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Abstract
Log-structured merge trees (LSM trees) are increasingly used as part of the storage engine behind several data systems,
and are frequently deployed in the cloud. As the number of applications relying on LSM-based storage backends increases,
the problem of performance tuning of LSM trees receives increasing attention. We consider both nominal tunings—where
workload and execution environment are accurately known a priori—and robust tunings—which consider uncertainty in the
workload knowledge. This type of workload uncertainty is common in modern applications, notably in shared infrastructure
environments like the public cloud. To address this problem, we introduce Endure, a new paradigm for tuning LSM trees
in the presence of workload uncertainty. Specifically, we focus on the impact of the choice of compaction policy, size ratio,
and memory allocation on the overall performance. Endure considers a robust formulation of the throughput maximization
problem and recommends a tuning that offers near-optimal throughput when the executed workload is not the same, instead
in a neighborhood of the expected workload. Additionally, we explore the robustness of flexible LSM designs by proposing a
new unified design called K-LSM that encompasses existing designs.We deploy our robust tuning system,Endure, on a state-
of-the-art key-value store, RocksDB, and demonstrate throughput improvements of up to 5× in the presence of uncertainty.
Our results indicate that the tunings obtained by Endure are more robust than tunings obtained under our expanded LSM
design space. This indicates that robustness may not be inherent to a design, instead, it is an outcome of a tuning process that
explicitly accounts for uncertainty.

Keywords Database · Database tuning · Robust tuning · LSM tree · Instance-optimized systems

1 Introduction

Ubiquitous LSM-based key-value stores. Log-Structured
Merge trees (LSM trees) are commonly deployed as the back-
end storage engine ofmodern key-value stores [61]. The high
ingestion rates and fast reads provided by LSM trees have
led to their wide adoption by systems like RocksDB [32] at
Meta, LevelDB [34] and BigTable [18] at Google, HBase
[7], Cassandra [8] at Apache, WiredTiger [86] at MongoDB,
X-Engine [40] at Alibaba, and DynamoDB [30] at Amazon.
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LSM trees store incoming data within a memory buffer,
which is subsequently flushed to storage when full, and
mergedwith earlier buffers to form a collection of sorted runs
with exponentially increasing sizes [56]. Frequent merging
of sorted runs leads to a higher merging cost, but facilitates
faster lookups (leveling). On the flip side, lazy merging poli-
cies (tiering) trade lookup performance for lower merging
costs [73].
Tuning LSM trees. As the number of applications relying
on LSM-based storage backends increases, the problem of
performance tuning LSM trees has garnered a lot of atten-
tion. A common assumption of these methods is that when
creating an instance-optimized system [51], one has com-
plete knowledge of the expected workload and the execution
environment. Given such knowledge, prior work focuses on
optimizing LSM tree parameters such as memory allocation
for Bloom filters across different levels, memory distribution
between the buffers and the Bloom filters, and the choice
of merging policies (i.e., leveling or tiering) [26]. Different
optimization objectives have led to hybrid merging policies
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with more fine-grained tunings [28, 29, 42]; optimized mem-
ory allocation strategies [14, 49, 53], Bloom filter variations
[58, 89], new compaction strategies [5, 54, 72, 73, 90], and
exploitation of data characteristics [1, 67, 88].

Even when accurate information about the workload and
underlying hardware are available, tuning data systems is a
notoriously difficult research problem [19, 22, 79]. Addi-
tionally, the explosive growth in the usage of the cloud
infrastructure for data management [37, 68] has exacerbated
this problem due to the increase in uncertainty and variability
in workloads [23, 33, 38, 39, 62, 66, 74–76, 87].

To address this challenge, we introduce Endure,1 a
general framework for providing robust tunings under uncer-
tain input workloads. Endure introduces a tuning-under-
uncertainty paradigm by formulating the classic tuning
problem as a robust optimization problem. Our experiments
demonstrate the benefits of robust tunings compared to exist-
ing baselines for tuning LSM trees.
Expanding the LSM design space. In this paper, we build
on our prior work [41] and expand it along multiple dimen-
sions.We take amore critical look at the performance of LSM
tunings for flexibleLSMdesigns bothwith andwithoutwork-
load uncertainty. After careful consideration of existing LSM
designs and tuning approaches—e.g., Monkey [26] and Dos-
toevsky [28]—we propose a general and more unified LSM
design, termed K-LSM. Our design allows each level to have
a variable number of potentially overlapping files. Therefore,
we can describe both standard compaction policies (i.e., tier-
ing [48] and leveling [61]), and existing hybrid compaction
policies. We demonstrate that K-LSM can reduce to data
layouts such as Lazy Leveling [28, 29], Dostoevsky [28],
and 1-Leveling [73], thus making it a unified LSM design.
Furthermore, we accompany the K-LSM design with a cost
model, which in turn can capture the costs of all aforemen-
tioned approaches.
Performance of LSM tunings. Next, we check the feasi-
bility of tuning an LSM tree under the assumption of an
accurately known workload (no uncertainty) using the K-
LSM cost model. We show that this can be done using
off-the-shelf numerical solvers. Our experiments indicate
that tunings obtained using flexible designs provide better
system performance when compared to those obtained from
state-of-the-art LSM designs. To the best of our knowledge,
we are the first to propose a unified LSM cost model.
Robustness of LSM trees. In the second part of the work,
we present results with Endure [41], our system for robust
LSM tree tuning—i.e., LSM tree tuning in the presence of
workload uncertainty. Here, we depart from the classical
view of database tuning, which assumes accurate knowl-
edge about the expected workload. Toward this, Endure
introduces a new robust tuning paradigm that incorporates

1 An earlier version of this work appeared in VLDB 2022 [41].

expected uncertainty into optimization and applies it to LSM
trees.

We formulate the Robust Tuning problem that seeks
an LSM tree configuration that maximizes the worst-case
throughput over all the workloads in the neighborhood of
an expected workload. We use the notion of KL-divergence
between probability distributions to define the neighborhood
size, implicitly assuming that the uncertain workloads would
be contained in the neighborhood. As the KL-divergence
boundary condition approaches zero, our problem becomes
equivalent to the classical optimization problem (hence-
forth referred to as the Nominal Tuning problem). More
specifically, our approach uses as input the expected size
of the uncertainty neighborhood, which dictates the qualita-
tive characteristics of the solution. Intuitively, the larger the
size of the uncertainty neighborhood, the larger the workload
discrepancy a robust tuning can accommodate. Leveraging
work on robust optimization from the Operations Research
and Machine Learning communities [10–12], we efficiently
solve the Robust Tuning problem and find the robust tun-
ing for LSM tree-based storage systems. A similar problem
of using workload uncertainty while determining the physi-
cal design of column-stores has been explored in prior work
[60]. However, this methodology is not well-suited for the
LSM tuning problem. We provide additional details regard-
ing this in Sect. 12.
Flexibility in design and robustness. Finally, we experi-
mentally investigate whether the nominal tunings obtained
by various LSM designs are inherently robust. That is, we
investigate whether the lack of robustness in the state-of-the-
art nominal tunings is a consequence of the designs not being
expressive enough, or a result of the tuning process’s lack of
consideration for uncertainty. Our findings indicate that the
nominal tunings obtained via K-LSM provide a benefit over
traditional LSM designs in scenarios where the workload
does not deviate from the expected. However, this benefit
does not appear in the contrasting scenario where the work-
load does deviate from the expected. Rather, tunings obtained
from Endure exhibit higher throughput with simpler LSM
designs than nominal tunings with flexible LSM designs.
Hence, we conclude flexibility does not inherently provide
robustness.
Contributions. To the best of our knowledge, our work is
the first that presents a unified LSM design with an associ-
ated cost model that is a generalization of all the existing
state-of-the-art approaches. Moreover, we present the first
systematic approach to selecting a robust tuning for instance-
optimized LSM tree-based key-value stores under workload
uncertainty, utilizing robust optimization techniques from
machine learning. Finally, we are the first to explore whether
the robustness of an LSM tree can be an inherent design
property or a result of explicitly tuning for uncertainty.
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Our technical and practical contributions can be summa-
rized as follows:

– We introduce K-LSM, a new unified LSM design that
describes both classic designs and recently proposed
state-of-the-art hybrid designs (§4). We present its impli-
cations on classical LSM tuning (§5).

– We incorporate workload uncertainty into LSM tun-
ings and provide algorithms to compute robust tunings
efficiently. Endure can be tuned for varying degrees
of workload uncertainty, and is practical enough to
be adopted by the current state-of-the-art LSM storage
engines (§6).

– We develop an uncertainty benchmark that can evaluate
the robustness of the current state-of-the-art LSM-based
systems (§7).

– In our model-based analysis, we show that robust tunings
obtained from Endure provide up to 5× higher through-
put when faced with uncertain workloads (§8).

– We deploy and test Endure in RocksDB, a state-of-the-
art LSM storage engine, to demonstrate the feasibility of
using robust tunings on commercial systems. We show
that Endure achieves up to 2.4× throughput speedups,
and these gains are independent of the database size (§9).

– By evaluating the robustness of the K-LSM design, we
demonstrate that robustness is not inherent to a design,
rather is an outcome of a tuning process that accounts for
uncertainty (§10).

– To encourage reproducible research, we make all our
code publicly available.2

2 Background on LSM trees

Basics LSM trees use the out-of-place. paradigm to store
key-value pairs [56]. Inserts, updates, and deletes are placed
in a memory buffer. Once full, its contents are sorted based
on the key, forming an immutable sorted run, then flushed to
secondary storage. Sorted runs are subsequently organized
into logical levels.

