
CUBIT: Concurrent Updatable Bitmap Indexing
Junchang Wang

Nanjing University of Posts and Telecommunications
wangjc@njupt.edu.cn

Manos Athanassoulis
Boston University
mathan@bu.edu

ABSTRACT

In-memory bitmap indexes are widely used for read-intensive an-
alytical workloads because they are clustered and offer efficient
reads with a small memory footprint. However, they are generally
inefficient to update. As analytical applications are increasingly
fused with transactional applications, leading to the emergence of
hybrid transactional/analytical processing (HTAP), it is desirable
that bitmap indexes support efficient concurrent real-time updates.
In this paper, we propose Concurrent Updatable Bitmap indexing
(CUBIT) that offers efficient real-time updates that scale with the
number of CPU cores used and do not interfere with queries. Our
design relies on three principles. First, we employ a horizontal bit-
wise representation of updated bits, which enables efficient atomic
updates without locking entire bitvectors. Second, we propose a
lightweight snapshotting mechanism that allows queries to run on
separate snapshots and provides a wait-free progress guarantee.
Third, we consolidate updates in a latch-free manner, providing
a strong progress guarantee. Our evaluation shows that CUBIT
offers 3–16× higher throughput and 3–220× lower latency than
state-of-the-art updatable bitmap indexes. CUBIT’s update-friendly
nature widens the applicability of bitmap indexing. Experimenting
with OLAP workloads with standard, batched updates shows that
CUBIT overcomes the maintenance downtime and outperforms
DuckDB by 1.2–2.7× on TPC-H. For HTAP workloads with real-
time updates, CUBIT achieves 2–11× performance improvement
over the state-of-the-art approaches.

PVLDB Reference Format:

Junchang Wang and Manos Athanassoulis. CUBIT: Concurrent Updatable
Bitmap Indexing. PVLDB, 18(2): XXX-XXX, 2024.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/junchangwang/CUBIT.

1 INTRODUCTION

Access Path Selection.When a query targets columns with sec-
ondary indexes, Database Management Systems (DBMSs) evaluate
the available access paths based on characteristics like selectivity to
choose between an index scan and a full sequential scan [26]. His-
torically, indexes are tree-based structures like B+-trees [29, 36, 57]
and tries [31, 39]. It is widely accepted that trees are valuable only
for extremely selective queries; otherwise, scans are better [19, 53].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Scans

(A few tuples) MediumLow (~10%) High selectivity

H
ig

h
L

o
w

N
o Bitmap indexes

BTrees
CUBIT

U
p

d
at

e
ra

te

Figure 1: In the presence of both queries and updates, access

path selection between tree-based indexing, bitmap indexing,

and sequential scans depends on selectivity and update rate.

Unlike prior bitmap indexes that were generally used for

read-only workloads, our solution, CUBIT, enables bitmap

indexing for higher update rates: OLAPwith batched updates

(§6.4) and HTAP with real-time updates (§6.5).

Bitmap Indexes. For read-only workloads, bitmap indexes are a
great alternative, especially when the indexed attribute has low
cardinality – often quantified as 𝑐/𝑛, where 𝑐 is the ratio of the
number of distinct column values and 𝑛 the number of rows in the
table [47]. In its basic form, a bitmap index targets one attribute
(of 𝑐 unique values). The most common design, termed equality

encoding, associates each value of the attribute’s domain with a
bitvector, which contains𝑛 bits, one for each row [7]. The conceptual
𝑐 ×𝑛 bit matrix that the bitvectors form allows queries to be quickly
answered using efficient bitwise instructions [3, 7, 59].
Bitmap Index as a Secondary Index. Besides their fast query
performance, bitmap indexes offer intrinsic benefits when used
as secondary indexes in DBMSs. First, they have a small memory

footprint because, apart from the bit-matrix and a mapping from
the key domain to the corresponding bitvectors (columns of the
bit-matrix), they do not store extra metadata like keys and pointers
to tuples. Second, they are clustered in the sense that the order of
the entries in the generated bitvector follows the physical order
of the tuples. This significantly boosts query performance over
traditional secondary indexes, which are generally unclustered.
Third, bitmap indexes are composition-friendly, that is, multiple
bitmap indexes on different attributes can be composed on demand,
which outperforms multi-column tree indexes for large datasets
(more details in §2). As an example, using a row-based DBMS for
analytical queries, our bitmap index reduces memory consumption
by 92% and boosts query performance by 1.7–2.6× when compared
with tree-based multi-column indexes (more details in §6.4.1). In
addition, for moderate selectivity, bitmap indexes incur less CPU
cache and TLB misses than scans. For example, DuckDB [48] (a
column-based OLAP DBMS) with our bitmap index achieves a ∼2×
performance improvement over its highly optimized scan, and this
trend continues until the selectivity reaches up to 10% (§6.4.2).
Challenges with Bitmap Indexes. Despite their benefits, bitmap
index designs do not typically target update-intensive workloads
[47, 50]. To support updates, DBMSs either drop existing bitmap
indexes and then rebuild them from scratch, or perform expensive
batched updates that cause temporary inefficiencies [37, 47], while

https://doi.org/XX.XX/XXX.XX
https://github.com/junchangwang/CUBIT
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

1 4 8 16 24 32
Number of cores

0

500

1000

1500

2000

Th
ro
ug

hp
ut
 (o

p/
s) (a)Our approach

UpBit
In-place
UCB

0 2000 4000
Update latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

(b)

Our approach
UpBit
In-place
UCB

Figure 2: (a) Existing updatable bitmap indexes do not scale

on multicores, and (b) have long tail latency.

some systems offer more efficient updates using multi-versioning
and segmentation (e.g., Oracle which is closed-source). Overall,
bitmap indexes target read-mostly workloads, as shown in Fig. 1.

To address this challenge, recently proposed updatable bitmap

indexes [3, 6] support real-time Update, Delete, and Insert oper-
ations (henceforth, UDIs in short) using additional bitvectors to
capture incoming updates in an out-of-place manner. In particular,
UCB [6] uses a single bitvector to invalidate rows, while UpBit [3],
the state-of-the-art solution, associates one new bitvector with each
value of the domain to serve as a buffer for UDIs (§2).

When integrating these approaches into modern DBMSs, we
found the following three drawbacks. (1) Prior updatable bitmap in-
dexes were designed to run sequentially. When used on multicores,
in-progress UDIs block concurrent queries that may fail to meet
performance requirements (e.g., from a Service-Level Agreement).
(2) UDIs on bitmap indexes flip bits in bitvectors that are com-
monly compressed using Run-Length-Encoding-based techniques
like WAH [60]. To do this, one has to decode each bitvector, flip
the corresponding bits, and re-encode. This decode-flip-encode pro-
cedure is time-consuming with large datasets. (3) Skewed datasets
raise even higher contention around a few hot-spot bitvectors.

To demonstrate these performance issues, we parallelize and
experiment with three bitmap index designs that support updates,
In-place [53], UCB [6], and UpBit [3], by using a 48-core system (see
§6 for experimental setup). Figure 2a shows that In-place and UCB
scale only up to 4 CPU cores, while UpBit scales better but plateaus
at 16 cores. Moreover, because of the increased contention at high
concurrency levels, these bitmap indexes suffer from surprisingly
long tail latency. Figure 2b shows that with 16 cores, their UDI
latency can reach up to 6 seconds (see §6.1 for queries).
Our Approach. To solve the aforementioned drawbacks, we pro-
pose CUBIT, a new design for Concurrent Updatable Bitmap in-
dexing. CUBIT offers real-time updates and scales with the number
of CPU cores, as shown in Figure 2 (blue lines).

From a bird’s-eye view, CUBIT performs UDIs on compressed
value bitvectors (VB) in an out-of-place manner, leverages multi-
versioning for wait-free queries [21], and adopts latch-free tech-
niques for real-time UDIs. Overall, CUBIT’s design encompasses:
(A) Horizontal Update Deltas (HUD).We introduce HUD, a horizon-
tal representation of the bits flipped by each UDI (§4.1). Contrary to
prior work that buffers UDIs in additional bitvectors, we organize
out-of-place updates per row of the bit-matrix in contiguous mem-
ory, concentrating all bit-flips to a single place (instead of multiple
bitvectors). HUDs enable atomic UDIs without locking entire VBs,
resolving the major update bottleneck for bitmap indexes (§3).
(B) Lightweight Snapshots. We develop a lightweight snapshotting
mechanism for bitmap indexes (§4.5) using compact deltas (§4.2),

batched merges (§4.3), and segmentation (§4.4). CUBIT allows
queries and UDIs to work on different index snapshots and guaran-
tees that an analytical query can be completed in a finite number
of steps, even when UDIs are in progress. In contrast, the atomicity
granularity of tree-based indexes (e.g., Bw-Tree [36] and ART [31])
is smaller, and their range queries could be interrupted by UDIs.
(C) Scalable Synchronization.Concurrency control mechanisms like
two-phase locking (2PL) and multi-version concurrency control
(MVCC) use latches to serialize UDIs on the same portion of data.
However, updatable bitmap indexes face high contention because
(1) UDIs lock bitvectors (which are typically significantly fewer
than records or pages that are locked when using other indexes),
(2) and skewed UDIs concentrate around a few hot-spots bitvectors
leading to even higher contention (further discussed in §3). To meet
the time constraints for indexing, we address this issue by develop-
ing a consolidation-aware [23] and latch-free [22] UDI mechanism
(§4.7). Rather than competing with each other, CUBIT’s UDIs work
synergistically to reduce contention, thus making CUBIT scalable
even with high UDI ratios and skewed datasets.
Broader Applicability. Being update-friendly, CUBIT widens the
applicability of bitmap indexing by enabling DBMSs to maintain
bitmap indexes on frequently updated attributes, in a variety of use
cases, including OLAP with batched updates (§6.4) and HTAP with
real-time updates (§6.5), the green area shown in Figure 1. CUBIT
instances not only reduce the amount of data read from storage for
the Scan operator, but also provide sufficient information for the
Join and Aggregation operators, eliminating the need to build the
costly intermediate data structures (e.g., hash table for joins).
Contributions. Our work offers the following contributions.
• We parallelize state-of-the-art bitmap indexes and analyze their

bottlenecks. Based on the insights gained from this effort, we
proposeCUBIT, a concurrent in-memory updatable bitmap index
that combines (i) a horizontal bitwise representation of updates,
(ii) lightweight snapshotting, and (iii) a latch-free design.

• We extensively evaluate CUBIT using synthetic workloads and
industry-grade benchmarks, showing that it offers 3–16× higher
throughput than the baselines at different concurrency levels,
with 4–13× lower query latency and 3–220× lower UDI latency.

• CUBIT expands the applicability of bitmap indexing by enabling
bitmap indexes on frequently updated attributes. We demon-
strate this by integrating CUBIT in both DBx1000 [62] and
DuckDB [48], using both OLAP and HTAP workloads.
– Our evaluation in DBx1000 on TPC-H with standard refresh

operations [54] shows that CUBIT (1) does not introduce
any maintenance overhead, and (2) compared to state-of-the-
art indexes (ART, Bw-Tree, and B+-Tree), provides 1.7–2.2×
higher throughput with up to 92% lower memory footprint.

– Our evaluation shows that the CUBIT-powered query en-
gine achieves a 1.2–2.7× query performance improvement
on 12 out of 22 TPC-H queries compared to optimized native
approaches in DuckDB.

– Experimenting with CH-benCHmark [11] with real-time up-
dates shows that CUBIT provides 2.1–11.2× higher through-
put than DBx1000 (with indexes and scans).

• Overall, our results show that CUBIT is a promising indexing
candidate for selective queries on workloads with updates.

Figure 3: (a) A classic bitmap index. (b) The state-of-the-art

updatable bitmap index UpBit [3] that associates a UB with

each VB. (c) UpBit’s UDIs update highly-compressible UBs.

