered across this whole range of

Mthr eshold/T
L < Mf il ter s ≤ Mthr eshold , and so we can analyze Runfiltered while ignoring Rfiltered as

the contribution of Rfiltered to the I/O cost, in this case, is asymptotically negligible.
From Equation (7), we observe that Runfiltered is O (Lunfiltered) with leveling and to O (T ·

Lunfiltered) with tiering. From Equation (8), we see that Lunfiltered is O (logT (Mthr eshold/Mfilt)) when
Mthr eshold

T L < Mf il ter s ≤ Mthr eshold . We proceed to simplify Lunfiltered as follows in Equation (57). In

part (57a, we plug in the value of Mthr eshold from Equation (8). In part (57b), we apply the product
rule on logarithms to split the log into two components, and in part (57c) we eliminate the com-
ponent logT (ln(T )/T ), because it is a small constant for any value ofT . The result is that Lunfiltered

ACM Transactions on Database Systems, Vol. 43, No. 4, Article 16. Publication date: December 2018.



16:44 N. Dayan et al.

is O (logT (N /Mfilt)).

O (Lunfiltered) = O
(
logT

(
Mthr eshold/Mfilt

))
, (57a)

= O
(
logT

(
(N /Mfilt) · (ln(T )/T )

))
, (57b)

= O
(
logT

(
N /Mfilt

)
+ logT (ln(T )/T )

)
, (57c)

≈ O
(
logT

(
N /Mfilt

))
. (57d)

As a result, point lookups cost, measured as Runfiltered for the memory range Mthr eshold

T L <
Mf il ter s ≤ Mthr eshold , is O (logT (N /Mfilt)) with leveling and O (T · logT (N /Mfilt)) with tiering.

K MAPPING TO SYSTEMS IN INDUSTRY

In this appendix, we explain how to map the design space as formalized in this article to the tuning
knobs of systems in industry. Thus, we show how we populated Table 4 with the default tuning
knobs of mainstream systems in terms of our design space.

RocksDB. RocksDB [40] allows setting the merge policy using the options .compaction_style pa-
rameter. The default policy is kCompactionStyleLevel (leveling) and the size ratio can be set using
the parameter options .tarдet_f ile_size_multiplier (10 by default). With this compaction style, ev-
ery run is partitioned into multiple SSTables. Whenever a Level i reaches capacity, an SSTable from
this level is chosen and merged with SSTables with an overlapping range at Level i + 1.

RocksDB has an additional compaction style called Universal Compaction, which can be turned
on by setting the parameter options .compaction_style to the option kCompactionStyleUniversal .
Universal compaction is similar to leveling with two differences. First, every run is a whole file, and
so the granularity of merge operations is a run rather than a fragment of a run. Second, merge oper-
ations are preemptive across levels: if it is predicted that a merge operation would recurse to Level
i as all smaller levels are at capacity, then we merge all the runs from levels 1 to i from the onset. To
set the size ratio, RocksDB exposes a parameter options .compaction_options_universal .size_ratio,
which is defined as the percentage by which a given File j has to be smaller than the next larger file
j + 1 for the merge not to include File j + 1. This parameter maps to the size ratio T in this article
using the formula: options .compaction_options_universal .size_ratio = (T − 2) · 100. The default
tuning of this policy setsoptions .compaction_options_universal .size_ratio to 1, which corresponds
to a size ratio T of ≈ 2 in our design space.

RocksDB has an additional API that enables monitoring and merging SSTables from the appli-
cation client code. We used this API in this work to implement tiering on top of RocksDB.

Cassandra. Cassandra [51] offers the option SizeTieredCompactionStrategy, which corresponds
to tiering, and it allows configuring the size ratio directly using the parameter min_threshold ,
which directly corresponds to how we define the size ratio T in this article. Cassandra also offers
the option LeveledCompactionStrategy, which corresponds to leveling with a fixed, untunable size
ratio of 10.

HBase. HBase [8] enables both tiering and leveling with any size ratio. It exposes a ratio parame-
ter: hbase .store .compaction.ratio, but it is defined differently than in this article: a file j is included
in a merge operation if it is smaller or equal in size to the cumulative sum of all smaller files multi-
plied by hbase .store .compaction.ratio. Setting this ratio above 1 results in a leveled merge policy,
whereas setting it below 1 results in tiered merge policy. We map from our design space to this pa-
rameter as follows: to enable leveling with size ratio T , set hbase .store .compaction.ratio = T − 1,
whereas to enable tiering with a size ratio ofT set hbase .store .compaction.ratio = 1

T−1 . HBase sets
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this parameter by default to 1.2, which effectively corresponds to a size ratio T of 2 in our design
space.

Accumulo. Accumulo [6] also enables tiering and leveling with any size ratio. Configuring this is
analogous to how it is done in HBase via the parameter table .compaction.major .ratio. Accumulo
sets it by default to 3, which corresponds to leveling with a size ratio of 4 in our design space.

LevelDB. LevelDB [44] hard codes the size ratio to 10 and only enables a leveled merge policy. As
it exposes no tuning parameters for merge operations, it is a fixed point in our design space.

L GENERATION OF COST MODELS IN EVALUATION FIGURES

Here, we explain how we generated each of the dotted cost model curves used in Section 5.

Figure 12(A) and (B). The model curves in Figure 12(A) and (B) are generated by multiplying
Equations (56) and (7) for lookup cost with RocksDB and Monkey, respectively, by 360 microsec-
onds, the latency that we incurred on average for 1 I/O during this experiment on an Amazon AWS
SSD. Note that Equation (7) for lookup cost with Monkey is independent of L, because it is derived
by taking L to infinity to enable simplification. Therefore, Equation (7) is flat, giving the latency
that Monkey is expected to converge to as the number of levels grows.

Figure 12(C) and (D). The model curves in Figure 12(C) and (D) are generated for the state of
the art and for Monkey by multiplying Equations (56) and (7), respectively, by 290ms for SSD and
1.9ms for HDD as we vary the number of bits per entry.

Figure 12(E) and (F). For the state of the art and Monkeyzero , we used Equation (9) for the cost
of a non-zero-result point lookups, plugging in different values for R (the sum of FPRs) and for
pL (the FPR at the largest level). For the state of the art, we plugged in Equation (56) for R and
Equation (53) for pL . For Monkeyzero , we plugged in Equation (7) for R and Equation (5) for pL . For
Monkeyдener al , we used the bottom part of Equation (19) with Lunfiltered set to 1.

Figure 13(A). We first obtained the value ofv for each point using X /100
1+X /100 where X is the percent-

age of non-zero-result point lookups in the workload. For the state of the art and Monkeyzero , we
used Equation (13) for the weighted cost of a mix of zero-result and non-zero-result point lookups
in the workload, plugging in different values for R and for pL . For the state of the art, we plugged in
Equation (56) for R and Equation (53) for pL . For Monkeyzero , we plugged in Equation (7) for R and
Equation (5) for pL . For Monkeyдener al , we obtained the model using the top part of Equation (19).
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