Thus, for an LSM tree with L disk-resident levels, we
label the memory buffer as Level 0 and the remaining levels
in storage from 1 to L . The disk-resident levels have expo-
nentially increasing sizes dictated by a tunable size ratio T .
Figure1 shows an overview of an LSM tree.

We denote the number of bits of main memory allocated
to the buffer mbuf , which holds several entries with a fixed
entry size E . For example, in RocksDB, the default buffer
size is mbuf = 64MB, and depending on the application, the
entry size typically varies between 64B and 1KB. The buffer
at Level 0 is mutable and can be updated in place, while runs

2 https://github.com/BU-DiSC/endure.

Fig. 1 Overview of the structure of an LSM tree

starting at Level 1 and beyond are immutable. Each Level i
has a capacity threshold of (T −1) ·T i−1 · mbuf

E entries, thus,
the level capacities are exponentially increasing by a factor
of T . The total number of levels L for a given T is

L(T ) =
⌈
logT

(
N · E
mbuf

+ 1

) ⌉
, (1)

where N is the total number of entries [26, 58, 72].
Compaction policies: leveling and tiering. Classically,
LSM trees support two compaction policies: leveling and
tiering [56, 70]. In leveling, each level contains at most one
run, and every time a run in Level i − 1 (i ≥ 1) is flushed to
Level i , it greedily sort-merges (compacts) with the run from
Level i , assuming it exists. With tiering, every level must
accumulate T runs before a compaction is triggered. During
a compaction, entries with a matching key are consolidated,
and only the most recent valid entry is retained [31, 61, 73].
Flexible compaction policies. The different LSM tree com-
paction policies form a continuum between a read-optimized
and write-optimized data layout, where leveling and tiering
policies are the two extremes [70]. Hybrid compaction poli-
cies allow a smooth transition of the tree shape to strike a
balance between the read andwrite throughput [28, 29]. Lazy
Leveling assigns the upper levels of the LSM tree to a tiering
policy and the last level to a leveling policy to improve the
worst-case cost for writes while maintaining near-optimal
read performance. This is motivated by the fact that the last
level statistically contains most of the LSM tree’s data.

This notion of assigning different compaction policies per
level is further expanded by the Dostoevsky design and the
Fluid LSM tree [28]. Rather than assigning each level a dif-
ferent compaction policy, the Fluid LSM tree uses two limits
for the number of runs per level, one for the last level of the
LSM tree, and a different one for all the upper levels. This
allows the Fluid LSM design to express fine-grained hybrid
compaction policies between leveling and tiering.

In this work, we further expand this approach by propos-
ing K-LSM, a more expressive LSM compaction model that
unifies all prior approaches by allowing each level to param-
eterize its capacity in terms of the number of files it can hold.
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In Sect. 4, we discuss K-LSM in detail and demonstrate that
it can explore a wider design space. We further discuss its
implications on the robustness of its tunings.
LSM tree operations. An LSM tree supports three basic
operations: (a) writes of new key-value pairs, (b) point
queries, and (c) range queries.

Writes: All write operations are handled by a buffer
append. Once the buffer is full, a compaction is triggered.
Any write may include either a new key-value pair, an exist-
ing key that updates its value, or a special entry called a
tombstone that deletes an existing key.

Point Queries: A point query searches for the value of a
specific key. It begins by looking at the memory buffer and
then traverses the tree from the smallest to the largest level.
At each level, the lookup moves from the most recent sorted
run to the oldest sorted run, terminating when it finds the first
matching entry. Note that a point query might return either
an empty or a non-empty result. We differentiate the two as it
has been shown workloads with empty point queries can be
further optimized [26].

Range Queries: A range query lookup returns the most
recent version of all keys within the desired range by poten-
tially scanning every run at every level.
Optimizing lookups. LSM tree lookups are optimized using
filters and indexes (also termed fence pointers) [71]. In the
worst case, a lookup needs to probe every run, however, LSM
engines use one filter per run [26, 32] to reduce this cost.
While the filters are part of each run, they are aggressively
cached in memory. One of the most common filter designs
used in LSM trees is the Bloom filter [13]. A Bloom filter is
a probabilistic membership test data structure that responds
with a false positive rate f , which is a function of the ratio
between the number of memory bits allocated mfilt and the
number of elements indexed. By probing the Bloom filter
of a particular level, an LSM tree can skip accessing that
run altogether when it does not contain the indexed key. In
practice, for efficient storage, Bloom filters are maintained at
the granularity of files [31]. Fence pointers hold the smallest
key for each disk page of all sorted runs into main memory
[26] to quickly identify which page(s) to read for a lookup.
In this work, we assume that fence pointers are required and
consume a fixed amount ofmemory in the system. Therefore,
any operation that requires a single I/O will only require one
logical page lookup by the operating system by following the
corresponding fence pointer. We further assume that a single
I/O operation corresponds to exactly one logical page access.
Tuning LSM trees. An LSM tree is a highly tunable data
structure where the size ratio, compaction policy, exact shape
of the tree, and memory allocation can all be tuned. Classi-
cal LSM tuning strategies start with an offline analysis and
assume the workload information and the execution envi-
ronment are accurately known a priori to deployment. In
comparison, online tuning strategies change LSM tuning

knobs in response toworkloads, however, the design parame-
ters thatmainly drive the performancemust be dictatedbefore
deployment [50, 56]. While LSM trees are also deployed
as collections that can be co-tuned [55], here we focus on
deploying and tuning single instances of LSM trees. Under
that assumption, LSM tree tuning considers the optimal allo-
cation of available main memory between Bloom filters and
buffering [49, 53], the optimal choice of size ratio, and the
data layout strategy [26–28]. Such design decisions are com-
mon across industry-standard LSM-based engines, such as
Apache Cassandra [8], AsterixDB [6], RocksDB [32], and
InfluxDB [47]. Lastly, recentwork has introduced newhybrid
merging strategies [29, 73], and optimizations for faster data
ingestion [57] and performance stability [54].

3 Preliminaries

As we discussed above, LSM trees have two types of param-
eters: the design parameters that are changed primarily for
performance, and the system parameters that are a part of the
system the LSM tree is deployed on, and therefore untunable.
Design parameters. The design parameters we consider in
this paper are the size ratio (T ), the memory allocated to the
Bloom filters (mfilt), the memory allocated to the write buffer
(mbuf ), and the compaction policy (π ). These are ubiquitous
design parameters and have been extensively studied as hav-
ing the largest impact on performance [26, 56]. Therefore,
we focus on these parameters to define a problem that is
not bound to any specific LSM engine. Recall that the com-
paction policy refers to either leveling or tiering in a classical
design, or may contain other parameters used to describe
hybrid designs as we discuss in Sect. 4.2.
System parameters. In production deployments, perfor-
mance depends on various system parameters (e.g., total
memory m, page size B), and other non-tunable data-
dependent parameters (e.g., data entry size E , amount of
data N ). We assume these parameters are known a priori and
fixed throughout the tuning process.
LSM tree configuration. We use � to denote the LSM tree
tuning configuration which describes the values of the tun-
able parameters together � := (T ,mfilt, π). Note that we
only use the memory for Bloom filters mfilt and not mbuf ,
because the latter can be derived using the total available
memory (mbuf = m − mfilt).
Workload. The choice of the parameters in � depends on
the input (expected) workload, i.e., the fraction of empty
lookups (z0), non-empty lookups (z1), range lookups (q),
and write (w) queries within an observation period. Such a
period is defined either over a fixed time interval or over
a certain number of queries. Note that this workload rep-
resentation is common for analyzing and tuning LSM trees
[26, 56]. Additionally, complex workloads (i.e., SQL state-
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Table 1 Summary of problem notation

Type Term Definition

Design mfilt Memory allocated for Bloom filters

mbuf Memory allocated for the write buffer

T Size ratio between consecutive levels

π Compaction policy (tiering/leveling)

System m Total memory (filters+buffer) (m = mbuf + mfilt)

E Size of a key-value entry

B Number of entries that fit in a page

N Total number of entries

Workload z0 Percentage of zero-result point lookups

z1 Percentage of nonzero-result point lookups

q Percentage of range queries

w Percentage of writes

ments) generate access patterns of the storage engine and can
be broken down into the same basic operations. This map-
ping of complex queries to basic operations is also common
for performance tuning of LSM tree-based storage engines
[17]. Therefore, a workload can be expressed as a vector
w = (z0, z1, q, w)ᵀ ≥ 0 describing the proportions of the
different kinds of queries. Clearly, z0 + z1 + q + w = 1 or
alternatively: wᵀe = 1 where e denotes a column vector of
ones of the same dimension as w.

Each type of query (non-empty lookups, empty lookups,
range lookups, and writes) has a different cost, denoted
as Z0(�), Z1(�), Q(�), W (�), as there is a dependency
between the cost of each type of query and the design �. For
ease of notation, we use c(�) = (Z0(�), Z1(�), Q(�),

W (�))ᵀ to denote the vector of the costs of executing dif-
ferent types of queries. Thus, given a specific configuration
(�) and a workload (w), the expected cost can be computed
as:

C(w,�) = wᵀc(�) =z1 · Z0(�) + z0 · Z1(�)

+ q · Q(�) + w · W (�).
(2)

We present a summary of all of our notation in Table 1.

4 The cost model of LSM trees

In this section, we provide a detailed cost model that accu-
rately captures the behavior of a wide collection of LSM
compaction strategies, including classical leveling and tier-
ing, as well as hybrid approaches. Following prior work [26,
58], we focus on the four types of operations described ear-
lier: point queries that return an empty result, point queries
that have a match, range queries, and writes.