2 BACKGROUND ON BITMAP INDEXES

Bitmap Indexes Basics.Modern bitmap index designs [44, 45, 59]
introduce a bit-matrix structure consisting of several bitvectors, one
for each distinct domain value. The 𝑘𝑡ℎ bit of each bitvector is set to
1 if the 𝑘𝑡ℎ row of the attribute is equal to the corresponding value;
otherwise, it is set to 0. Figure 3a shows an uncompressed bitmap
index for an attribute with three different values. This bit-matrix
structure fits static analytical workloads; an equality query simply
reads the corresponding bitvector, and a range query performs a
bitwise OR between the corresponding bitvectors.
Keeping Bitvectors Small. Bitvectors contain a lot of 0s, thus being
amenable to compression. One class of compressing techniques
uses Run-Length Encoding (RLE) [1, 10, 12, 18, 60]. In particular,
Word-Aligned Hybrid (WAH) [60] splits the original bit-string into
31-bit words. A compressed bitvector contains two types of words:
fill and literal words. The first encodes long sequences of 0s or 1s
using RLE. The latter is for segments blended with 0s and 1s. For
each word, the most significant bit is used to indicate its type (fill or
literal). A literal word uses the remaining 31 bits to store the original
bit-pattern, while a fill word uses the second most significant bit
to indicate if the fill is all 0s or 1s, and the remaining bits to keep
track of the number of consecutive fill words. In our work, we use
the widely used open-source implementation of WAH [3, 6, 59].
Updatable Bitmap Indexes. Only a handful of bitmap indexes are
update-friendly because of the costly decode-flip-encode procedure
[3, 6, 53]. The most straightforward approach, denoted In-place [53],
directly updates the underlying bit-matrix. For example, to update
the 𝑛𝑡ℎ row from value 𝑣1 to 𝑣2, In-place decodes-flips-encodes both
bitvectors for 𝑣1 and 𝑣2. To reduce this cost, UCB [6] introduces
an additional compressed existence bitvector (EB) that indicates
the validity of each row. Initially, all bits in EB are set to 1s. A
delete operation sets the corresponding bit in EB to 0. An update
operation appends the new value to the tail of the bitvector and
maps the old row ID to the new one. The efficiency of UCB is
predicated on EB being highly compressible and value bitvectors
being immutable. However, their performance deteriorates sharply
as UDIs accumulate and EB becomes less compressible [3].
UpBit. To address the above challenges, UpBit [3] maintains for
every value in the domain, 𝑣𝑎𝑙 , a value bitvector (VB) and an extra
update bitvector (UB) to keep track of updates to VB (Figure 3b).
Both VBs and UBs are compressed. To update the 2𝑛𝑑 row from
value 20 to 10, UpBit flips the 2𝑛𝑑 bits of the UBs of values 10
and 20 (Figure 3c). Similarly, in order to delete the 𝑛𝑡ℎ row, UpBit

Secondary Indexes

Underlying Tuples

B -Tree
+(a)

1 2

3 6

13

3 4 5

Figure 4: Queries of the form “QTY < 3” by using either a

B
+
-tree or a bitmap index. The bitmap index is clustered,

composition-friendly, and space-efficient.

retrieves the current value of this row and then flips the 𝑛𝑡ℎ bit of
the corresponding UB. In order to insert a new entry, UpBit appends
1 at the tail of the corresponding UB and increments the global
variable N_ROWS [3]. The core idea of UpBit is to perform UDIs
on UBs. Because UBs are sparse and, thus, highly compressible,
updating them is inexpensive. In several cases, it can work directly
on compressed bitvectors, and when this is not possible, the decode-
flip-encode cycle is lightweight. A query on value 𝑣𝑎𝑙 performs a
bitwise XOR on the corresponding <VB, UB> pair to retrieve the
up-to-date bitvector, and a range query performs bitwise OR among
the resulting bitvectors. As 1s in UBs accumulate, UpBit merges
<VB, UB> pairs opportunistically (at query time) and generates new
versions of VBs along with empty, highly compressible UBs [3].
Bitmap Indexes vs. Tree Indexes. To motivate our goal of widen-
ing the applicability of bitmap indexes, we now compare them with
tree-based indexes, as shown in Figure 4. Consider a table with the
primary-key attribute ID and a non-primary-key attribute Quan-
tity (QTY for short) that spans the range of integers [1, 50] and
that the underlying tuples are fixed-length (at the bottom of the
figure). A B+-tree secondary index on attribute QTY can accelerate
range queries as shown in Figure 4a. We use the QTY values as
the index keys and associate each leaf pointer with a linked list in
case of duplicates. Each node in the list contains a pointer to the
corresponding tuple and the ID to keep the list ordered. For a range
query of the form “QTY < 3”, we 1 traverse down the tree to the
leaves, 2 visit the linked lists, and 3 access underlying tuples
(red arrows in Figure 4), avoiding full scans.

On the other hand, Figure 4b illustrates a bitmap index on the
same attribute. The bitmap consists of 50 compressed bitvectors,
which, for ease of presentation, are laid out horizontally. In order
to answer the same query “QTY < 3”, we 1○ perform a bitwise OR
operation between the two bitvectors of values 1 and 2 to generate
an on-the-fly resulting bitvector, and 2○ access the underlying
fixed-length tuples sequentially in one pass (blue arrows).
The Benefits of Bitmap Indexing shown in Figure 4 are:
Clustered. Bitmap indexes are clustered [53] in the sense that the
order of the entries in the generated bitvector follows the physical
order of the tuples (blue arrows in Figure 4). Therefore, queries
on bitmap indexes read data pages sequentially and only once.
This addresses one significant performance drawback of existing
secondary indexes that are typically unclustered (red arrows).
Small Memory Footprint. Being clustered, a bitmap index can effi-
ciently transform the 1s in the resulting bitvector to row IDs, thus
minimizing metadata size. The memory consumption of a bitmap

index is mainly due to its bitvectors, which can be highly com-
pressed (§2). This addresses a significant space overhead of existing
secondary indexes: tree nodes store metadata like pointers to tuples
and, in some cases, primary key values, as shown in Figure 4.
Composition-friendly. In order to support multi-column indexes
covering multiple attributes (e.g., QTY and an additional Date),
bitmap indexes create an instance for each attribute and apply
bitwise ANDs/ORs among the corresponding bitvectors in both
instances. In contrast, tree-based indexes commonly build a single
index for multiple attributes by using composite search keys (e.g.,
<QTY, Date>) [53]. In this paper, we demonstrate that with large
datasets, composition-based bitmap indexes are faster than tree-
based indexes. The reason is that bitmap indexes have a smaller
memory footprint, and queries mainly perform sequential memory
access to bitvectors, incurring fewer TLB and LLC misses (§6.4.1).

3 WHY BITMAP INDEXES DO NOT SCALE

Prior updatable bitmap indexes are single-threaded and do not allow
UDIs and queries to execute simultaneously. We now discuss how to
parallelize these designs for modern multi-cores and analyze their
performance bottlenecks to motivate CUBIT’s design decisions.
Bitmap Index Parallelization. UpBit can be parallelized using a
fine-grained synchronization mechanism, as illustrated in Figure
5a. Specifically, the <VB, UB> pair of every value 𝑣 is protected by a
reader-writer latch, denoted 𝑙𝑎𝑡𝑐ℎ𝑣 . Global variables like N_ROWS

are protected by a global latch 𝑙𝑎𝑡𝑐ℎ𝑔 . Update and delete operations
first acquire the 𝑙𝑎𝑡𝑐ℎ𝑣 of all values in shared mode to retrieve the
current value of the specified row. Then, they upgrade 𝑙𝑎𝑡𝑐ℎ𝑣 of
the corresponding bitvectors to exclusive mode in order to flip the
necessary bits. An insert acquires 𝑙𝑎𝑡𝑐ℎ𝑔 and the corresponding
𝑙𝑎𝑡𝑐ℎ𝑣 in exclusive mode. Consequently, a query operation acquires
𝑙𝑎𝑡𝑐ℎ𝑔 and the corresponding 𝑙𝑎𝑡𝑐ℎ𝑣 in shared mode.

Parallelizing other updatable bitmap indexes involves coarse-
grained global latches, and thus, the parallelized algorithms suffer
from higher contention. We refer interested readers to the extended
version of this paper for details [56].
Challenges. Parallelized updatable bitmap indexes scale poorly and
incur high tail latency (§6.1) due to the following three challenges.
(C1) High Contention. Queries and UDIs access the same bitvectors
simultaneously, leading to contention (Figure 5a). Each UpBit op-
eration accesses two or more memory locations and thus acquires
multiple latches in shared (blue dashed) and/or exclusive mode (red
solid). For high concurrency, this leads to long chains, where each
operation waits for the preceding one to complete.
(C2) Long Critical Sections. A query typically involves decoding
and evaluating a bitvector, all under the protection of a latch. As a
result, latches on bitvectors are heavyweight because their critical
sections can last milliseconds or even seconds, which is orders of
magnitude longer than typical critical sections (e.g., append to the
tail of a list). Therefore, with large datasets, each query takes up to
seconds and incurs severe UDI delays, as shown in Figure 5b. Fur-
ther, UDIs can incur severe query delays because of the expensive
decode-flip-encode procedure.
(C3) Hot Bitvectors Are a Bottleneck. In practice, the distribution of
indexed attributes is not always uniform, such that a few bitvectors
have much more 1s than the remaining ones. As a result, those

Update Delete ery Insert

N_ROWS
rid

1

2

(a) Parallelized UpBit.

10M 100M 1B 4B0

500

1000

1500

2000

La
te
nc
y
(m

s)

3 36
404

1615

6 57

566

2164
Query
UDI

(b) Mean query and UDI latency.

Figure 5: Existing updatable bitmap indexes do not scale

because (a) contention arises for high concurrency and (b)

update costs increase with large datasets.

bitvectors (a) are less compressible and lead to a more expensive
decode-flip-encode cycle, and (b) are more likely to be updated by
UDIs, incurring even higher contention on the associated latches.

4 CUBIT DESIGN

We now discuss CUBIT’s building blocks and API.
API. CUBIT complies with the standard specification for database
indexes [53] and supports Query, Update, Delete, and Insert op-
erations. TheQuery operation returns the result as a bitvector or
a row ID list. Update retrieves the current value of the specified
row (by checking all bitvectors) and updates that row to the new
value. Insert appends the new value to the tail of the bitmap index.
Further, an internal Merge operation propagates logged changes to
VBs. CUBIT’s operations are atomic.
Forward Progress. The Query operation is wait-free [21] with
guaranteed completion, in contrast to state-of-the-art tree-based
indexes where UDIs may interrupt overlapping range queries and
force them to restart [36]. For UDIs, we implemented two versions:
the basic version, CUBIT-lk, that employs a latch to synchronize
concurrent UDIs, and a latch-free version, CUBIT-lf, that adopts
the helping mechanism [2] and avoids UDIs blocking each other.

4.1 Horizontal Update Delta (HUD)

Similar to the basic bitmap indexes (§2), CUBIT associates each
value of the indexed attribute to a compressed VB. It avoids ex-
pensive decode-flip-encode cycles for each UDI by storing update
information in an out-of-place row-wise manner and merging it
into VBs lazily. Note that, by row-wise, we refer to a row of the
conceptual bit-matrix of the bitmap index. Our design, termed Hori-
zontal Update Deltas (HUDs), enables efficient atomic UDIs without
locking entire bitvectors, and hence addresses the high contention
challenge in prior designs (C1 from §3). HUD is key for high con-
currency, by offering an effective organization of UDI deltas.
Organization of HUD. Each HUD is conceptually a bit-array with
a length equal to the cardinality of the domain. In the general case,
it has only 0s (i.e., the row has not been updated), and 1s accumulate
with updates. The number of 1s in a HUD is rarely more than two,
as we discuss below. Therefore, we compact each HUD as a list of
positions, <row_id, n_ones, p1, p2, ...>, where n_ones is the number
of 1s in the raw HUD, followed by their positions.

Figure 6a illustrates a bitmap index initially equivalent to the one
shown in Figure 3a. An update operation of the 2𝑛𝑑 row to value 10
would flip the VBs containing the old and the new value. Instead,
CUBIT simply logs the delta information in the HUD <2, 2, 1, 2>.
Queries fetching this HUD apply it to the bitmap index by flipping

rid

1

2

3

4

5

6

7

8

9

30

Figure 6: CUBIT records UDIs in the form of HUDs that are

organized chronologically in the per-indexDelta Log (c). Each

query traverses a portion of the Delta Log and retrieves an

on-demandHUD set (b). When applied to VBs, different HUD

sets result in different snapshots of the index (a).

the 2𝑛𝑑 bits of both VBs of values 10 and 20. Similarly, updating the
5𝑡ℎ row to value 30, deleting the 7𝑡ℎ row, and inserting value 20
are executed by storing their delta information (Figure 6c), which
will be applied to the queried VBs on demand.
Benefits.Using HUDs brings the following benefits. First, it enables
lightweight atomic UDIs. By gathering the information of UDIs
performed on each row, which was scattered among different VBs,
UDIs do not lock entire bitvectors. Second, HUDs allow for efficient
snapshotting for the underlying bit-matrix. HUDs maintain com-
plete information on the completed UDIs, such that different HUD
sets efficiently generate different snapshots of the index (§4.5).
HUDHas Small Size. A HUD, in most cases, has up to two bits set,
as shown in Figure 6b. However, specific interleavings of updates
and merges may result in longer HUDs, with very low probability.
For example, when 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 = 128, the probability that a HUD
contains 2, 3, or 7 1s is 1

27 ,
1
214 , and

1
242 . More details can be found

in the extended version of this paper [56].

4.2 Delta Log

Organization. CUBIT stores the changes from UDIs in a log, called
Delta Log, which consists of (linked) instances of UDI log entries,
named ULE (Figure 6c). Each ULE entry contains the UDI’s execu-
tion timestamp (commit-ts, in the bottom-right corner of each ULE).
The corresponding operations and the generated HUDs are listed
on the right-hand side of the ULEs. A UDI completes by appending
its ULE at the tail of Delta Log. Two global pointers,HEAD and TAIL,
point to the first and last ULEs in the list. The commit-ts values
monotonically increase from HEAD to TAIL, allowing CUBIT to
retrieve a HUD set by traversing the list in one pass. We initially
insert a dummy ULE with time 0, ensuring the Delta Log is never
empty and simplifying subsequent read operations. Appending
HUDs to a log shortens UDIs’ critical sections (C2 from §3).
Example. As a concrete example, in Figure 6c, HEAD points to
the dummy ULE that links to the ULE (with commit-ts = 1) cor-
responding to the update operation that changes the second row
from value 10 to 20. The subsequent Update operation changes the
value of the 5𝑡ℎ row to 30, by appending a ULE with a HUD <5, 2,
2, 3>. Then, a delete operation removes the 7𝑡ℎ row, and an insert
operation appends value 20 at the tail of the index, by respectively
appending their ULEs. By traversing ULEs in different timestamp
ranges, queries can retrieve different HUD sets (Figure 6b) and thus
different snapshots of the index (§4.5).

The exact implementation of Delta Log is orthogonal to CUBIT.
Since the commit-ts values ofULEsmonotonically increase, any data
structure that implements the list abstract data type can be used.
In this paper, we chose a singly linked list for ease of presentation.

4.3 Merging HUDs to VBs

In order to help queries and UDIs avoid traversing a long list of
ULEs to retrieve the necessary HUD sets, CUBITmaintains multiple
versions of each VB, previously merged with HUDs.
Multi-Versioning VBs. To this end, each value of the indexed
domain is associated with a version chain, i.e., a linked list of VB
instances, as shown in Figure 7a. Each VB instance contains its
creation timestamp commit-ts (bottom-right corner of each VB
instance), a pointer start_delta to the ULE where subsequent queries
and UDIs may start retrieving (not already merged) HUDs, and a
pointer, prev, linking to the previous version. A query operation
traverses the corresponding version chain (starting from the newest
version), chooses the one with the largest commit-ts that is less
than or equal to the query’s start-ts, and then scans the Delta Log
from the ULE pointed to by the selected version’s start_delta.

Figure 7 illustrates a merge on value 30, starting from the index
shown in Figure 6. CUBIT first makes a private copy of the latest
version of the bitvector of value 30 (the version with commit-ts = 0
in Figure 7a), retrieves the HUD set shown in Figure 7b, and then
merges the HUDs for value 30 into the private copy by flipping
the 5𝑡ℎ and 7𝑡ℎ bits. CUBIT then creates a new VB instance with
an incremented commit-ts and a prev pointer referencing the old
version of this VB. Its start_delta points to the newly-generated
ULE to skip the merged ULEs and accelerate subsequent queries.
For example, queries with start-ts > 5 on value 30 scan the Delta
Log from ULE with commit-ts = 5, rather than from HEAD.
Synthetic ULE. Upon merging a VB with a subset of HUDs from
the Delta Log (flipping the bits indicated by HUDs associated with
this VB), a new VB version is produced. We now need to remove
these specific entries from the Delta Log to ensure correctness.
However, in-place updating existing ULEs would raise complicated
synchronization issues. Instead, CUBIT appends a new synthetic

ULE that contains the HUDs that have not yet been merged, in-
validating previous HUDs for those rows. For example, Figure 7a
shows the new version of VB for value 30 at timestamp 5. HUDs <5,
1, 2> and <7, 0, ∅> are generated and appended to the Delta Log,
shown in Figure 7c, indicating that the 1s that were in the 5𝑡ℎ and
7𝑡ℎ row have been merged into the newly-generated VB. Note that
the HUD <7, 0, ∅> can be omitted in practice. Each synthetic ULE
corresponds to a successful merge operation, and each HUD in the
synthetic ULE corresponds to one merged bit. Note that ULEs are
truncated when all their HUDs are invalidated.

4.4 Segmented Bitvectors

Unlike prior update-friendly bitmap indexes, CUBIT uses a layout
where each bitvector is divided into multiple segments of fixed raw

size (bit count). Each segment is then independently compressed
using standard techniques like WAH.
Benefits. Even though segmentation has been widely used in prior
research on both bitmaps [34] and DBMSs [16, 25, 30], our mech-
anism is specifically designed for updatable bitmap indexes with
the following unique features. (1) It limits the cost of flipping bits

3010 20
Version chains of VBs HUD sets

(a) (b) (c)

Figure 7: A Merge operation generates a new VB, reducing

the cost of applying deltas for subsequent queries and UDIs.

of each UDI within one segment per bitvector (without any possi-
ble structure modification operations), hence reducing the cost of
UDIs to a pre-defined threshold. (2) By compressing corresponding
segments using the same mechanism, it optimizes one of the most
expensive operations: logical bitwise operations between segments.

The combination of Delta Log (§4.2), merging (§4.3), and seg-
mentation (§4.4) keep the critical sections of updating bitvectors
short, overall addressing challenge C2 from §3.

4.5 Snapshotting

Internally, CUBIT utilizes multi-versioning with timestamp order-
ing to allow queries and UDIs to work on different snapshots, so
that queries are guaranteed to complete even when UDIs are in
progress. To this end, CUBITmaintains a global TIMESTAMP, which
is read at the beginning of every operation, denoted as start-ts, and
is incremented to reflect changes to the bitmap index (i.e., when
UDIs complete or merge operations succeed).
Multi-Versioning HUD sets. Given an operation’s start-ts, we can
retrieve a HUD set by (1) traversing Delta Log from HEAD to the
ULE with the largest commit-ts less than or equal to the operation’s
start-ts and (2) collecting the HUDs in all of the ULEs. If HUDs for
the same row appear in different ULEs, the one committed lately
is used to reflect the latest updates. Traversing the Delta Log can
be significantly accelerated by merging HUDs into VBs (§4.3) and
moving HEAD forward.
Applying HUD Sets. Applying different HUD sets to the under-
lying bit-matrix results in different snapshots of the index. Take
Figure 6b as an example. By traversing Delta Log, queries with
start-ts = 1 use the bottom HUD set with 1 HUD, while queries
with start-ts = 5 retrieve the top HUD set with 4 HUDs, capturing
more UDIs. When a HUD set is large, CUBIT first orders the HUDs
according to their row ids, and then invokes multiple threads, each
of which updates a subset of the bitvector’s segments (§4.4). By
leveraging HUD sets, CUBIT offers lightweight snapshotting.

4.6 Index Operations

Queries. A query operation 𝑄 on the value 𝑣𝑎𝑙 first retrieves a
start-ts by reading the global TIMESTAMP, which essentially takes
a snapshot of the bitmap index. It then uses the start-ts to search
the version chain of the value 𝑣𝑎𝑙 , and selects the bitvector with
the largest commit-ts that is less than or equal to start-ts, which we
refer to as the bitvector 𝑉 . For the delta information, it traverses
the Delta Log and collects the HUDs in ULEs with their commit-ts

∈ (V.commit-ts, Q.start-ts]. The search starts from the ULE pointed
to by the shortcut pointer Q.start_delta, which reduces the length
of the traversal. The collected HUDs that do not affect value 𝑣𝑎𝑙

are filtered out. If the result set is not empty, CUBIT makes a pri-
vate copy of 𝑉 , applys the delta information by flipping (in batch)
the corresponding bits of the private copy, and then evaluates the
resulting bitvector. If the number of bits flipped is larger than a
pre-defined threshold, the query operation sends a merge request
to the background maintenance threads which attempt to reuse
the newly-generated bitvector and insert it into the version chain.
If 𝑉 is segmented (§4.4), CUBIT parallelized querying 𝑉 using the
available CPU cores at a nearly linear speedup.
UDIs. Updates and deletes use start-ts to retrieve the corresponding
snapshot, similar to queries. Using this snapshot, they read the old
value of the specified row by checking each VB along with the
associated HUD set. This step is embarrassingly parallelized, by
splitting the domain into ranges and assigning them to background
threads. Inserts omit this step. A UDI logically flips the correspond-
ing bits in the VBs. Specifically, an update operation on the 𝑛𝑡ℎ row
would flip the 𝑛𝑡ℎ bit of the VBs corresponding to the old and the
new value, a delete operation would flip the 𝑛𝑡ℎ bit of the deleted
value, and an insert operation would set the last bit of the VB of
the specified value 𝑣𝑎𝑙 . CUBIT actually generates a HUD for each
UDI and appends it at the tail of Delta Log.

4.7 Synchronization Mechanisms

The lightweight snapshotting mechanism (§4.5) allows queries to
take snapshots of the whole index, such that CUBIT’s queries are
atomic and wait-free. On the other hand, UDIs must be atomic with
respect to other concurrent operations. To this end, our basic algo-
rithm employs a per-bitmap latch 𝑙𝑎𝑡𝑐ℎ𝑔 to serialize the attempts to
append ULEs at the tail of Delta Log and increment TIMESTAMP.
Specifically, a UDI operation 𝑈 first attempts to grab 𝑙𝑎𝑡𝑐ℎ𝑔 . Since
𝑈 works on a snapshot of the bitmap index, other operations (in-
cluding merge operations) may have appended new ULEs since𝑈
started. We thus check if there are any write-write conflicts be-
tween 𝑈 ’s HUDs and the set of HUDs in ULEs with timestamps ∈
(U.start-ts, TAIL.commit-ts]. Two HUDs conflict if they refer to the
same row. If there is a conflict,𝑈 discards its HUD and restarts by
reading with a new start-ts. Otherwise,𝑈 appends its ULE at the tail
of Delta Log and increments TIMESTAMP by one. It then releases
the latch. By incrementing the global TIMESTAMP, 𝑈 becomes
visible to other operations.
Overhead. Even though CUBIT employs 𝑙𝑎𝑡𝑐ℎ𝑔 , queries do not
acquire it. Moreover, the work in the critical section of this latch
is orders of magnitude lighter compared to that of the latches em-
ployed by other bitmap indexes (thus, addressing C2 from §3). Our
evaluation shows that CUBIT outperforms the alternatives in terms
of throughput and (especially) tail latency (more details in §6.1).
Optimizations. Experimentally, we found that 𝑙𝑎𝑡𝑐ℎ𝑔 can still
raise high contention (see the full version of this paper [56] for
an example with access skew). We propose two mechanisms to
alleviate the pressure from hot bitvectors, addressing C3 from §3.
Consolidation Array. When Delta Log’s contention is high, a con-
solidation array approach [23, 42, 51] is beneficial. The basic idea
is that when UDIs conflict, instead of busy-waiting, blocked UDIs
consolidate their HUDs and delegate committing them in ULEs to
subsequent ones. This allows a group of UDIs to consolidate into a
single append operation, thus reducing contention.