4.1 Model basics

When modeling the read cost of LSM trees, a key quantity
to accurately capture is the amount of superfluous I/Os that
take place. AlthoughBloomfilters are used tominimize extra
I/Os, they allow for a small fraction of false positives. If the
filter returns negative, the target key does not exist in the run,
and the lookup skips over the assigned fence pointer saving a
single random I/O. If a filter returns positive, then the target
key may exist, so the lookup probes the run at a cost of one
I/O. Then, if the run contains the correct key the lookup ter-
minates. Otherwise, we have a false positive and the lookup
continues to probe the next run increasing the number of I/Os.
The false positive rate (ε) of a standard Bloom filter that is
designed to hold information over n entries using a bit-array
of size m is given by [82]:

ε = e−m
n ·ln(2)2 .

Note that the above equation assumes the use of an optimal
number of hash functions in the Bloom filter [85].

Classically, LSM tree-based key-value stores use the same
number of bits-per-entry across all Bloom filters. This means
that a lookup probes on average O

(
e−mfilt/N

)
of the runs,

where mfilt is the overall amount of main memory allo-
cated to the filters. As mfilt approaches 0 or infinity, the term
O

(
e−mfilt/N

)
approaches 1 or 0 respectively. Here, we build

on the state-of-the-art Bloom filter allocation strategy pro-
posed in Monkey [26] that uses different false positive rates
for each level of the LSM tree to offer optimal memory allo-
cation; for a size ratio T , the false positive rate corresponding
to the Bloom filter at the level i is given by

fi (T ) = T
T

T−1

T L(T )+1−i
· e−mfilt

N ln(2)2 . (3)

Additionally, false positive rates for all levels satisfy 0 ≤
fi (T ) ≤ 1. It should be further noted that Monkey optimizes
false positive rates at individual levels to minimize the worst-
case average cost of empty point queries. Non-empty point
query costs, being significantly lower than those of empty
point queries, are not considered during the optimization pro-
cess.
LSM tree design and system parameters. In Sect. 3 we
introduced the key design and system parameters needed to
model LSM tree performance. In addition to those parame-
ters, there are two more auxiliary and derived parameters we
use: the potential storage asymmetry [64] in reads and writes
( fa) and the expected selectivity of range queries (SRQ).
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Fig. 2 K-LSMprovides a flexible way to describe different compaction
behaviors. In this figure, assume the buffer is the same size as a logical
page; then each sorted run is composed of multiple pages

4.2 Extending classic LSM compaction policies

We now introduce a new variable Ki that denotes the maxi-
mum number of files for a given level i . It captures a unified
design for both classical compaction policies (i.e., tiering and
leveling) by introducing a range of new hybrid policies.
Maximum files per level. Figure2 displays the basic struc-
ture of an LSM tree with Ki assigned for all levels.We define
Ki as the maximum number of sorted immutable runs before
a full-level compaction triggers, essentially the capacity of
runs per level. In a classic tiering compaction policy, a single
level of an LSMTree traditionally has a max of (T −1) runs,
each of size mbuf

E · T (i−1) where i is the assigned level. A
full-level compaction triggers once the level receives T runs
from the level above, as a result, a level will have at most
(T − 1) runs. In our new design, each level still respects the
maximum entry capacity for an LSM tree, as each run will

have at most mbuf
E · T i−1

Ki
entries. Figure2a shows an example

of a tree right before the compaction occurs. Once the buffer
is flushed, Level 1 will compact all runs within the level and
send a sorted run to Level 2, which subsequently sort-merges
the received run with the existing data. Then after four more
buffer flushes, Level 2 will have received another run and
trigger a compaction, creating a new Level 3.
Compaction behavior. When Ki = T − 1 for level i , the
design is equivalent to a tiering policy, while for Ki = 1, it is
equivalent to a leveling policy. As incoming sorted runs are
compacted, we choose not to split runs, rather, we onlymerge
runs or logicallymove them from one level to another. There-
fore, for values in between T − 1 and 1, we alternate when
compacted runs from the level above are merged or simply
logically moved. For example, Fig. 2b shows a scenario for
Ki = 2, and T = 6. The first three runs from the level above
would be compacted to form a single run; the next 2 runs
would merge to form a sorted run. In this instance, each run

Table 2 Additional model notation

Term Definition

Z0(�) Empty read cost w.r.t to a specific LSM configuration �

Z1(�) Non-empty read cost w.r.t to a specific LSM
configuration �

Q(�) Range read cost w.r.t to a specific LSM configuration �

W (�) Write cost w.r.t to a specific LSM configuration �

L(T ) Number of levels to fill a tree with size ratio T

N f (T ) Number of entries to fill a tree with size ratio T

Ki The maximum number of overlapping files for level i

fi (T ) The Bloom filter false positive rate at Level i with a size
ratio T

fa Read/write Asymmetry ratio for storage device

fseq Cost of a sequential read w.r.t a random read

SRQ Range query selectivity

would be of a different size, one holding the equivalent of
three compactions while the other holding 2. Otherwise, if
Ki and T are set such that (Ki − 1)/T is an integer, the size
of each sorted run is equivalent. The sixth flush from Level
i − 1 triggers a full-level compaction flushing to Level i + 1.

4.3 A general cost model

Using the above insights, we model the costs in terms of the
expected number of I/O operations required for the fulfill-
ment of the individual queries. We summarize new notations
introduced for the cost model in Table 2.
Expected empty point query cost. (Z0) A point query that
returns an empty result will have visited all sorted runs on
every level and issue an I/O for every false positive result
among the Bloom filters. Therefore, the expected number of
I/Os per level depends on the Bloom filter memory allocation
at that level. Hence, Eq. (4) expresses Z0 in terms of the false
positive rates at each level as:

Z0(�) =
L(T )∑
i=1

Ki · fi (T ). (4)

For each level, there will be at most Ki runs, and each run
will have equal false positive rates.
Expected non-empty point query cost. (Z ) There are two
components to the expected non-empty point query cost.
First, we assume that the probability of a point query finding
a non-empty result in a level is proportional to the size of the
level. Thus, the probability of such a query being satisfied on

Level i by a unit cost I/O operation is simply (T−1)·T i−1

N f (T )
· mbuf

E ,
where N f (T ) denotes the number of entries in a full tree up
to L(T ) levels:
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N f (T ) =
L(T )∑
i=1

(T − 1) · T i−1 · mbuf

E
. (5)

Second, we assume that all levels preceding Level i will trig-
ger an I/O operation with a probability equivalent to the false
positive rates of the Bloom filters at those levels. Similarly to
empty point queries, the expected cost of such failed I/Os on
the preceding levels is

∑i−1
j=1 f j (T ). Lastly, each level will

contain at most Ki sorted runs, we assume that on average
the entry is found in the middle run resulting in an addi-
tional (Ki−1)

2 · fi (T ) extra I/Os. Thus, we can compute the
non-empty point query cost as an expectation over the entry
being found at any of the L(T ) levels of the tree as follows:

Z1(�) =
L(T )∑
i=1

(T − 1) · T i−1

N f (T )
· mbuf

E

·
(
1 +

i−1∑
j=1

K j · f j (T ) + Ki − 1

2
fi (T )

)
.

(6)

Range queries cost. (Q) A range query will issue at most
one disk seek per run per level, or Ki disk seeks. Each seek is
then followedbya sequential scan.The cumulative number of
pages scanned over all runs is SRQ · NB , where SRQ is the aver-
age proportion of all entries included in range lookups. After
finding the first valid page, range queries perform sequential
I/Os for subsequent pages rather than a random I/O. There-
fore, we add a scaling factor fseq that represents the cost of
a sequential I/O with respect to one random I/O. Hence, the
overall range lookup cost Q in terms of logical pages reads
is as follows:

Q(�) = fseq · SRQ · N
B

+
L(T )∑
i=1

Ki . (7)

Write cost. (W ) We model worst-case writing cost assum-
ing that the vast majority of incoming entries do not overlap.
This implies most entries will propagate through all levels
of the LSM tree. Therefore, we calculate the expected num-
ber of I/Os by first estimating the average number of merge
operations a single write participates in at Level i , and sum-
ming over all levels. We start by deriving the total number of
merges that occur on Level i . note that Level i will receive
at most T − 1 flushes from Level i − 1 before a full level
compaction is triggered. Additionally, a run at Level i needs
T−1
Ki

flushes from Level i − 1 to reach its maximum size;
we will refer to this as the flush capacity. Figure3 shows the
number of flushes and flush capacity for Level i .