Making CUBIT Latch-Free.We further introduce a helping mecha-
nism [2, 41] that makes CUBIT latch-free. When UDIs and merges
attempt to append ULEs to the log simultaneously (i.e., write-write
conflicts), they first help the other complete and then retry, rather
than competing with each other. Specifically, each UDI and merge
operation records the old and new values of the variables to be
updated in its ULE before appending it to the tail of Delta Log using
a CAS instruction. Once this step 𝑂1 succeeds (i.e., this UDI oper-
ation linearizes), the ULE becomes accessible to other threads via
the next pointers of the ULEs in Delta Log. If another UDI or merge
operation𝑂2 fails to append its ULE, it first assists𝑂1 by retrieving
the old and new values and updating the variable to the new value
using CAS instructions. This approach allows CUBIT to prevent
UDIs from blocking each other, addressing the primary cause of
long tail latency in UDIs. For implementation details and proof of
correctness, we refer to the extended version of this paper [56].

5 CUBIT IMPLEMENTATION

We now present the implementation details of CUBIT.
ULE Pre-allocation. CUBIT pre-allocates an array of ULEs, each
of which is 32-byte long. If a UDI wants a larger ULE, which is
very unlikely (§4.1), it dynamically allocates a new ULE; other-
wise, it fetches a pre-allocated one. This design benefits hardware
prefetching because queries traverse Delta Log mostly sequentially.
Timestamp Allocation. Allocating timestamps is frequently a
performance bottleneck for multi-versioning [61]. CUBIT addresses
this issue from two angles. First, queries read but do not increment
the global timestamp, dramatically reducing its contention. Further,
we use a hardware-based mechanism for timestamp allocation [24]
that provides a globally synchronized clock accessed as efficiently
as reading hardware registers. Overall, in our experimentation,
timestamp allocation is not a performance bottleneck.
Memory Reclamation. CUBIT’s snapshotting provides higher
concurrency levels, at the expense of increased memory footprint.
To address this, we proactively reclaim retired VBs that are no
longer visible to worker threads and ULEs once all of their HUDs
have been merged into newly generated VBs.

Since VBs and ULEs use commit timestamps (commit-ts), it is
natural for CUBIT to utilize an epoch-based memory reclamation
mechanism [2, 40]. Specifically, a version𝐴 can be safely reclaimed,
if (a) a newer version 𝐵 has been inserted at the head of its version
chain, (b) the global TIMESTAMPhas become equal to or larger than
𝐵’s commit-ts, and (c) each active worker thread has successfully
performed at least one operation. The correctness of this approach
stems from the fact that the proposed epoch-based mechanism
guarantees that before reclaiming 𝐴, there is at least one system-
wide grace period [40]. Therefore, subsequent operations will have
start-ts larger than or equal to 𝐵’s commit-ts, and their queries and
UDIs will not access 𝐴 anymore.

Similarly, a ULE can be safely reclaimed, if (a) it is no longer
accessible starting from any start_delta pointers of all VBs, and
(b) each active worker thread has successfully performed at least
one operation. Once the head ULE has been reclaimed, the global
pointer HEAD is moved forward by the maintenance thread.
Background Maintenance Threads. Memory reclamation is del-
egated to the background maintenance threads. These threads are
in charge of periodically (a) detecting invisible VBs and ULEs, (b)

detecting the grace period by utilizing a user-space implementation
of RCU [13] that helps CUBIT avoid explicitly tracking every active
worker thread [55], and (c) reclaiming retired objects.
Operations between Bitvectors. DBMSs need to perform logical
AND/OR operations between a group of CUBIT bitvectors. We
maintain the intermediate bitvector 𝐼𝐵 as compressed when its bit
density is below 0.2% (highly compressible) to skip many 0-filled
words in subsequent operations; otherwise, 𝐼𝐵 is maintained as
decompressed. Meanwhile, when a bitvector to be merged has a bit
density greater than 2% (barely compressible), we decompress it
before merging with 𝐼𝐵. This approach enables SIMD-based opera-
tions on 512-bit blocks, eliminating if-else branches and improving
hardware prefetching.

6 EXPERIMENTAL EVALUATION

We demonstrate that CUBIT is fast, update-friendly, and scalable,
and thus, it fits analytical queries on workloads with updates.
Methodology.We experiment using In-place [53], UCB [6], and
UpBit [3] as our baseline updatable bitmap indexes (§2), and paral-
lelize them using the most scalable strategies (§3). We refer to the
parallelized versions as In-place+, UCB+, and UpBit+. We assume
that indexes are fully in-memory.
Implementation. CUBIT and the baselines are implemented as
C++ programs.We compile the codewith GCC 11.4 on Ubuntu 22.04,
and use -O3 as our optimization level. The open-source liburcu [13]
is used as the framework of safe memory reclamation. Our artifacts
implementing CUBIT and our changes to DBx1000 and DuckDB
are available at https://github.com/junchangwang/CUBIT.
Infrastructure.We experiment on a server with two Intel Xeon
5317 CPUs, each having 12 physical cores with Hyper-Threading
running at 3.0GHz, and 18MB shared L3 cache. The system has 48
logical cores, 196GB DDR4 DRAM, and a 1TB SSD.
Benchmarking Framework.We spawn a group of worker threads,
each of which executes the workload with the specified distribution
of queries and UDIs. Crossing NUMA does not noticeably affect
(with an additional 3% throughput overhead) bitmap indexes since
they access bitvectors mostly sequentially. We spawn up to 32
worker threads, each bound to a logical core, leaving the other 16
logical cores to the operating system and background maintenance
threads. Each experiment was repeated ten times, and the mean
values were reported (standard deviation is less than 3%).
Workloads. We first use an in-house tool to generate integer data
by varying three key properties: data set size, domain cardinality,
and data distribution (uniform or Zipfian). We further test with
industry-grade benchmarks, including the Berkeley Earth data [4],
TPC-H [54], and CH-benCHmark [11].

6.1 CUBIT Scales with Increased Parallelism

We evaluate the scalability of CUBIT and the baselines by varying
the number of worker threads. We simulate a typical use-case of
updatable bitmap indexes [3], where we have 90% queries and 10%
UDIs, with a dataset of 100 million entries and domain cardinality
equal to 100, and tune all approaches for this workload. All bitmap
indexes are tuned for this use-case. For CUBIT, the merging thresh-
old is 16, the number of segments per bitvector is 1,000. Figure 8
compares the overall throughput, along with the response time of
each type of operation. We make the following observations.

https://github.com/junchangwang/CUBIT

0

500

1000

1500

2000

1 4 8 16 24 32

ro

u
g
h

p
u

t
(o

p
/s

)

Number of worker threads

CUBIT
UpBit+

In-place+

UCB+

(a) Overall throughput.

0

50

100

150

200

250

1 4 8 16 24 32

er

y
 l

at
en

cy
 (

m
s)

Number of worker threads

CUBIT
UpBit+

In-place+

UCB+

(b) Query latency.

10-1
100
101
102
103
104
105

1 4 8 16 24 32

U
p

d
at

e
la

te
n

cy
 (

m
s)

Number of worker threads

CUBIT
UpBit+

In-place+

UCB+

(c) Update latency.

10-3
10-2
10-1
100
101
102
103
104
105

1 4 8 16 24 32

In
se

rt
 l

at
en

cy
 (

m
s)

Number of worker threads

CUBIT
UpBit+

In-place+

UCB+

(d) Insert latency.

Figure 8: (a) CUBIT scales on multicore processors, and (b

– d) its query and UDI latency is almost constant for high

concurrency. The y-axis of (c) and (d) are in log scale.

CUBIT is Faster and Scales Better Than the Baselines. Figure
8a shows that In-place+ and UCB+, both of which are parallelized
using global reader-writer latches, cannot scale with the number
of worker threads. By utilizing fine-grained, per-bitvector reader-
writer latches, UpBit+ scales better but plateaus for 16 or more
threads. This demonstrates that at high concurrency levels, the fine-
grained locking mechanism in UpBit+ becomes the bottleneck. The
throughput of CUBIT, in sharp contrast, increases nearly linearly.
With 32 threads, CUBIT has 2.7× (13×, 15.5×) higher throughput
than UpBit+ (In-place+, UCB+).
CUBIT Offers Fast and Scalable Read Performance. Figure 8b
shows that CUBIT outperforms single-threaded UpBit for queries
because merging a HUD set into a UB in CUBIT is more lightweight
than merging a <VB, UB> pair in UpBit. For high concurrency,
the query latency of both In-place+ and UCB+ increases sharply
because of the increased contention on the global reader-writer
latch. UpBit+ distributes the contention to a group of fine-grained
latches, improving query latency. CUBIT, however, outperforms
all alternatives. In particular, with 32 threads, the mean latency of
CUBIT is 3.9× (8.5×, 13.1×) faster than UpBit + (UCB+, In-place+).
CUBIT’s UDIs are Fast. Figure 8c shows that for singled-threaded
execution, CUBIT’s updates outperform UpBit because CUBIT sim-
ply appends the update information to its Delta Log, while UpBit
must decode-flip-encode the corresponding UBs. Irrespective of
the number of worker threads, each update and delete operation of
CUBIT takes less than 10 ms (Figure 8c), and each insert takes about
0.01 ms (Figure 8d). Note that since updates and deletes follow the
same general trends, Figure 8c only shows results for updates. The
mean UDI latency of CUBIT is 3.0×, 48.1×, and 220.4× faster than
UpBit+, In-place+, and UCB+, respectively.

6.2 Sensitivity Analysis

We now present a sensitivity analysis on domain cardinality, work-
load composition, and data size. The experimental setup is the
same as in §6.1, with 16 worker threads and the best tuning for the
baseline designs.

0

2000

4000

6000

8000

16 64 256 512 1024

(a)

ro

u
g
h

p
u

t
(o

p
/s

)

Cardinality

CUBIT
UpBit+

In-place+

UCB+

0

100

200

300

16 32 64 128 256

(b)

er

y
 l

at
en

cy
 (

m
s)

Cardinality

CUBIT
UpBit+

In-place+

UCB+

Figure 9: Varying domain cardinality does not noticeably

affect CUBIT’s (a) throughput and (b) query latency.

0

500

1000

1500

2000

0 2% 5% 10% 20%

(a)

ro

u
g
h

p
u

t
(o

p
/s

)

UDI ratio

CUBIT
UpBit+

In-place+

UCB+

0

50

100

150

200

250

0 2% 5% 10% 20%

(b)

er

y
 l

at
en

cy
 (

m
s)

UDI ratio

CUBIT
UpBit+

In-place+

UCB+

Figure 10: (a) Throughput and (b) latency of CUBIT remain

with variable UDI ratio.