Analyzing a single sorted run at Level i , we observe that
the last flush will only participate in a single eager com-
paction as the sorted run will reach its flush capacity at that
point. The second to last flush participates in 2 merges, the

Fig. 3 The last flush of a sorted run participates in 1 merge as it eagerly
merges into the sorted run. The first flush will participate in all subse-
quent eager merges from new flushes

third to last in 3 merges, and the first flush in T−1
Ki

−1 merges
as new flushes are eagerly compacted into the sorted run.
Therefore, the total count of merge operations for Ki sorted
runs on Level i is

Ki ·
T−1
Ki

−1∑
j=1

j = (T − 1) · (T − 1 − Ki )

2Ki
. (8)

Given the total merges for Level i , we can now calculate
the average number of merges a single write participates in.
First, we divide the total merges at Level i from Eq. (8) by
the number of flushes from Level i − 1 (T − 1) to receive an
average merge count of (T−1−Ki )

2Ki
. Second, to account for the

final full-level merge that occurs on the T th flush, we add 1
additional merge. Therefore, the average number of merges,
and subsequently I/Os, a single write participates in at Level
i is simply T−1+Ki

2Ki
To calculate the cost of a single insert, we need to divide

the average number of merges every level by the number
of entries per page, B. Additionally, as every compaction
operation reads data at Level i − 1 and writes to Level i ,
we model the potential asymmetry between reads and writes
on the underlying storage device3 using fa . For example, a
device for which a write operation is twice as expensive as a
read operation has fa = 2. When flushing the buffer, writes
perform sequential I/Os as opposed to random I/Os, hence,
we add fseq term to account for the cost of different I/O types.
Summing the average I/Os per level for all levels, the total
I/O cost is captured by:

W (�) = fseq · 1 + fa
B

·
L(T )∑
i=1

T − 1 + Ki

2Ki
. (9)

Total expected cost. The total expected operation cost,
C(w,�), is computed by weighing the empty point lookup
cost Z0(�) from Eq. (4), the non-empty point lookup cost
Z(�) fromEq. (6), the range lookup cost Q(�) fromEq. (7),
and the write cost W (�) from Eq. (9) by their proportion in

3 Flash-based SSDs typically exhibit a read/write asymmetry, where
writes are 2× to 10× more expensive than reads [64].
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Table 3 Variations of LSM data layouts

LSM layout Setting

Fluid LSM [28] K1 = . . . = KL−1

Lazy Leveling [28, 29] KL = 1, Ki = T − 1, ∀i �= L

1-Leveling [73] K1 = T − 1, Ki = 1, ∀i �= 1

Tiering [48] Ki = T − 1, ∀i
Leveling [61] Ki = 1, ∀i
K-LSM (§4) All Ki ∈ Z

the workload represented by the terms z0, z, q and w respec-
tively (note that z0 + z1 + q + w = 1).

4.4 Expressing LSM data layout variants

With the introduction of Ki , we can use our cost model
to effectively describe the behavior of other common LSM
designs. For example, for a classic leveling compaction pol-
icy we set ∀i, Ki = 1. This results in each level eagerly
merging incoming compacted runs into a single run, which
is equivalent to leveling. Additionally, our cost model can
easily describe other flexible LSM compaction behavior. If
we restrict all capacities before the last level to be equiv-
alent (i.e., K1 = K2 = . . . = KL−1 where L is the
last level), our cost model expresses the Fluid LSM design
as described in Dostoevsky [28]. With KL = 1 and all
K1 = K2 = . . . = KL−1 = T − 1, we have an equiva-
lent cost model for Lazy Leveling. However, our proposed
K-LSM is the most flexible, as each level has an indepen-
dent limit on the number of runs. Table 3 summarizes how
K-LSM describes other common LSM variations:

5 The NOMINAL TUNINGNOMINAL TUNINGNOMINAL TUNING problem

In this section, we describe the classic tuning problem which
involves finding the best configuration suited for a given
workload without uncertainty. We examine the problem
definition, algorithms to efficiently compute optimal config-
urations, and compare configurations across various designs
of LSM trees.

5.1 NOMINAL TUNINGNOMINAL TUNINGNOMINAL TUNING Problem definition

Traditionally, designers focus on finding the configuration
�∗ that minimizes the total cost C(w,�∗), for a given fixed
workload w. We call this problem the Nominal Tuning

problem, which is defined as follows:

Problem 1 (Nominal Tuning) Given a fixed workload w,
find the LSM tree configuration �N such that

�N = argmin
�

C(w,�). (10)

The problem described above captures the classic tuning
paradigm of finding a system configuration that minimizes a
cost model (describing I/O or latency) given a specific static
workload and system environment. Therefore, each LSM
design described inTable 3 has a differentNominal Tuning

problem based on the form of the cost function. Prior tuning
approaches either individually solve the Nominal Tuning

problem solely for LSM data layouts [28, 53] (e.g., tiering or
leveling) or memory allocation [26], but not simultaneously
for both.

5.2 Solving aNOMINAL TUNINGNOMINAL TUNINGNOMINAL TUNING problem

To solve the Nominal Tuning problem, we utilize an off-
the-shelf numerical solver.We opt to use the Sequential Least
Square Quadratic Solver (SLSQP) implemented in Python
and packaged under the SciPy library [84]. When choosing a
data layout to optimize, we reduce the cost model to express
the appropriate LSM design.
Relaxing integer values. Certain decision variables such as
T (size ratio) pose an issue as they are required to be inte-
gers as LSM trees cannot implement fractional size ratios.
To keep the problem feasible, we relax the integer constraint
for such decision variables and opt to take the ceiling of any
feasible solution before deploying the tuning. In practice, this
approach works well and leads to high-performance config-
urations.

5.3 Comparison of LSM strategies

In this section, we explore the optimal configurations for dif-
ferent designs described in Table 3 by solving the Nominal
Tuning problem for each respective LSM design variation.
We compare average I/Os per query to analyze the perfor-
mances of different flexible designs.
Experiment setup. We adopt the following setting for sys-
temparameters: the database initially holds 10 billion entries,
each of size 1KB; amemory budget of 10 bits per element, or
10 GB in total divided among Bloom filter and write buffer;
and a page size of 4 KB. It should be noted that the original
Dostoevsky strategy uses Fluid LSM as an LSM design with
fixed memory allocation, and only optimizes for the maxi-
mum number of runs for the upper levels, the lowest level,
and size ratio while fixing memory. Therefore, while evalu-
ating Dostoevsky we fix mfilt to 10 bits per entry and mbuf

to 2 MB as in [28]. For all other design variations, we solve
a Nominal Tuning problem that optimizes memory and
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Fig. 4 Throughput of different designs for fixed workloads. Hatched-
cyan indicates the best performance. Note Dostoevsky uses the Fluid
LSM design, but with fixed memory [28]

design while fixing other memory allocations such as fence
pointers and the random access buffer.
Flexible performance. Figure4 shows the average I/O per-
formance of various tuning configurations normalized to
K-LSM design across different workloads. We experiment
with a mixed read-write (w7) and a read-heavy (w11) work-
load from the uncertainty benchmark, which is presented
in detail in Sect. 7. Note that w7 would traditionally lead a
designer to focus on tiering as writes make up a large portion
of the workload, while w11 would suggest a leveling policy
would be best. When solving for more flexible designs—in
this instance K-LSM and Fluid LSM—we observe that the
optimizer always produces the best tunings. Because w11

is a read-heavy distribution, the optimal configuration has
a leveling policy, which is reinforced by observing that the
optimal K-LSM and Fluid LSM designs chosen are equiva-
lent leveling. For the balanced read-write workload w7, we
see that flexible designs outperform traditional designs as the
optimizer finely tunes the capacity per level to accommodate
both reads and writes.

6 The ROBUST TUNINGROBUST TUNINGROBUST TUNING problem

In this section, we introduce the Robust Tuning problem,
a variation of the Nominal Tuning problem that takes into
consideration uncertainty in the workload. We give a precise
definition of workload uncertainty and show how to compute
high-performance configurations that minimize the expected
cost of operation in the presence of this uncertainty.

6.1 ROBUST TUNINGROBUST TUNINGROBUST TUNING problem definition

The Nominal Tuning problem assumes perfect informa-
tion about the workload before deploying the system. For
example, we may assume that the input vector w represents
the workload for which we optimize, while in practice, w is
simply an estimate of what an observed workload may look
like. Hence, the configuration obtained by solving Problem 1

may result in variable performance if the observed workload
upon deployment varies greatly from the expected workload.

We capture this uncertainty by reformulating Problem 1 to
take into account variability observed in the input workload.
Given an expected workload w, we introduce the notion of
the uncertainty region of w, which we denote by Uw.

We can define the robust version of Problem 1, under the
assumption that there is uncertainty in the input workload as
follows:

Problem 2 (Robust Tuning) Given w and uncertainty
region Uw find the tuning configuration of the LSM tree �R

such that

�R = argmin
�

C(ŵ,�)

s.t.,ŵ ∈ Uw. (11)

Note that the above problem definition intuitively states the
following: it recognizes that the input workload w will not
be observed exactly, and it assumes that any workload in Uw

is possible. Then, it searches for the configuration �w that is
best for the worst-case scenario among all those in Uw.

The challenge in solving Robust Tuning is that one
needs to explore all the workloads in the uncertainty region
to solve the problem. In the next section, we show that this is
not necessary. In fact, by appropriately rewriting the problem
definitionwe show thatwe can solveProblem2 in polynomial
time.

6.2 Solving theROBUST TUNINGROBUST TUNINGROBUST TUNING problem

In this section, we discuss our solutions to theRobust Tun-

ing problem. On a high level, the solution strategy is the
following: first, we express the objective of the problem (as
expressed in Eq. (11)) as a standard continuous optimization
problem.We then take the dual of this problem and use exist-
ing results in robust optimization to show: (i) the duality gap
between the primal and the dual is zero, and (i i) the dual
problem is solvable in polynomial time. Thus, the dual solu-
tion can be translated into the optimal solution for the primal,
i.e., the original Robust Tuning problem. The specifics of
the methodology are described below:
Defining the uncertainty region.Uw Recall thatw is a prob-
ability vector, i.e., wᵀe = 1. Thus, in order to define the
uncertainty region Uw, we use the Kullback–Leibler (KL)
divergence function [52] defined as follows:

Definition 1 TheKL-divergence distance between two prob-
ability distributions �p = (p1, · · · , pm)ᵀ ≥ 0 and �q =
(q1, · · · , qm)ᵀ ≥ 0 is defined as,

IK L( �p, �q) =
m∑
i=1

pi log

(
pi
qi

)
.

123



A. Huynh et al.

Fig. 5 Workload uncertainty neighborhoods (Uw), denoted by the green
shaded region, for two different expected workloads (w) and ρ

Since our workloads are represented as probability distri-
butions, the KL-divergence is the most natural choice of
distance between them. One could use L p norms instead.
However, calculating the L p norm between workloads
requires a summation of the pth power of differences in
probabilities, which are extremely small values, and are not
meaningful in this setting.