Impact of Domain Cardinality. Figure 9a shows that as the car-
dinality increases, the overall throughput of the tested approaches
also increases. The reason is that a larger cardinality leads to more
compressible bitvectors, hence a smaller memory footprint. Further,
a larger cardinality eases the contention on each bitvector. This
also leads to lower query and UDI latency, as shown in Figure 9b,
which zooms to cardinality between 16 and 256. The only outlier is
In-place+ because of the locking contention to append 0s and 1s.
Impact of UDI Ratio. As the UDI ratio increases, the through-
put of both In-place+ and UCB+ decreases sharply (Figure 10a).
The main reason is the increased contention on the global latches
that increases query latency (Figure 10b). UpBit’s and CUBIT’s
throughput decreases as well. However, the performance loss is less
than In-place+ and UCB+. UpBit+ faces increased contention on
the reader-writer latches protecting bitvectors, while CUBIT faces
increased contention on the latch protecting Delta Log. Since the
duration of the critical sections of CUBIT is orders of magnitude
shorter than the baselines, CUBIT outperforms them in terms of
both throughput and latency. Note that the performance trends in
Figure 10 continues until the UDI ratio becomes larger than 80%.
Impact of Data Size. As the dataset size increases, the relative
behavior of different indexes remains the same. Figure 11a shows
the evaluation results with datasets containing 1B entries (cardi-
nality = 100). Figure 11a looks almost identical to Figure 8a, which
demonstrates that data size does not affect the performance trends
and the relative behavior of different algorithms. In this evaluation,
however, each bitvector contains more bits. Therefore, the absolute
performance decreases nearly linearly as the dataset size increases.
Berkeley Earth Dataset. For a real-life application, we evaluate
CUBIT and its competitors using the Berkeley Earth dataset. It is an
open dataset for a climate study that contains measurements from
1.6 billion temperature reports, each of which contains information
including temperature, time of measurement, and location. From
the Berkeley Earth data, we extract a dataset containing 31 million
entries with cardinality 144. Figure 11b shows that with 32 worker
threads, CUBIT’s throughput is about 2.6×, 11.5×, and 16.2× higher
than that of UpBit+, UCB+, and In-place+, respectively.

0

30

60

90

120

150

1 4 8 16 24 32

(a)

ro

u
g
h

p
u

t
(o

p
/s

)

Number of worker threads

CUBIT
UpBit+

In-place+

UCB+

0

4k

8k

12k

16k

1 4 8 16 24 32

(b)

ro

u
g
h

p
u

t
(o

p
/s

)

Number of worker threads

CUBIT
UpBit+

In-place+

UCB+

Figure 11: (a) When increasing the dataset size (1B entries),

and (b) when querying real datasets (Berkeley Earth dataset

with 31M tuples and cardinality of 114), the relative behavior

of all approaches remains the same.

 0

 5

 10

 15

 20

 25

 30

 35

 0

 0.5

 1

 1.5

 2

1

(a)

4 16 32 64

er

y
 L

at
en

cy
 (

m
s)

U
D

I
L

at
en

cy
 (

m
s)

Merging threshold

ery
UDI

 0

 5

 10

 15

 20

 25

 30

 35

 0

 0.5

 1

 1.5

 2

1

(b)

4 16 32 64

er

y
 L

at
en

cy
 (

m
s)

U
D

I
L

at
en

cy
 (

m
s)

Merging threshold

ery
UDI

Figure 12: For workloads with (a) 10% UDIs and (b) 20% UDIs,

CUBIT’s query latency (left axis) decreases until the merging

threshold becomes larger than 16, andUDI latency (right axis)

slightly increases as a function of the merging threshold.

Impact of Data Skew. The distribution of data among bitvectors
plays a key role in performance for two reasons. First, biased distri-
butions may lead to few target bitvectors containing many more
1s than others, making them less compressible. Second, the target
bitvectors face higher contention levels among concurrent UDIs.
Our evaluation results show that for all bitmap indexes, UDI latency
increases for skewed data because most of the UDIs involve a few
bitvectors, leading to high contention on them. However, CUBIT
remains the most stable design because the helping mechanism re-
duces the number of latches acquired, reducing CUBIT’s P99 UDI
latency (see extended version of this paper for details [56]).

6.3 Tuning CUBIT

We now discuss the impact of CUBIT’s tuning knobs and show that
static tuning delivers robust performance.
Merging HUDs into VBs. As UDIs accumulate, queries and UDIs
need to traverse a long list in Delta Log. CUBIT thus merges HUDs
into VBs, as described in §4.3. Figures 12a and 12b show the average
query and UDI latency as we vary the merging threshold, for the
workloads with 10% and 20% UDIs, respectively. In the general case,
the query latency decreases as the merging threshold increases
because of the reduced frequency of generating new VBs in query
operations (§4.6). However, when the threshold is larger than 16, the
query latency plateaus because of the increased cost of traversing
the list. On the other hand, for both workloads, we observe a small
increase in UDI latency as the merging threshold increases, because
a UDI must traverse the Delta Log. This trend, however, is almost
hidden because the update latency is dominated by the cost of
retrieving the old value of the updated row. Therefore, we set the
merging threshold to 16 in our experiments.
Number of Maintenance Threads. CUBIT offloads operations
like garbage collection and merge operations to background main-
tenance threads. Thus, it is critical to know in advance how many
maintenance threads are enough. Figure 13 shows the average query

0

8

16

24

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 16

(a)

er

y
 L

at
en

cy
 (

m
s)

U
D

I
L

at
en

cy
 (

m
s)

Workers per merging thread

ery
UDI

0

8

16

24

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5

1 2 4 8 16

(b)

er

y
 L

at
en

cy
 (

m
s)

U
D

I
L

at
en

cy
 (

m
s)

Workers per merging thread

ery
UDI

Figure 13: For workloads with (a) 10% UDIs and (b) 20% UDIs,

CUBIT’s query latency plateaus until the ratio of worker and

maintenance threads becomes larger than 8. UDIs always

benefit from an increased ratio.

 0

 5

 10

 15

 20

 25

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 10 100 1,000 10,000

(a)

er

y
 L

at
en

cy
 (

m
s)

U
D

I
L

at
en

cy
 (

m
s)

Segments per bitvector

ery
UDI

 0

 5

 10

 15

 20

 25

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 10 100 1,000 10,000

(b)

er

y
 L

at
en

cy
 (

m
s)

U
D

I
L

at
en

cy
 (

m
s)

Segments per bitvector

ery
UDI

Figure 14: For workloads with (a) 10% UDIs and (b) 20% UDIs,

CUBIT’s query latency decreases with finer segmentation

granularity until each segment becomes less than 5KB. UDIs

always benefit from a finer granularity.

latency and UDI latency as we vary the ratio of worker threads
and maintenance threads, for workloads with 10% (Figure 13a) and
20% (Figure 13b) updates. For both workloads, UDIs benefit from
an increased ratio (fewer merging threads) because of a decreased
contention on Delta Log. The query latency plateaus when the ratio
is less than eight. However, when the ratio becomes larger than
eight, query latency increases sharply because the maintenance
threads become the bottleneck. We thus set the ratio as 4 and create
one maintenance thread for every four worker threads.
Segments per Bitvector. CUBIT bitvector segmentation affects
queries and UDIs in different ways. Figure 14 shows the average
query and UDI latency for different numbers of segments of each
bitvector (5MB in size), for workloads with 10% (Figure 14a) and 20%
(Figure 14b) UDIs. UDIs always benefit from a finer segmentation
granularity that limits the execution of a UDI within a smaller
segment. However, the UDI latency plateaus when a bitvector is
segmented into more than 1,000 segments (5KB-sized segments).
On the other hand, a finer segmentation granularity allows a query
to assign its tasks to a group of CPU cores (2 cores per query in this
experiment) more evenly, significantly reducing query latency, as
shown in Figure 14. For more than 1,000 segments, query latency
increases due to the cost of traversing the segments, thus, we use
1,000 segments in our experiments.
Parallelism for Each Query. Using segmented bitvectors, queries
can be embarrassingly parallelized. This leads to a nearly linear
speedup as long as the system has available CPU cores. Figure 15
shows the average query and UDI latency as we vary the number of
CPU cores for each query, for the experiments with 4 (Figure 15a)
and 16 (Figure 15b) worker threads. Figure 15a shows that using
less than 8 cores per query, latency increases sharply. However,
for 16 cores (which means that CUBIT needs 4 × 16 = 64 cores in
total), query and UDI latency increase sharply, as expected, since
our server has 48 cores. Similarly, Figure 15b demonstrates that for
16 worker threads, the number of cores used by each query should

 0

 5

 10

 15

 20

 25

 0
 2
 4
 6
 8
 10
 12
 14
 16

1 2 4 8 16

(a)

er

y
 L

at
en

cy
 (

m
s)

U
D

I
L

at
en

cy
 (

m
s)

Number of threads

ery
UDI

 0

 5

 10

 15

 20

 25

 0
 2
 4
 6
 8
 10
 12
 14
 16

1 2 4 8 16

(b)

er

y
 L

at
en

cy
 (

m
s)

U
D

I
L

at
en

cy
 (

m
s)

Number of threads

ery
UDI

Figure 15: When there are (a) 4 and (b) 16 worker threads

in the system, CUBIT’s query and UDI latency decreases

sharply as we assign more cores for each query, until the

total required cores exceed the physical limit.

be less than 4 to not hurt query and UDI latency. Based on these,
we use two cores per query since our setup has 32 worker threads.

6.4 CUBIT Benefits OLAP

We now demonstrate that CUBIT benefits OLAP with batched up-
dates by experimenting with the TPC-H benchmark with the stan-
dard refresh operations on DBx1000 (§6.4.1) and DuckDB (§6.4.2).
TPC-H.We experiment with TPC-H with scale factor (SF) = 10 and
refresh operations (RF1 and RF2). RF1 (RF2) inserts (deletes) 4,500
tuples in LINEITEM in batch, and then updates related indexes. The
workload consists of 98% Q6, 1% RF1, and 1% RF2.

6.4.1 DBx1000 Integration. In order to compare CUBIT with
the alternative indexes at different concurrency levels, we integrate
CUBIT into DBx1000 [62], a row-based prototype DBMS.
Methodology. We implement Bw-Tree and ART based on their
open and comparable implementations [57] and optimize their
performancewith our testbed. In particular, our ART uses optimized
arrays, rather than linked lists, to handle duplicate keys. Overall,
we compare: (1) a parallelized Scan, (2) a Hash index with bucket
size 𝐵 = 64𝐾 , (3) a B+

-tree index with a fixed fanout of 32, (4) Bw-

Tree with a maximum inner node size of 64 [36] , (5) ART with a
maximum node fanout of 256 [31], and (6) CUBIT. Since Q6 selects
on l_shipdate, l_discount, and l_quantity, we built three CUBIT
indexes. Other indexes are built using multi-column indexes over
the three attributes (the best-case for the baselines). The composite
search keys (l_shipdate, l_discount, and l_quantity) for these indexes
are not unique, so for SF = 10, each index node contains, on average,
50 entries with the same key in the form of an array.

The Hash index is protected by fine-grained per-bucket reader-
writer latches, and the B+-Tree and ART employ optimistic lock
coupling [32]. Both Bw-Tree and CUBIT offer latch-free queries.
Apart from the Scan, each query first retrieves a set of tuple IDs
through the indexes, and then fetches these tuples to calculate the
query result. Tree-based indexing could ensure a better access local-
ity by sorting the IDs first. This approach, however, requires CPU
and memory resources. Similarly to prior work [26], we observed
that sorting slows down tree-based indexing by ∼6%.
Benefits. We observed the following benefits of using CUBIT.
(a) High Availability. CUBIT enables bitmap indexing for OLAP
with batched updates, by overcoming the maintenance downtime
[43]. Our evaluation results show that RF1 and RF2 do not noticeably
affect concurrent queries.
(b) Low Memory Footprint. The hash index, ART, B+-Tree, and Bw-
Tree, respectively, use 1.92GB, 1.93GB, 1.96GB, and 1.97GB of mem-
ory, mainly because they must maintain keys and pointers to the tu-
ples, which is about 1.44GB. In contrast, CUBIT size is only 156MB.

 0

 5

 10

 15

 20
 25

 30

 35

 40

1 4 8 16 24 32

(a)

ro

u
g
h

p
u

t
(q

u
er

ie
s/

s)

Number of worker threads

CUBIT
Bw-Tree
ART
B+-Tree
Hash
Scan

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

H
ash

B +
-Tree

Bw
-Tree

A
RT

CUBIT

H
ash

B +
-Tree

Bw
-Tree

A
RT

CUBIT

H
ash

B +
-Tree

Bw
-Tree

A
RT

CUBIT

1 8 32 (cores)

(b)

L
at

en
cy

 (
s) Fetching tuples

Reading index

Figure 16: (a) At different concurrency levels, DBx1000 with

CUBIT outperforms all baselines for TPC-H Q6. (b) CUBIT

index access cost is always smaller. Moreover, CUBIT pro-

vides an ordered ID list, leading to faster tuple fetches.

(c) High Performance. Despite the batched updates, CUBIT enables
faster execution for selective queries, and the throughput of DBx1000
with CUBIT scales linearly with the number of worker threads, as
shown in Figure 16a. The scalability of DBx1000 with the baseline
indexes suffers from random accesses and cache misses because
the indexes are not clustered, while by construction, CUBIT al-
ways generates clustered base data accesses. In particular, using
32 threads in DBx1000, CUBIT provides 1.7×, 2.2×, 2.2×, 2.6×, and
10.3× higher throughput than Bw-Tree, ART, B+-Tree, Hash index,
and Scan, respectively. Scanning is the slowest approach because
of its excessive data access and its high cache miss rate.

Table 1: Normalized last level cache misses and TLB misses of the

two stages of each Q6. DBx1000 with CUBIT exhibits better spatial

locality and experiences fewer misses.

Stages
Indexes Bw-Tree

CUBIT
ART
CUBIT

B+-tree
CUBIT

Hash
CUBIT

Scan
CUBIT

Reading index LLC 1.4 1.3 1.7 1.9 —
TLB 1.4 1.5 2.3 2.2 —

Fetching tuples LLC 5.4 5.5 6.3 5.8 342.7
TLB 4.0 3.9 4.3 4.4 12.2

We inspect each indexing strategy by measuring the cost of the
two stages of each Q6 – probing the index and fetching tuples.
Figure 16b demonstrates that the benefits of using CUBIT are two-
fold. On the one hand, probing CUBIT is faster for all concurrency
levels. For example, for the serial execution (# worker thread = 1),
it takes CUBIT 152ms to retrieve the tuple ID list, which is 1.1 –
3.0× faster than the alternative indexes. The main reason is that
CUBIT has a smaller memory footprint, and a query fundamentally
performs sequential memory access to each bitvector, exhibiting
better spatial locality. This is demonstrated in Table 1 in which
we list the normalized last level cache (LLC) and TLB misses of
different stages of each Q6. The first two rows show that reading
Bw-Tree incurs 1.4× and 1.4× more LLC and TLB misses than
reading CUBIT. On the other hand, fetching tuples according to
the ID list generated by CUBIT is faster. For example, for the serial
execution version, it takes DBx1000 413ms to fetch the tuples by
using the ID list provided by CUBIT, 1.5× faster than by using
the ID lists generated by the alternative indexes, including Bw-
Tree and ART. The main reason is that the tuple IDs provided by
CUBIT are inherently ordered, while this is not generally the case
for other indexes. Essentially, by virtue of its construction, CUBIT
is a clustered secondary index since the retrieved IDs follow the
same order as the tuples in the base data. In contrast, accessing
data with the hash and tree-based indexes leads to more cache and
TLB misses. This is shown in Table 1 (last two rows): using the ID
list generated by Bw-Tree, the DBMS incurs 5.4× and 4.0× more

0

1

2

Q1 Q3 Q4 Q5 Q6 Q10 Q12 Q14 Q15 Q17 Q18 Q19

1.6

0.6

1.3
1.1 1.1

0.8

1.3
1.0

0.5
0.3

1.2
0.9 0.90.8 0.9

0.4

1.4

1.0

1.6

1.1

7.7

2.9

1.4

0.9

er

y
 l

at
en

cy
 (

s) DuckDB+ CUBIT

Figure 17: Being update-friendly, CUBIT can be built on the

LINEITEM and ORDERS tables that are updated by refresh

transactions. By replacing the column-based scan, perfect-

hash-based aggregation, and hash-based join operators of

DuckDB
+
, CUBIT-powered query engine outperforms for all

of the queries.

LLC misses and TLB misses than CUBIT. Finally, Table 1 shows
that Scan performs poorly in row-based DBMSs because it accesses
more data and incurs more cache misses.
6.4.2 DuckDB Integration. To demonstrate the usefulness of
CUBIT, we integrate CUBIT into DuckDB [48], a column-based
OLAP DBMS, that has been heavily optimized for analytical appli-
cations. We optimized as many choke points in DuckDB’s query
engine as possible [5, 15]. For example, by excluding certain group-
by attributes that can be derived from the primary key, we achieved
a 46% performance improvement in Q10. We optimize the Scan
operator by (1) storing column values more compactly (e.g., by
compressing l_quantity from 13 to 6 bits) with a storage layout
inspired by BitWeaving’s HBP [38], and (2) scanning columns using
SIMD instructions, leading to a 36% lower latency for Q6. We refer
to our optimized version as DuckDB+ and use it as the baseline.

CUBIT’s update-friendly design allows us to maintain CUBIT
instances for frequently updated attributes instead of repeatedly
destroying and re-creating them [46, 47]. This not only reduces
the amount of data read from storage for the Scan operator, but
also provides sufficient information for the Aggregation and Join

operators, eliminating the need to build intermediate data structures
(e.g., hash table for Joins). We demonstrate this by using CUBIT to
accelerate the Scan, Aggregation, and Join operators (the top three
choke points in DBMS query engines [5, 15]) in DuckDB+. We use
TPC-H Q6, Q1, and Q5 as illustrative examples.
Scan. By maintaining CUBIT instances on the attributes involved in
theWHERE clauses, our CUBIT-powered Scan operator reads fewer
columns. For example, in Q6, DuckDB+ sequentially scans four
columns (l_extendedprice, l_shipdate, l_discount, and l_quantity),
which accounts for 95% of the execution time. In contrast, our
operator generates a resulting bitvector, allowing it to probe only
two columns, effectively halving the data read from storage.
Aggregation. By maintaining CUBIT instances on the attributes
used as group-by factors (e.g., l_returnflag and l_linestatus for Q1),
the CUBIT-powered Aggregation operator avoids reading these
columns from storage. Additionally, CUBIT eliminates the need
to maintain data structures for aggregations by (1) determining
the positions of matching tuples for each group-by category by
ANDing bitvectors from CUBIT instances, and (2) calculating the
aggregations for each category by reading the specified entries in
one pass—a computation mode amenable to SIMD instructions.
Join. By maintaining a CUBIT instance on the join attribute (e.g.,
l_orderkey for Q5), the CUBIT-powered Join operator avoids scan-
ning one column data in the fact table. Additionally, the CUBIT

 0
 10
 20
 30
 40
 50
 60
 70

1 4 8 16 24 32

(a)

ro

u
g
h

p
u

t
(q

u
er

ie
s/

s)

Number of worker threads

CUBIT
DuckDB+

 0

 10

 20

 30

 40

 50

2% 4% 8% 10% 15%

 Standard Q6

(b)

ro

u
g
h

p
u

t
(q

u
er

ie
s/

s)

Selectivity

CUBIT
DuckDB+

Figure 18: (a) At different concurrency levels, CUBIT-based

probe outperforms the highly-optimized scan in DuckDB
+

for TPC-H Q6. (b) This trend continues until the selectivity

reaches 10%.

instance provides sufficient information to join two tables by using
its bitvectors. For example, for the join in Q5, our operator retrieves
the orderkey set from the ORDERS table, reads the corresponding
bitvectors from the CUBIT instance, and performs logical ORs be-
tween them. Using the resulting bitvector, the operator probes the
fact table and performs aggregations in one pass.

With our optimized operators, we experiment with 12 out of 22
TPC-H queries, including scan-intensive (Q6 and Q12), aggregation-
heavy (Q1 and Q18), and join-dominant (Q3, Q4, Q5, Q10, Q14, Q15,
Q17, and Q19) queries. We omit other queries that neither involve
the fact table LINEITEM (e.g., Q2) nor present obvious choke points
for query engines (e.g., Q16). Our evaluation results show that
CUBIT-powered query engine is 1.2–2.7× faster than the native
approaches in DuckDB+, shown in Figure 17.

We further explore the conditions under which maintaining
CUBIT instances outperforms traditional column scanning by using
Q6 as an example. In Q6, we create three CUBIT instances on the
attributes l_shipdate (cardinality = 2,526), l_discount (cardinality =
11), and l_quantity (cardinality = 50). Our operator selects bitvectors
for 365 days, 3 discounts, and 25 quantities, and performsORs/ANDs
between these 393 (365+3+25) bitvectors to compute the resulting
bitvector (selectivity = 2%), which is maintained in segments (§4.4).
We use an AVX-512-based mechanism [33] to convert the resulting
bitvector to an ID list, which is used to probe the l_extendedprice
and l_discount columns. We made the following observations:
CUBIT Scales for High Concurrency. Each bitvector segment covers
a small range of physical pages, such that worker threads run in
parallel, without any synchronization overhead, leading to near-
ideal scalability (Figure 18a).
CUBIT Has Wide Applicability. The effectiveness of CUBIT makes
it a potential replacement for Scan for several use cases. To demon-
strate this, we use 16 cores but artificially increase the selectivity of
Q6 by varying the combination of l_shipdate and l_discount. CUBIT
outperforms Scans for up to 10% selectivity (Figure 18b).

6.5 CUBIT Benefits HTAP

CH-benCHmark.We use DBx1000 because of its scalability and
implement the CH-benCHmark [11] that consists of a full version
of the TPC-C benchmark and a set of TPC-H-equivalent analytical
queries on the same tables. 𝑇 threads run TPC-C transactions that
heavily update tables, including the ORDER-LINE table, and the
remaining 𝐴 threads run CH-benCHmark analytical queries on
these tables. We use an initial dataset of 100 warehouses, so ORDER-
LINE contains about 2.5GB of data and 30M tuples. The TPC-C
transactions insert ∼10M new tuples during each trial.

 0

 1000

 2000

Q1-T8-A1 Q1-T16-A4 Q6-T8-A1 Q6-T16-A4

er

y
 l

at
en

cy
 (

m
s)

Scan BTree CUBIT

Figure 19: For HTAP DBMSs, CUBIT can speedup analytical

queries with high (Q1) and low (Q6) selectivity, irrespective

of concurrent updates. Higher contention (16 TPC-C threads

instead of 8) and parallelism (4 analytical queries instead of

1) do not noticeably affect CUBIT’s performance.

Indexes. We built one CUBIT instance for each attribute in the
analytical queries (i.e., Q1 and Q6), and other indexes are built using
multi-column indexes for each query, as in §6.4.1.
Concurrency Control. CUBIT can be used as a general secondary
index when the DBMS has its concurrency control mechanism
(e.g., 2PL). An independent lock manager is responsible for resolv-
ing conflicting data updates [35, 36] and, thus, we focus on the
atomicity of CUBIT’s operations. We also implement an MVCC
mechanism, called Post-Timestamping MVCC (PTMVCC), that is sim-
ilar to Hekaton [14] but only increments its TIMESTAMP when
transactions with updates successfully commit [27]. A transaction
traverses the chains of tuples or speculatively reads other transac-
tions’ workspace to fetch the tuple versions visible to it. PTMVCC
reduces the contention on updating TIMESTAMP [62] and provides
a stronger progress guarantee for analytical queries that are never
blocked nor aborted [27]. PTMVCC provides snapshot isolation.
When using 16 transactional and 4 analytical threads, PTMVCC im-
proves performance by 8% over the 2PL+CUBIT solution, primarily
due to executing queries wait-free even during ongoing updates
and eliminating tuple latching overhead. We thus use PTMVCC.
Selectivity. In our evaluation, we found that many attributes in
CH-benCHmark cover a narrow scope, such that most queries select
almost all tuples. We thus modified the propagated values and the
query predicates to provide variable selectivity. For example, we
set the values of the ol_delivery_d attribute in the ORDER-LINE

table in the range of [1983, 2023), and the values of the ol_quantity
attribute in the range of [1, 25000), both in a uniform distribution.
As a consequence, each CH-benCHmark Q1 selects rows on years
(16 out of 40) and delivery state (9 out of 10), leading to an average
selectivity of 16

40 ×
9
10 ≈ 36%, and each Q6 selects rows on years (20

out of 40), quantities (1000 out of 25,000), and delivery state (9 out
of 10), leading to an average selectivity of 20

40 × 1
25 × 9

10 ≈ 1.8%.
CUBIT Offers Fast Scalable HTAP Queries. Figure 19 shows the
response time of the representative analytical queries (Q1 and Q6)
at different concurrency levels (with 8 or 16 Transactional and 1 or
4 Analytical threads). Bw-Tree and ART show similar performance
trends with B+-Tree in our evaluation, so we denote them as BTree.
We make the following observations. (1) For Q1, which has high
selectivity (36%) and mainly performs aggregation, BTree indexing
hurts analytical queries. However, CUBIT is comparable to Scan.
(2) For Q6, which has low selectivity (1.8%) and spends more time
scanning tuples, BTree indexing outperforms the scan. CUBIT fur-
ther reduces the response time and achieves 2–11× performance
improvement compared to the baselines, irrespective of concurrent
TPC-C updates. (3) For both Q1 and Q6, increasing the number

of analytical threads from 1 to 4 does not noticeably slow down
CUBIT, but it hurts scan and increases the response time by 3×
mainly because the cache miss rate increases by 2× (perf’s capac-
ity misses). In addition, increasing the number of TPC-C threads
from 8 to 16 incurs higher contention and leads to increased query
latency for BTree, while CUBIT is barely affected. Overall, CUBIT
is a promising indexing candidate for analytical queries on HTAP.