Using the KL-divergence we can now formalize the defi-
nition of the uncertainty region around an expected workload
w as follows,

Uρ
w = {ŵ ∈ R

4 | ŵ ≥ 0, ŵᵀe = 1, IK L(ŵ,w) ≤ ρ}. (12)

Here, ρ determines the maximum KL-divergence that is
allowed between any workload ŵ in the uncertainty region
and the input expected workload w. Note that the defini-
tion of the uncertainty region takes as input the parameter
ρ, which intuitively defines the neighborhood around the
expected workload. Figure5 shows an example of the uncer-
tainty region for ρ = 0.2 and expected workload w0 =
(25%, 25%, 25%, 25%), and for ρ = 2 and expected work-
load w1 = (97%, 1%, 1%, 1%). For this visualization, we
combined the two types of read queries (empty and non-
empty) onto one axis. Note that the shape of the uncertainty
region is defined by the expected workload, the value of ρ,
and the fact that all workloads are restricted to be probability
distributions. In terms of notation, ρ is required for defining
the uncertainty region Uρ

w. However, we drop the superscript
notation unless required for context.
Rewriting of the ROBUST TUNING problem (Primal).
Using the above definition of theworkload uncertainty region
Uρ
w, we are now ready to proceed to the solution of the

Robust Tuning problem. For a given ρ, the problem defi-
nition, as captured by Eq. (11), can be rewritten as follows:

min
�

max
ŵ∈Uρ

w

ŵᵀc(�). (13)

This rewrite captures the intuition that the optimization is
done over the worst-case scenario across all the workloads

in the uncertainty region Uw. Equation (13) can be rewritten
by introducing an additional variable β ∈ R, as follows:

min
β,�

β

s.t., ŵᵀc(�) ≤ β ∀ŵ ∈ Uw. (14)

This reformulation allows us to remove the minmax term in
the objective from Eq. (13). The constraint in Eq. (14) can
be equivalently expressed as,

β ≥ max
ŵ

{
ŵᵀc(�)|ŵ ∈ Uw

}

= max
ŵ≥0

{
ŵᵀc(�)

∣∣∣∣ŵᵀe = 1,
m∑
i=1

ŵi log

(
ŵi

wi

)
≤ ρ

}
.

Finally, the Lagrange function for the optimization on the
right-hand side of the above equation is:

L(ŵ, λ, η) = ŵᵀc(�) + ρλ − λ

m∑
i=1

ŵi log

(
ŵi

ŵi

)
+ η(1 − ŵᵀe),

where λ and η are the Lagrangian variables.
Formulating the dual problem. We can now express the
dual objective as,

g(λ, η) = max
ŵ≥0

L(ŵ, λ, η), (15)

which we need to minimize.
Now we borrow the following result from [10],

Lemma 1 ([10]) A configuration � is the optimal solution to
theRobust Tuningproblem if andonly ifminη,λ≥0 g(λ, η) ≤
β where the minimum is attained for some value of λ ≥ 0.

In other words, minimizing the dual objective g(λ, η)—as
expressed in Eq. (15)—will lead to the optimal solution for
the Robust Tuning problem.
Solving the dual optimization problem optimally. Formu-
lating the dual problem and using the results of Ben-Tal et al.
[10], we have shown that the dual solution leads to the opti-
mal solution for the Robust Tuning problem. Moreover,
we can obtain the optimal solution to the original Robust
Tuning problem in polynomial time, a consequence of the
tractability of the dual objective.

To solve the dual problem,we first simplify the dual objec-
tive g(λ, η) so that it takes the following form:

g(λ, η) = η + ρλ + λ

k∑
i=1

wiφ
∗
K L

(
ci (�) − η

λ

)
. (16)

In Eq. (16), φ∗
K L(.) denotes the conjugate of KL-divergence

function and ci corresponds to the i-th dimension of the cost
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vector c(�) as defined in Sect. 3 – clearly in this case k = 4
as we have 4 types of queries in our workload. Results of
Ben-Tal et al. [10] show that minimizing the dual function as
described in Eq. (16) is a convex optimization problem, and
it can be solved optimally in polynomial time if and only if
the cost function c(�) is convex in all its dimensions.

In our case, the cost function for the range queries is not
convex w.r.t. size ratio T for the tiering policy. However, on
account of its smooth non-decreasing form, we are still able
to find the global minimum solution for

min
�,λ≥0,η

{
η + ρλ + λ

m∑
i=1

wiφ
∗
K L

(
ci (�) − η

λ

)}
. (17)

This minimization problem can be solved using the Sequen-
tial Least Squares Quadratic Programming solver (SLSQP)
included in the popular Python optimization library SciPy
[84]. Solving this problem outputs the values of the
Lagrangian variables λ and η and most importantly the con-
figuration � that optimizes the objective of the Robust

Tuning problem—for input ρ. In terms of running time,
the SLSQP solver outputs a robust tuning configuration for
a given input in less than a second.
Finding a value for ρ. Since ρ is a robust tuning parameter,
we also provide a few heuristics for setting it. In the presence
of historically observed workloads, a DBA may calculate ρ

using the following definition: that is, ρ is set to be the largest
KL-divergence between any observed workload and the cor-
responding workload average as described in Algorithm 1.
If the DBA does not have information about past workloads,
they may provide ranges for each query type; then, can sam-
ple workloads within those ranges and then calculate ρ using
the definition above to find an appropriate value. DBAs may
instead provide two workloads, one that is expected during a
normal observation period, and another off-period or unlikely
workload. In this case, the KL-divergence between these two
workloads can be used as ρ.

Algorithm 1: Calculating ρ from historical workloads
Input: Set of historical workloads W = {w1,w2, ...,wn}

1 w̄ ← 1
n · ∑

wi∈W
wi

2 return argmax
wi∈W

IK L (wi , w̄)

7 Uncertainty benchmark

In this section, we describe the uncertainty benchmark that
we use to evaluate the Endure, both analytically using the
cost models, and empirically using RocksDB. It consists of

Table 4 Tested expected workloads

Index (z0, z1, q, w) Type

0 25% 25% 25% 25% Uniform

1 97% 1% 1% 1% Unimodal

2 1% 97% 1% 1%

3 1% 1% 97% 1%

4 1% 1% 1% 97%

5 49% 49% 1% 1% Bimodal

6 49% 1% 49% 1%

7 49% 1% 1% 49%

8 1% 49% 49% 1%

9 1% 49% 1% 49%

10 1% 1% 49% 49%

11 33% 33% 33% 1% Trimodal

12 33% 33% 1% 33%

13 33% 1% 33% 33%

14 1% 33% 33% 33%

two primary components: (1) Expected workloads and, (2)
Benchmark set of sampled workloads, described below.
Expected workloads We create robust tuning configurations
for 15 expected workloads encompassing different propor-
tions of query types.Wecatalog them intouniform,unimodal,
bimodal, and trimodal categories based on the dominant
query types. While this breakdown of dominant queries is
similar to benchmarks such as YCSB, we provide a more
comprehensive coverage of potential workloads.Aminimum
of 1%of each query type is always included in every expected
workload to ensure a finite KL-divergence. A complete list
of all expected workloads is in Table 4.
Benchmark set of sampled workloads. We use the bench-
mark set of 10K workloads B as a test dataset over which
to evaluate the tuning configurations. These configurations
are generated as follows: First, we independently sample the
number of queries corresponding to each query type uni-
formly at random from a range (0, 10000) to obtain a 4-tuple
of query counts. Next, we divide the individual query counts
by the total number of queries in the tuple to obtain a ran-
dom workload that is added to the benchmark set. We use
the actual query counts during the system experimentation
where we execute individual queries on the database.

This type of workload breakdown can commonly be seen
inLSMtrees as shown in a surveyofworkloads inFacebook’s
pipeline [17]. The authors report that ZippyDB, a distributed
KV store that uses RocksDB, experiences workloads with
78% gets, 19% writes, and 3% range reads. This breakdown
is similar to workload 11, and the exact workload is in the
benchmark set B.

Note thatwhile the sameB is used to evaluate different tun-
ings, it represents a different distribution of KL-divergences
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for the corresponding expected workload associated with
each tuning. In the next two sections, we use our uncertainty
benchmark to demonstrate that tuningwithEndure achieves
significant performance improvement using both a model-
based analysis (Sect. 8), and an experimental study (Sect. 9).

8 Model-based evaluation

We now present our detailed model-based study of Endure
that uses more than 10000 different noisy workloads for all
15 expected workloads, showing performance benefit of up
to 5×. For brevity, when we provide a nominal tuning we are
referring to the solution for the Nominal Tuning problem
with tiering and leveling as the two design choices. Simi-
larly, we use Endure and the robust tuning interchangeably
to refer to the solution of theRobust Tuningproblemwhich
chooses between tiering and leveling. We show that Endure
perfectly matches the nominal tuning when there is no uncer-
tainty (i.e., when the observed workload always matches the
expected one) and we pass this information to the robust
tuner. Further, we provide recommendations on how to select
uncertainty parameters.

8.1 Evaluationmetrics

In this section, we provide definitions of metrics used to eval-
uate the performance of tunings.
Normalized delta throughput (�). Defining throughput as
the reciprocal of the cost of executing a workload, we mea-
sure the normalized delta throughput of a configuration �2

w.r.t. another configuration �1 for a given workload w as
follows,


w(�1,�2) = 1/C(w,�2) − 1/C(w,�1)

1/C(w,�1)
.


w(�1,�2) > 0 implies that �2 outperforms �1 when
executing a workloadw and vice versa when
w(�1,�2) <

0.
Throughput range (�). While normalized delta throughput
compares two different tunings, we use the throughput range
to evaluate an individual tuning � w.r.t. the benchmark set B
as follows,

�B(�) = max
w0,w1∈B

(
1

C(w0,�)
− 1

C(w1,�)

)
.