7 RELATEDWORK

Offering Faster Queries. Designs like TEB [28] and BinDex [37]
focus on improving query performance by leveraging customized
read-only data structures. Although recent research has improved
update performance [49], updates remain costly. CUBIT inherently
offers efficient updates and is orthogonal to these designs.
Compressing Bitvectors. Run-length encoding and its variants
[1, 10, 34, 60] have been widely used to compress bitvectors. The
latest research, Roaring [34], splits a bitvector into fixed-length con-
tainers that are recorded and compressed independently. These de-
signs support updates in the granularity of bitvector (or container),
which suffer from performance deterioration when naively used
in updatable bitmap indexes. However, CUBIT provides a frame-
work to atomically and efficiently update each bitvector. We select
WAH [60] in CUBIT’s implementation and leave utilizing Roaring,
which contains structure modification operations (i.e., switching
between an array and a bitmap container), as future work.
Bit-Packing. Bitmap indexes and bit-packed storage (e.g., SIMD-
Scan [58], BitWeaving [38], and ByteSlice [17]) are closely related
regarding space efficiency and fast data retrieval. Nevertheless,
bit-packed storage is primarily optimized for fast scanning, mak-
ing merging results from multiple scans typically expensive [38].
Another trend involves incorporating lightweight (e.g., Column
Imprints [52] and Column Sketches [20]) and customized indexes
(e.g., BinDex [37] and Cabin [9]) to accelerate scans. These research
results highlight the necessity of maintaining indexes on bit-packed
storage, and CUBIT is an effort toward a general solution.
Modeling Analysis. Prior research [7, 8, 45] has extensively ex-
amined bitmap indexes in terms of space-time tradeoffs. However,
existing conclusions may not fully apply to CUBIT that focuses on
updates. To analyze CUBIT, a new model that considers the impact
of updates is necessary, which we leave as our future work.

8 CONCLUSION

We present CUBIT, a bitmap index that supports scalable, real-time
updates, enabling a departure from the traditional approaches of
updating bitmap indexes which are notably in a serial, batch mode.
CUBIT expands the applicability of bitmap indexing by, for the
first time, enabling the efficient maintenance of bitmap indexes
on frequently updated attributes, thereby demonstrating the po-
tential to accelerate a DBMS’s critical operations including Scan,
Join, and Aggregation. Experimenting with OLAP and HTAP work-
loads demonstrates that the CUBIT-powered query engine delivers
remarkable performance improvement for analytical queries.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feed-
back, as well as Mark Callaghan, Wei Xi, and Weijian Guo for their
valuable comments. This work is partially funded by NSF #2144547.

REFERENCES

[1] Gennady Antoshenkov. 1995. Byte-aligned Bitmap Compression. In Proceedings

of the Conference on Data Compression (DCC). 476–476. http://dl.acm.org/citation.
cfm?id=874051.874730

[2] Maya Arbel-Raviv and Trevor Brown. 2018. Harnessing epoch-based reclamation
for efficient range queries. In Proceedings of the ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP). 14–27. https://doi.org/
10.1145/3178487.3178489

[3] Manos Athanassoulis, Zheng Yan, and Stratos Idreos. 2016. UpBit: Scalable
In-Memory Updatable Bitmap Indexing. In Proceedings of the ACM SIGMOD

International Conference on Management of Data. https://dl.acm.org/citation.
cfm?id=2915964

[4] Berkeley. 2016. Berkeley Earth Data. http://berkeleyearth.org/data/. [Online;
accessed 1-May-2024].

[5] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed: Hid-
denMessages and Lessons Learned from an Influential Benchmark. In Proceedings
of the TPC Technology Conference on Performance Evaluation, Measurement and

Characterization of Complex Systems (TPCTC). https://link.springer.com/chapter/
10.1007/978-3-319-04936-6_5

[6] Guadalupe Canahuate, Michael Gibas, andHakan Ferhatosmanoglu. 2007. Update
Conscious Bitmap Indices. In Proceedings of the International Conference on

Scientific and Statistical Database Management (SSDBM). 15–25. https://doi.org/
10.1109/SSDBM.2007.24

[7] Chee-Yong Chan and Yannis E. Ioannidis. 1998. Bitmap index design and evalua-
tion. ACM SIGMOD Record 27, 2 (1998), 355–366. https://doi.org/10.1145/276305.
276336

[8] Chee-Yong Chan and Yannis E. Ioannidis. 1999. An efficient bitmap encoding
scheme for selection queries. ACM SIGMOD Record 28, 2 (1999), 215–226. https:
//doi.org/10.1145/304181.304201

[9] Yiyuan Chen and Shimin Chen. 2024. Cabin: A Compressed Adaptive Binned
Scan Index. Proceedings of the ACM on Management of Data (PACMMOD) 2, 1
(2024), 57:1–57:26. https://doi.org/10.1145/3639312

[10] Alessandro Colantonio and Roberto Di Pietro. 2010. Concise: Compressed ’N’
Composable Integer Set. Inform. Process. Lett. 110, 16 (2010), 644–650. https:
//doi.org/10.1016/j.ipl.2010.05.018

[11] Richard L. Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper,
Stefan Krompass, Harumi A. Kuno, Raghunath Othayoth Nambiar, Thomas
Neumann, Meikel Poess, Kai-Uwe Sattler, Michael Seibold, Eric Simon, and
Florian Waas. 2011. The mixed workload CH-benCHmark. In Proceedings of

the International Workshop on Testing Database Systems (DBTest). 8. https:
//doi.org/10.1145/1988842.1988850

[12] François Deliège and Torben Bach Pedersen. 2010. Position list word aligned
hybrid: optimizing space and performance for compressed bitmaps. In Proceedings
of the International Conference on Extending Database Technology (EDBT). 228–239.
https://doi.org/10.1145/1739041.1739071

[13] Mathieu Desnoyers. 2012. Userspace RCU. https://liburcu.org/. [Online; accessed
1-May-2024].

[14] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data. 1243–1254. https://doi.org/10.1145/
2463676.2463710

[15] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proceedings of the
VLDB Endowment 13, 8 (2020), 1206–1220. https://doi.org/10.14778/3389133.
3389138

[16] Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias
Uflacker, andHasso Plattner. 2019. Hyrise Re-engineered: An Extensible Database
System for Research in Relational In-Memory Data Management. In Proceed-

ings of the International Conference on Extending Database Technology (EDBT).
313–324. https://doi.org/10.5441/002/EDBT.2019.28

[17] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. ByteSlice: Pushing
the Envelop of Main Memory Data Processing with a New Storage Layout. In
Proceedings of the ACM SIGMOD International Conference on Management of Data.
31–46. https://doi.org/10.1145/2723372.2747642

[18] Francesco Fusco, Marc Ph. Stoecklin, and Michail Vlachos. 2010. Net-Fli: On-
the-fly Compression, Archiving and Indexing of Streaming Network Traffic.
Proceedings of the VLDB Endowment 3, 2 (2010), 1382–1393. https://doi.org/10.
14778/1920841.1921011

[19] Goetz Graefe. 2011. Modern B-Tree Techniques. Foundations and Trends in

Databases 3, 4 (2011), 203–402. http://dx.doi.org/10.1561/1900000028
[20] Brian Hentschel, Michael S Kester, and Stratos Idreos. 2018. Column Sketches:

A Scan Accelerator for Rapid and Robust Predicate Evaluation. In Proceedings

of the ACM SIGMOD International Conference on Management of Data. 857–872.
https://doi.org/10.1145/3183713.3196911

[21] Maurice Herlihy. 1991. Wait-Free Synchronization. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS) 13, 1 (1991), 124–149. https:
//doi.org/10.1145/114005.102808

[22] Maurice Herlihy and Jeannette M Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Transactions on Programming Languages

and Systems (TOPLAS) 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972
[23] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-

tasia Ailamaki. 2010. Aether: A Scalable Approach to Logging. Proceedings of
the VLDB Endowment 3, 1-2 (2010), 681–692. http://dl.acm.org/citation.cfm?id=
1920841.1920928

[24] Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim, and Taesoo Kim. 2018. A
scalable ordering primitive for multicore machines. In Proceedings of the EuroSys

Conference (EuroSys). 34:1–34:15. https://doi.org/10.1145/3190508.3190510
[25] Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP & OLAP

Main Memory Database System Based on Virtual Memory Snapshots. In Proceed-

ings of the IEEE International Conference on Data Engineering (ICDE). 195–206.
https://doi.org/10.1109/ICDE.2011.5767867

[26] Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. 2017. Access Path
Selection in Main-Memory Optimized Data Systems: Should I Scan or Should I
Probe?. In Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data. 715–730. https://doi.org/10.1145/3035918.3064049
[27] Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Madhava Krishnan Ramanathan,

and Changwoo Min. 2019. MV-RLU: Scaling Read-Log-Update with Multi-
Versioning. In Proceedings of the International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS). 779–792.
https://doi.org/10.1145/3297858.3304040

[28] Harald Lang, Alexander Beischl, Viktor Leis, Peter A Boncz, Thomas Neumann,
and Alfons Kemper. 2020. Tree-Encoded Bitmaps. In Proceedings of the ACM

SIGMOD International Conference on Management of Data. 937–967. https:
//doi.org/10.1145/3318464.3380588

[29] Philip L Lehman and S Bing Yao. 1981. Efficient Locking for Concurrent Oper-
ations on B-Trees. ACM Transactions on Database Systems (TODS) 6, 4 (1981),
650–670. https://doi.org/10.1145/319628.319663

[30] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven Parallelism: A NUMA-aware Query Evaluation Framework for the Many-
core Age. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data. 743–754. https://doi.org/10.1145/2588555.2610507
[31] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix

Tree: ARTful Indexing for Main-Memory Databases. In Proceedings of the IEEE

International Conference on Data Engineering (ICDE). 38–49. https://doi.org/10.
1109/ICDE.2013.6544812

[32] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The
ART of Practical Synchronization. In Proceedings of the International Workshop

on Data Management on New Hardware (DAMON). 3:1–3:8. https://doi.org/10.
1145/2933349.2933352

[33] Daniel Lemire. 2022. Faster bitset decoding using Intel AVX-512. https:
//lemire.me/blog/2022/05/10/faster-bitset-decoding-using-intel-avx-512/. [On-
line; accessed 1-May-2024].