�B(�) intuitively captures the best and the worst-case out-
comes of the tuning�. A smaller value of this metric implies
higher consistency in performance.

8.2 Experiment design

To evaluate the performance of our proposed robust tuning
approach, we design a large-scale experiment comparing dif-
ferent tunings over the sampled workloads in B using the
analytical cost model. For each of the expected workloads
in Table 4, we obtain a single nominal tuning configuration
(�N ) by solving theNominal Tuning problem. For 15 dif-
ferent values of ρ in the range (0.0, 4.0) with a step size of
0.25, we obtain a set of robust tuning configurations (�R) by
solving the Robust Tuning problem. Finally, we individu-
ally compare each of the robust tunings with the nominal
over the 10,000 workloads in B to obtain over 2 million
comparisons. While computing the costs, we assume that
the database contains 10 billion entries each of size 1 KB.
The analysis presented in the following sections assumes a
total available memory of 10 GB. For brevity, we present
representative results corresponding to individual expected
workloads and specific system parameters. We primarily
focus on two workloads from Table 4, w7 which is a mixed
read-write workload, and w11, which is a read-heavy work-
load. However, we exhaustively confirmed that changing
these parameters does not qualitatively affect the outcomes
of our experiment.

8.3 Results

Here, we present an analysis of the comparisons between
the robust and the nominal tuning configurations. Using an
off-the-shelf global minimizer from the popular Python opti-
mization library SciPy [84], we obtain both nominal and
robust tunings with the runtime for the above experiment
being less than 10min.
Comparison of tunings. First, we address the question—is
it beneficial to adopt robust tunings relative to the nominal
tunings? Intuitively, it should be clear that the performance
of nominally tuned databases would degrade when the
workloads being executed on the database are significantly
different from the expected workloads used for tuning. In
Fig. 6, we present performance comparisons between the
robust and the nominal tunings for different values of uncer-
tainty parameter ρ. We observe that robust tunings provide
substantial benefit in terms of normalized delta throughput
for unimodal, bimodal, and trimodal workloads. The nor-
malized delta throughput 
ŵ(�N ,�R) shows over 95%
improvement on average over all ŵ ∈ B for robust tunings
with ρ ≥ 0.5, when the expected workload used during tun-
ing belongs to one of these categories. For uniform expected
workload, we observe that the nominal tuning outperforms
the robust tuning by a modest 5%.

Intuitively, unbalanced workloads result in overfit nom-
inal tunings. Hence, even small variations in the observed
workload can lead to significant degradation in the through-

123



Towards flexibility and robustness of LSM trees

Fig. 6 Average delta throughput 
ŵ(�N ,�R) for each category of
expected workload

put of such nominally tuned databases. On the other hand,
robust tunings by their very nature take into account such
variations and comprehensively outperform the nominal tun-
ings. In the case of the uniform expected workloadw0, a low
value of ρ covers a larger area of possible workloads than
that same value would in a different workload as evident in
Fig. 5. In this case, when tuned for high values ofρ, the robust
tunings are unrealistically pessimistic and lose performance
relative to the nominal tuning.
Impact of tuning parameter ρ. Next, we address the
question—how does the uncertainty tuning parameter ρ

impact the performance of the robust tunings? In Fig. 7, we
take a deep dive into the performance of robust tunings for
an individual expected workload for different values of ρ.
We observe that the robust tunings for ρ = 0 i.e., zero uncer-

tainty, are very close to the nominal tunings. As the value of ρ
increases, its performance advantage over the nominal tuning
for the observed workloads with higher KL-divergence w.r.t.
expected workload increases. Furthermore, the robustness of
such configurations have logically sound explanations. The
expectedworkload inFig. 7 consists of just 1%writes.Hence,
for low values of ρ, the robust tuning has a higher size ratio
leading to shallower LSM trees to achieve good read perfor-
mance. For higher values of ρ, the robust tunings anticipate
an increasing percentage of write queries and hence limit the
size ratio to achieve higher throughput.

In Fig. 8, we show the impact of tuning parameter ρ on the
throughput range. In Fig. 8a we plot a histogram of the nomi-
nal and robust throughputs for workloadw11. As the value of
ρ increases, the interval size between the lowest and the high-
est throughputs for the robust tunings consistently decreases.
We provide further evidence of this phenomenon in Fig. 8b,
by plotting the decreasing throughput range �B(�R) aver-
aged across all the expected workloads. Thus, robust tunings
not only provide a higher average throughput for all ŵ ∈ B,
but they have amore consistent performance (lower variance)
compared to the nominal tunings.
Choice of ρ. Now, we address the question—What is the
appropriate choice for the value of uncertainty parameter
ρ? In Fig. 9, we explore the relationship between ρ and the
KL-divergence IK L(ŵ,w) for ŵ ∈ B, by making a con-
tour plot of the corresponding normalized delta throughput

ŵ(�N ,�R). We confirm our intuition that nominal tun-

Fig. 7 Impact of ρ on normalized delta throughput 
ŵ(�N ,�R) for tunings with expected workload w11

Fig. 8 Impact of ρ on throughput
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Fig. 9 Effect on delta throughputs 
ŵ(�N ,�R) on selection of ρ vs
IK L (ŵ,w)

Fig. 10 Tuning performance sensitivity to entry size

ings compare favorably with our proposed robust tunings
only in two scenarios: (1) when the observed workloads
are extremely similar to the expected workload (close to
zero observed uncertainty), and (2) when the robust tun-
ings assume extremely low uncertainty with ρ < 0.2 while
the observed variation is higher. Based on this evidence, we
propose the following rule of thumb: the maximum KL-
divergence between any two pairs of observed workloads
is a reasonable value of ρ in practice.
Sensitivity analysisw.r.t. entry size. Lastly,we take a look at
the expected tuning performancew.r.t to system settings. Fig-
ure10 shows average I/O, or single logical page accesses, per
query over different entry sizes with the standard deviation
highlighted around each line. Each data point corresponds
to the average I/O per query for the optimal tuning for all
workloads ŵ ∈ B. For our mixed read-write workload, we
see that the Endure always performs better than the nominal
tuning regardless of the entry size.Whenwe tunewith a read-
heavy workload as the expected input, we observe that for
lower entry sizes the nominal tuning produces a better tun-
ing, however, at larger entry sizes Endure outperforms its
nominal counterpart. Because the total number of entries is
fixed, lower entry sizes cause the physical size of the database
to be relatively small w.r.t. to the available memory budget.
Hence, we observe the allocation betweenmfilt andmbuf does
not play a major role in performance as the tree can be made
relatively shallow. However, as the size of the database starts
to increase and the memory budget becomes a smaller frac-
tion of the database size, we observe the allocation between
memory plays a larger role. This implies proper robust tun-

ings play a larger role in constrained environments, where
the available memory is a small fraction of the total database
size.

9 System-based evaluation

In this section, we deploy Endure as the tuner of the state-
of-the-art LSM-based engine RocksDB, and we show that
RocksDB achieves up to 90% lower workload latency in the
presence of uncertainty. We further show that the tuning cost
is negligible, and the effectiveness of Endure is not affected
by data size.

9.1 Experimental setup andmeasurements

Our server is configured with two Intel Xeon Gold 6230 pro-
cessors, 384 GB of main memory, a 1 TB Dell P4510 NVMe
drive, CentOS 7.9.2009, and a default page size of 4 KB. We
use Facebook’s RocksDB, a popular LSM tree-based stor-
age system, to evaluate our approach [32]. While RocksDB
provides implementations of leveling and tiering policies,
the system implements micro-optimizations not common
across all LSM tree-based storage engines. Therefore, we use
RocksDB’s event hooks to implement both classic leveling
and tiering policies to benchmark the common compaction
strategies. For default RocksDB comparisons, we set a cus-
tom policy hook to match the default compaction policy of
leveling. Additionally, RocksDB does not toggle on Bloom
filters by default. In the interest of fair comparison, we add
Bloom filters with the bits per element set to 10. Following
theMonkeymemory allocation scheme [26], we allocate dif-
ferent bits per element for Bloom filters per level. We note
that turning off direct I/O improves read performance for any
tuning deployed to RocksDB. However, to obtain an accu-
rate count of block accesses we instead enable direct I/Os for
both queries and compaction and disable the block cache. To
obtain detailed insights about accesses, we present our find-
ings with direct I/Os, however, our qualitative results remain
unchanged with direct I/Os turned off. Lastly, portions of
memory reserved for the fence pointer and max read buffer
are fixed to their default values before performing any tuning
for buffer size and Bloom filter memory.
Endure’s pipeline Fig. 11 shows the workflow used for
Endure and the following experiments. Aworkload descrip-
tor (expected workload and uncertainty value ρ) is provided
to Endure to create an uncertainty neighborhood centered
around an expected workload. This description of workload
uncertainty is then incorporated into the solver. In combi-
nation with the cost model, which uses the workload and
system parameters as inputs, Endure outputs an expected
performance profile and a robust tuning over various work-
loads in the uncertainty neighborhood. Endure then deploys
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Fig. 11 (1) Workload information is provided to Endure, establishing
an uncertainty neighborhood centered on the expected workload. (2)
This description of workload uncertainty is integrated into the solver.
(3) The cost model receives both the workload and system parameter
details. (4) Using the robust tuning from the solver and the cost model,
an expected performance profile is generated. (5) The robust tuning is
then deployed onto RocksDB

the robust tuning on a RocksDB instance where we execute
workloads to measure performance.
Empirical measurements. We use the internal RocksDB
statistics module to measure the number of logical block
accesses during reads, bytes flushed during writes, and bytes
read and written in compactions. The number of logical
blocks accessed during writes is calculated by dividing the
number of bytes reported by the default page size. To esti-
mate the amortized cost of writes, we compute the I/Os from
compactions across all workloads of a session and redis-
tribute them across write queries. Our approach ofmeasuring
average I/Os per query allows us to compare the effects of
different tuning configurations, while simultaneously mini-
mizing the effects of extraneous factors on performance.

9.2 Experiment design

To evaluate the performance of our proposed robust tuning
approach, we create multiple instances of RocksDB using
different tunings and empirically measure their performance
by executing workloads from the uncertainty benchmark B.
To obtain consistent performance metrics, each instantiation
of the database is initialized with the same 10 million unique
1 KB key-value pairs. Each key-value entry has a 16-bit uni-
formly at random sampled key, with the remaining bits being
allocated to a randomly generated value.

While evaluating the performance of the database, we
sample a sequence of workloads from the benchmark set
B. Every sampled workload is executed throughout 200,000
queries to measure steady-state performance. This observa-
tion period is sufficient to capture spikes in performance
and background compactions allowing us to record accu-
rate performance numbers. We group sets of workloads into
sequences and catalog them into one of six categories—
expected, empty read, non-empty read, read, range, and
write—based on the dominant query type. The expected ses-
sion contains workloads with a KL-divergence less than 0.2

Table 5 The system measured normalized delta throughputs

w(�N ,�N ) and their respective tunings for experiments on all
expected workloads in B with an optimally selected ρ

Expected � = (T , mfilt , π )
Workload (w) �N �R 
w(�N ,�R)

w0 (5.2, 3.5, L) (5.1, 3.1, L) 0.0

w1 (5.7, 9.4, L) (5.0, 4.2, L) 0.0

w2 (5.8, 5.3, L) (5.0, 1.0, L) 0.1

w3 (100, 0.0, L) (5.4, 1.0, L) 0.4

w4 (17, 3.2, T) (4.6, 1.0, L) 1.5

w5 (5.5, 8.8, L) (5.1, 3.9, L) 0.1

w6 (63, 4.8, L) (8.2, 1.0, L) 0.8

w7 (8.4, 8.2, T) (3.4, 1.0, L) 0.5

w8 (62, 0.0, L) (8.0, 1.0, L) 0.6

w9 (8.3, 6.9, T) (3.3, 1.0, L) 0.8

w10 (5.0, 0.0, L) (5.0, 1.0, L) 0.0

w11 (47, 4.7, L) (11, 1.9, L) 1.4

w12 (6.2, 8.1, T) (2.8, 3.1, L) 0.2

w13 (5.1, 3.5, L) (5.0, 1.0, L) −0.1

w14 (5.1, 0.0, L) (5.0, 1.0, L) −0.1

w.r.t. the expected workload used for tuning. For all other
sessions, the dominant query type encompasses at least 80%
of the total queries while the remaining queries may belong
to any of the remaining types. When generating keys of the
queries to run on the database, we ensure that non-empty
point reads will query a key that exists, while empty point
reads will query a key that is not present in the database
but is sampled from the same domain. All range queries are
generated with minimal selectivity SRQ to act as short-range
queries, which on average read zero to two pages per level.
Write queries consist of randomly generated keys that are
distinct from the existing keys in the database. Similarly to
Sect. 8, we present representative findings for an expected
mixed read-write workload (w7) and an expected read-heavy
workload (w11).

9.3 Experimental results

In this section, we replicate key insights from Sect. 8, evalu-
ate system performance, and show that Endure scales with
database size. We present detailed results for expected work-
loads w7 and w11. Table 5 summarizes the normalized delta
throughputs 
w(�N ,�R) for all expected workload from
B.
Cost of tuning. We first solve for either the nominal or the
robust tuning for every experiment. We note that solving
either tuning problem takes less than 10ms, which is neg-
ligible w.r.t. workload execution time.
Read performance. We begin by examining the system per-
formance and verifying that the model-predicted I/O and the
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Fig. 12 System and model performance for robust and nominal tun-
ings in a read-only observed query sequence. Both tunings expected a
mixed read-write workload. The tuning parameter ρ (input uncertainty)

matches the observed value of IK L (ŵ,w7) (observed uncertainty). Each
session contains the label and average workload

Fig. 13 Read-only sequence where the observed workloads ŵ is close to the expected, hence ρ and IK L (ŵ,w11) deviate. Both tunings expected a
read-heavy workload

system-measured I/O match when considering read queries
in Figs. 12 and 13. In both figures, we include the model-
predicted I/Os per query (top), I/Os per query measured on
the system (middle), and the system latency (bottom) for
nominal, robust, and default configurations across different
read sessions. Additionally, the total throughput numbers
in queries per second are reported at the end of the sys-
tem latency graph. The empirical measurements confirm that
the predicted performance benefits from the model trans-
late to similar performance benefits in practice. Note that
the discrepancy observed between the relative performance
between the nominal and the robust tunings in the presence
of range queries (session 2 in Fig. 12) is due to the fence
pointers in RocksDB. The analytical model does not account

for fence pointers allowing the system to completely skip
a run, which may reduce the measured I/Os for short-range
queries compared to the predicted I/Os. Lastly, we consider
the default configuration as another tuning of RocksDB that
does not take into account workload information. Therefore,
in certain cases such as Fig. 12, it may outperform other con-
figurations. This can be explained by the fact that the default
configuration includes a larger reserve of memory for the
Bloom filter, thereby allowing it to outperform the configura-
tions that expect writes in the executed workload. However,
in other cases such as Fig. 13, we see a large performance
dropoff as both the nominal and robust configurations expect
a high amount of reads and therefore tune their size ratios
accordingly.
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Fig. 14 Sequence where ρ and IK L (ŵ,w) closely match. Both tunings expected a write-heavy workload. Performance fluctuates with writes as it
modifies the tree

Fig. 15 Sequence when ρ and IK L (ŵ,w11) closely match. Both tunings expected a read-heavy workload. System I/O and latency show reductions
of up to 90%

Fig. 16 Breakdown of the query response time of each operation type
for Fig. 14

Write performance. In the presence of writes in Fig. 15, the
model is still predicting the disk accesses successfully and
Endure leads to significant performance benefits. Note that
now the structure of the LSM tree is continually changing
across all sessions due to the compactions caused by write
queries. For example, in Fig. 15 the dip in measured I/Os and
latency in the range-query session are the result of empty lev-
els being created via compactions triggered from preceding
workloads. Additionally, writes may appear instantaneous
w.r.t. system latency as seen in Fig. 14 due to RocksDB
assigning compactions to background threads. We observe
that the default configuration starts to degrade in performance
significantly as more writes are issued to the database. Fig-
ure16 shows the breakdown across each operation type. As
the database experiences more writes, the performance for
the default configuration drops off, while both the nominal
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tuning and robust configurations expect writes and experi-
ence a performance improvement. From the write session of
Fig. 15, we observe that the nominal tuning suffers from high
latency and I/O cost. This is due to the large size ratio T that
creates a shallow tree with huge levels, causing long stalls
during compactions. Compare this to the robust tuning: the
smaller size ratio creates a tree with more stable performance
for both I/Os per query and query latency, leading to a higher
overall throughput. Overall, we observe that the robust tun-
ing reduces I/O and latency by up to 90%. Figures12, 13, 14
and 15 confirm that our analytical model accurately captures
the relative performance of different tunings.
Robust outperforms nominal for properly selected ρ. In
the model evaluation (Fig. 9), we showed that robust tuning
outperforms thenominal tuning in the presenceof uncertainty
for tuning parameter ρ approximately greater than 0.2. This
is further supported by all the system experiments described.
Specifically, Figs. 12 and 15 show instances where the KL-
divergence of the observed workload averaged across all the
sessions w.r.t. the expected workload is close to the tuning
parameter ρ. Additionally, we present results for all expected
workloads in Table 5. Each entry in the table summarizes the
total throughput after running the same experimental setup
presented in Fig. 15. We observe that the robust outperforms
the nominal in 10 of our expected workloads, with only 2
workloads where robust tuning does worse, however, in these
cases the reported throughputs are comparable. In each of
these experiments, the robust tuning outperforms the nominal
resulting in up to a 90% reduction in latency and system I/O.
Lastly, in Fig. 13, the observed workloads are similar to the
expected one (IK L(ŵ,w11) < 0.2), resulting in a latency
increase of 20%.
Balancing query times. To determine how the tunings from
Endure outperform the nominal tunings we analyze the
query response times for each operation for an expected
workload w. We observe that robust tunings will provide
lower performance for the queries that dominate the expected
workload, however, as a tradeoff these tunings perform
exceptionally well in unexpected operations. For example,
Fig. 17 shows robust tuning performs worse in both range
queries and empty point queries, however, in exchange we
observe a significant decrease in the response time of write
queries. Hence, if the executed workload contains writes,
robust tuning will increase overall throughput, especially in
the presence of write spikes.
Workload skew. To verify that Endure works across
workload distributions, we break down the different query
response times in Fig. 17. When the keys generated for
the workload follow a Zipfian distribution, we see that the
response time for non-empty read queries is significantly
lowered. This is in part due to keys toward the top of the
tree being repeated, therefore the query does not need to tra-
verse further down the tree resulting in an increase in false

Fig. 17 Query times for each operation (empty reads, non-empty reads,
range reads, andwrites) with an expectedworkloadw11. Robust tunings
were generated with ρ = 1

Fig. 18 Impact of database size on performance. All tunings use the
same expected workload w11 with executed workloads shown above
each graph. Points at each power of 10 show mbu f and the tuning � (L
for leveling, T for tiering)

positives from the Bloom filter. Regardless, we observe the
same patterns for uniform and Zipfian distributions; Endure
tunings achieve a better tradeoff in performance for the dom-
inant query types in the expected workload with that of other
query types, thereby preventing large performance regres-
sions.
ENDURE scales with data size. To verify that Endure
scales, we repeat the previous experiments, while varying the
size of the initial database. Each point in Fig. 18 is calculated
based on a series ofworkload sessions similar to the ones pre-
sented in Figs. 13 (15) for the left (right) part of Fig. 18. All
points use the same expected workload, therefore the nom-
inal and robust tunings are the same across each graph. We
observe that the robust and nominal tuning increases buffer
memory as the initial database size grows. As a result, for all
cases, the number of initial levels is the same regardless of
the number of entries. This highlights the importance of the
number of levels w.r.t performance. Finally, the performance
gap between robust and nominal stays consistent as database
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size grows, showing that Endure is effective regardless of
data size.