[34] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, FranÃ§ois
Saint-Jacques, and Gregory Ssi Yan Kai. 2018. Roaring bitmaps: Implementation
of an optimized software library. Software: Practice and Experience 48, 4 (2018),
867–895. https://doi.org/10.1002/SPE.2560

[35] Justin J Levandoski, David B Lomet, Mohamed F Mokbel, and Kevin Zhao. 2011.
Deuteronomy: Transaction Support for Cloud Data. In Proceedings of the Biennial

Conference on Innovative Data Systems Research (CIDR). 123–133. http://cidrdb.
org/cidr2011/Papers/CIDR11_Paper14.pdf

[36] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for New Hardware Platforms. In Proceedings of the IEEE International

Conference on Data Engineering (ICDE). 302–313. https://doi.org/10.1109/ICDE.
2013.6544834

[37] Linwei Li, Kai Zhang, Jiading Guo, Wen He, Zhenying He, Yinan Jing, Weili Han,
and X SeanWang. 2020. BinDex: A Two-Layered Index for Fast and Robust Scans.
In Proceedings of the ACM SIGMOD International Conference on Management of

Data. 909–923. https://doi.org/10.1145/3318464.3380563
[38] Yinan Li and Jignesh M Patel. 2013. BitWeaving: Fast Scans for Main Memory

Data Processing. In Proceedings of the ACM SIGMOD International Conference on

Management of Data. 289–300. https://doi.org/10.1145/2463676.2465322
[39] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache Craftiness

for Fast Multicore Key-value Storage. In Proceedings of the ACM European Confer-

ence on Computer Systems (EuroSys). 183–196. https://doi.org/10.1145/2168836.
2168855

[40] Paul E McKenney. 2014. What is RCU? https://www.kernel.org/doc/html/latest/
RCU/whatisRCU.html. [Online; accessed 1-May-2024].

[41] Maged M Michael and Michael L Scott. 1996. Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms. In Proceedings of the

Annual ACM Symposium on Principles of Distributed Computing (PODC). 267–275.
https://doi.org/10.1145/248052.248106

[42] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. 2005. Using elimination
to implement scalable and lock-free FIFO queues. In Proceedings of the ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA). 253–262. https:
//doi.org/10.1145/1073970.1074013

http://dl.acm.org/citation.cfm?id=874051.874730
http://dl.acm.org/citation.cfm?id=874051.874730
https://doi.org/10.1145/3178487.3178489
https://doi.org/10.1145/3178487.3178489
https://dl.acm.org/citation.cfm?id=2915964
https://dl.acm.org/citation.cfm?id=2915964
http://berkeleyearth.org/data/
https://link.springer.com/chapter/10.1007/978-3-319-04936-6_5
https://link.springer.com/chapter/10.1007/978-3-319-04936-6_5
https://doi.org/10.1109/SSDBM.2007.24
https://doi.org/10.1109/SSDBM.2007.24
https://doi.org/10.1145/276305.276336
https://doi.org/10.1145/276305.276336
https://doi.org/10.1145/304181.304201
https://doi.org/10.1145/304181.304201
https://doi.org/10.1145/3639312
https://doi.org/10.1016/j.ipl.2010.05.018
https://doi.org/10.1016/j.ipl.2010.05.018
https://doi.org/10.1145/1988842.1988850
https://doi.org/10.1145/1988842.1988850
https://doi.org/10.1145/1739041.1739071
https://liburcu.org/
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.14778/3389133.3389138
https://doi.org/10.14778/3389133.3389138
https://doi.org/10.5441/002/EDBT.2019.28
https://doi.org/10.1145/2723372.2747642
https://doi.org/10.14778/1920841.1921011
https://doi.org/10.14778/1920841.1921011
http://dx.doi.org/10.1561/1900000028
https://doi.org/10.1145/3183713.3196911
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/78969.78972
http://dl.acm.org/citation.cfm?id=1920841.1920928
http://dl.acm.org/citation.cfm?id=1920841.1920928
https://doi.org/10.1145/3190508.3190510
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1145/3035918.3064049
https://doi.org/10.1145/3297858.3304040
https://doi.org/10.1145/3318464.3380588
https://doi.org/10.1145/3318464.3380588
https://doi.org/10.1145/319628.319663
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.1145/2933349.2933352
https://lemire.me/blog/2022/05/10/faster-bitset-decoding-using-intel-avx-512/
https://lemire.me/blog/2022/05/10/faster-bitset-decoding-using-intel-avx-512/
https://doi.org/10.1002/SPE.2560
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper14.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper14.pdf
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1145/3318464.3380563
https://doi.org/10.1145/2463676.2465322
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/2168836.2168855
https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html
https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/1073970.1074013
https://doi.org/10.1145/1073970.1074013

[43] Elizabeth J O’Neil, Patrick E O’Neil, and KeshengWu. 2007. Bitmap Index Design
Choices and Their Performance Implications. In Proceedings of the International

Database Engineering and Applications Symposium (IDEAS). 72–84. https://doi.
org/10.1109/IDEAS.2007.4318091

[44] Patrick E. O’Neil. 1987. Model 204 Architecture and Performance. In Proceedings

of the International Workshop on High Performance Transaction Systems (HPTS).
40–59. http://dl.acm.org/citation.cfm?id=645575.658338https://link.springer.
com/chapter/10.1007/3-540-51085-0_42

[45] Patrick E. O’Neil and Dallan Quass. 1997. Improved query performance with
variant indexes. ACM SIGMOD Record 26, 2 (1997), 38–49. http://dl.acm.org/
citation.cfm?id=253262.253268

[46] Oracle. 2007. Using Bitmap Indexes in Data Warehouses. White Paper of Oracle

11g (2007). https://docs.oracle.com/cd/E11882_01/server.112/e25554/indexes.
htm#CIHGAFFF

[47] Oracle. 2024. Oracle23ai Database Concepts. https://docs.oracle.com/en/
database/oracle/oracle-database/23/cncpt/indexes-and-index-organized-
tables.html#GUID-B15C4817-7748-456D-9740-8B9628AF9F47. [Online;
accessed 1-October-2024].

[48] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyt-
ical Database. In Proceedings of the ACM SIGMOD International Conference on

Management of Data. 1981–1984. https://doi.org/10.1145/3299869.3320212
[49] Marcellus Prama Saputra, Eleni Tzirita Zacharatou, Serafeim Papadias, and Volker

Markl. 2022. In-Place Updates in Tree-Encoded Bitmaps. In Proceedings of the In-

ternational Conference on Scientific and Statistical Database Management (SSDBM).
18:1–18:4. https://doi.org/10.1145/3538712.3538745

[50] Vivek Sharma. 2005. Bitmap Index vs. B-tree Index: Which and When? Oracle

White Paper (2005).
[51] Nir Shavit and Dan Touitou. 1997. Elimination Trees and the Construction of

Pools and Stacks. Theory of Computing Systems 30, 6 (1997), 645–670. https:
//doi.org/10.1007/S002240000072

[52] Lefteris Sidirourgos and Martin L. Kersten. 2013. Column Imprints: A Secondary
Index Structure. In Proceedings of the ACM SIGMOD International Conference

on Management of Data. 893–904. http://dl.acm.org/citation.cfm?id=2463676.
2465306

[53] Avi Silberschatz, Henry F Korth, and S Sudarshan. 2020. Database System Con-

cepts, Seventh Edition. McGraw-Hill Book Company. https://www.db-book.com/

[54] TPC. 2021. TPC-H benchmark. http://www.tpc.org/tpch/ (2021).
[55] Josh Triplett, Paul E McKenney, and Jonathan Walpole. 2011. Re-

sizable, Scalable, Concurrent Hash Tables via Relativistic Program-
ming. In Proceedings of the USENIX Annual Technical Conference

(ATC). https://www.usenix.org/conference/usenixatc11/resizable-scalable-
concurrent-hash-tables-relativistic-programming

[56] Junchang Wang and Manos Athanassoulis. 2024. CUBIT: Concurrent Updatable
Bitmap Indexing (Extended Version). CoRR 2410.16929 (2024). https://arxiv.org/
abs/2410.16929

[57] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,
Michael Kaminsky, and David G Andersen. 2018. Building a Bw-Tree Takes More
Than Just Buzz Words. In Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data. 473–488. https://doi.org/10.1145/3183713.3196895
[58] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander

Zeier, and Jan Schaffner. 2009. SIMD-Scan: Ultra Fast in-Memory Table Scan
using on-Chip Vector Processing Units. Proceedings of the VLDB Endowment 2, 1
(2009), 385–394. http://www.vldb.org/pvldb/2/vldb09-327.pdf

[59] Kesheng Wu, S Ahern, E W Bethel, J Chen, H Childs, E Cormier-Michel, C
Geddes, J Gu, H Hagen, B Hamann, W Koegler, J Lauret, J Meredith, P Messmer,
Ekow J. Otoo, V Perevoztchikov, A Poskanzer, O Rübel, Arie Shoshani, A Sim,
Kurt Stockinger, GWeber, andW-M Zhang. 2009. FastBit: interactively searching
massive data. Journal of Physics: Conference Series 180, 1 (2009), 012053. https:
//doi.org/10.1088/1742-6596/180/1/012053

[60] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. 2006. Optimizing Bitmap Indices
with Efficient Compression. ACM Transactions on Database Systems (TODS) 31, 1
(2006), 1–38. https://doi.org/10.1145/1132863.1132864

[61] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An Empir-
ical Evaluation of In-Memory Multi-Version Concurrency Control. Proceedings
of the VLDB Endowment 10, 7 (2017), 781–792. https://doi.org/10.14778/3067421.
3067427

[62] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. Proceedings of the VLDB Endowment 8, 3 (2014), 209–
220. https://doi.org/10.14778/2735508.2735511

https://doi.org/10.1109/IDEAS.2007.4318091
https://doi.org/10.1109/IDEAS.2007.4318091
http://dl.acm.org/citation.cfm?id=645575.658338 https://link.springer.com/chapter/10.1007/3-540-51085-0_42
http://dl.acm.org/citation.cfm?id=645575.658338 https://link.springer.com/chapter/10.1007/3-540-51085-0_42
http://dl.acm.org/citation.cfm?id=253262.253268
http://dl.acm.org/citation.cfm?id=253262.253268
https://docs.oracle.com/cd/E11882_01/server.112/e25554/indexes.htm#CIHGAFFF
https://docs.oracle.com/cd/E11882_01/server.112/e25554/indexes.htm#CIHGAFFF
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/indexes-and-index-organized-tables.html#GUID-B15C4817-7748-456D-9740-8B9628AF9F47
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/indexes-and-index-organized-tables.html#GUID-B15C4817-7748-456D-9740-8B9628AF9F47
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/indexes-and-index-organized-tables.html#GUID-B15C4817-7748-456D-9740-8B9628AF9F47
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3538712.3538745
https://doi.org/10.1007/S002240000072
https://doi.org/10.1007/S002240000072
http://dl.acm.org/citation.cfm?id=2463676.2465306
http://dl.acm.org/citation.cfm?id=2463676.2465306
https://www.db-book.com/
https://www.usenix.org/conference/usenixatc11/resizable-scalable-concurrent-hash-tables-relativistic-programming
https://www.usenix.org/conference/usenixatc11/resizable-scalable-concurrent-hash-tables-relativistic-programming
https://arxiv.org/abs/2410.16929
https://arxiv.org/abs/2410.16929
https://doi.org/10.1145/3183713.3196895
http://www.vldb.org/pvldb/2/vldb09-327.pdf
https://doi.org/10.1088/1742-6596/180/1/012053
https://doi.org/10.1088/1742-6596/180/1/012053
https://doi.org/10.1145/1132863.1132864
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.14778/2735508.2735511

	Abstract
	1 Introduction
	2 Background on Bitmap Indexes
	3 Why Bitmap Indexes Do Not Scale
	4 CUBIT Design
	4.1 Horizontal Update Delta (HUD)
	4.2 Delta Log
	4.3 Merging HUDs to VBs
	4.4 Segmented Bitvectors
	4.5 Snapshotting
	4.6 Index Operations
	4.7 Synchronization Mechanisms

	5 CUBIT implementation
	6 Experimental Evaluation
	6.1 CUBIT Scales with Increased Parallelism
	6.2 Sensitivity Analysis
	6.3 Tuning CUBIT
	6.4 CUBIT Benefits OLAP
	6.5 CUBIT Benefits HTAP

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