10 Robustness of flexible designs

In this section, we explore the nuanced differences between
flexibility and robustness of LSM designs. Under an ideal
scenario, where the expected workload is known a priori to
tuning, theflexibility ofK-LSMprovides a high-performance
benefit, however, this benefit vanishes in scenarios where the
executed workload changes from the expected. This observa-
tion is in line with the intuition that Endure’s robust tunings
proactively compensate for potential changes in theworkload
distribution post-deployment, thereby providing better per-
formance in situations where the executed workload differs
from the expected.

10.1 Experiment design

To evaluate the robustness of all designs, we design an exper-
iment to compare different optimal tunings for a subset of
designs listed in Table 3. For each expected workload in the
uncertainty benchmark in Table 4, we obtain a list of tun-
ings by solving Nominal Tuning for various LSM data
layouts. We also compute a robust tuning with input ρ = 2.
Next, for every observedworkload inB, we calculate theKL-
divergence w.r.t. the expected workload used to obtain each
tuning and plot the average I/Os per query for this observed
workload (C(ŵ,�)) versus the KL-divergence.We then exe-
cute the initial expected workload for all designs, reset the
database to the initial state, and then progressively repeat
this process for workloads further away from the expected
workload. Similar to Sect. 5.3, we adopt the following setting
for system parameters: the database initially holds 10 billion
with each entry at 1 KB; page size is 4 KB; and memory
budget is set to 10 bits per element or a total of 10 GB.

10.2 Comparison results

Figure 19 shows the average I/O per query for various LSM
models. Note that forw11, the performance lines for K-LSM,
Fluid LSM, and Endure’s nominal tuning slightly overlap,
as the configurations are the same. The same occurs for K-
LSM and Fluid LSM on w7. When evaluating Dostoevsky,
we fix memory allocation such that the buffer size is kept
at 2 MB as per convention, while the remaining memory is
delegated to storing Bloom filters [28, 69].
Robustness of various LSMdesigns. It should be noted that
in instances where the observed workload closely matches
the expected workload, Endure’s robust tunings under-
perform. This is consistent with previous experiments and
the intuition that robust tunings proactively compensate for

Fig. 19 The cost of each LSMmodel as the observed workload ŵ drifts
away from the expected workload w

potential changes in the observed workload distribution.
As the observed workload drifts further from the expected,
robust tunings maintain consistent performance while other
tunings show a steady increase in the average number of I/Os.
This observation can be attributed to the selected tuning. For
example, with w7 models such as Dostoevsky (T = 47, all
Ki = 1) and K-LSM (mfilt = 4.4 bits per entry, T = 48,
all Ki = 1) optimally selects larger size ratios with effec-
tively leveling policies to accommodate for the expected high
amount of writes. In contrast, the robust tuning (T = 9,
π = L) selects a size ratio that performs reasonably well in
comparison, however, the selected size ratio is small enough
to accommodate a large shift to reads.

In the presence of workload drifts, we observe that most
models, except Lazy Leveling, experience a performance
degradation similar to Endure’s nominal tuning. The opti-
mal tuning of Lazy Leveling (mfilt = 4.6 bits per entry,
T = 2) performs robustlywhen tuned for a read-heavywork-
load (w11). It should be noted that the optimizer selects a size
ratio T = 2 that enables Lazy Leveling to accommodate an
increase in writes, as merge operations are relatively cheap.
Furthermore, increasing the size ratio any further could lead
to the creation of upper levels that follow a tiering policy,
thereby degrading the performance.

11 Discussion

In this section,wediscuss the key insights gained frombench-
marking and testing Endure.
Robustness is all you need. When deploying LSM trees, it is
evident that tuning with some knowledge about the workload
can improve performance, but accounting for uncertainty in
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the tuning process can provide an even greater benefit for
performance in the long run. To support this, in Sect. 9.3, we
show that the cost model can accurately predict the empirical
measurements. Then using ourmodel, we compared over 700
different robust tunings with their nominal counterparts over
the uncertainty benchmark set B, leading to approximately
8.6 million comparisons. Robust tunings comprehensively
outperform the nominal tunings in over 80%of these compar-
isons. We further cross-validated the relative performance of
the nominal and the robust tunings in over 300 comparisons
using RocksDB. The empirical measurements overwhelm-
ingly confirmed the validity of our analytical models, and
the few instances of discrepancy in the scale of measured
I/Os, such as the ones discussed in previous sections, are
easily explained based on the structure of the LSM tree.
Leveling is “more” robust than tiering. One of the key
takeaways of applying robust tuning to LSM trees is that lev-
eling is inherently more robust to perturbations in workloads
when compared to pure tiering. Note that this is evident from
Table 5, where all robust tunings suggest leveling as the com-
paction policy. This observation is in line with the industry
practice of deploying leveling or hybrid leveling over pure
tiering.
Robustness is not inherent. As evident in Fig. 19, the final
takeaway when evaluating robust tunings compared to opti-
mal tuning of other flexible models is that robustness is not
inherent to a model and must be considered in the tuning
process. We observe that flexible models may provide better
initial performance, however, only Endure, which explic-
itly accounts for workload uncertainty in the tuning process,
performs well w.r.t. to a changing workload. While other
models may exhibit some degree of robust performance in
specific and limited scenarios, only the robust tuning consis-
tently performs well in the presence of workload drift across
all different expected workloads. Based on our analytical and
empirical results, we recommend that robust tuning should
always be employed when tuning an LSM tree unless the
future workload distribution is known with an absolute cer-
tainty.
Limitations. One of the key challenges during the evalua-
tion of tuning configurations in the presence of uncertainty
is in measuring steady-state performance. Background com-
pactions create variability in performance requiring longer
database testing sessions to see accurate performance num-
bers. To observe trends across multiple tunings we had to
strike a balance between exhaustive testing and runtime.
Using off-the-shelf optimizers, such as the SLSQP solver
from SciPymentioned in Sect. 5, present restrictions in terms
of the complexity of designs that we can optimally tune.
Numerical solvers are sensitive to hyperparameters such as
starting conditions and step size. Therefore, tuning perfor-
mance can greatly vary based on the correct initialization of
such hyperparameters. Furthermore, the stability and accu-

racy of numerical solvers suffer with an increase in the
number of decision variables.We observed that when solving
the Robust Tuning problem for the most flexible designs,
the combination of hyperparameter sensitivity and numerical
instability with additional decision variables leads to subop-
timal solutions.

While we have deployed and tested robust tuning on LSM
trees, the robust paradigm of Endure is a generalization of a
minimization problem that is at the heart of any database tun-
ing problem. Hence, similar robust optimization approaches
can be applied to any database tuning problem assuming that
the underlying cost model is known, and each cost model
component is convex or can be accurately approximated by
a surrogate.

12 Related work

Database tuning is a notoriously hard problem, however,
there has been a plethora of recent research. We provide a
discussion of related works around the field of data systems
tuning.
Tuning data systems. Database systems are notorious for
having numerous tuning knobs. These tuning knobs control
fine-grained decisions (e.g., number of threads, amount of
memory for bufferpool, storage size for logging) as well
as basic architectural and physical design decisions about
partitioning, index design,materialized views that affect stor-
age and access patterns, and query execution [15, 21]. The
database research community has developed several tools to
deal with such tuning problems. These tools can be broadly
classified as offline workload analysis for index and views
design [2, 3, 20, 24, 83, 91], and periodic online workload
analysis [16, 74–76] to capture workload drift [39]. In addi-
tion, there has been research on reducing themagnitude of the
search space of tuning [15, 25] and on deciding the optional
data partitioning [9, 63, 78, 80, 81]. These approaches assume
that the input information about resources and workload is
accurate. When it is proved to be inaccurate, performance is
typically severely impacted.
Adaptive and self-designing data systems. A first attempt
to address this problem was the design of adaptive sys-
tems which had to pay additional transition costs (e.g., when
deploying a new tuning) to accommodate shifting workloads
[35, 36, 43, 77]. More recently the research community has
focused on using machine learning to learn the interplay of
tuning knobs, and especially of the knobs that are hard to
analytically model to perform cost-based optimization. This
recent work on self-driving database systems [4, 59, 65] or
self-designing database systems [42, 44–46] is exploiting
new advancements in machine learning to tune database sys-
tems and reduce the need for human intervention, however,
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they also yield suboptimal results when the workload and
resource availability information is inaccurate.
Robust database physical design. One of the key database
tuning decisions is physical design, that is, the decision of
which set of auxiliary structures should be used to allow for
the fastest execution of future queries. Most of the existing
systems use past workload information as a representative
sample for futureworkloads, which often leads to suboptimal
decisions when there is significant workload drift. Cliffguard
[60] is the first attempt to use unconstrained robust opti-
mization to find a robust physical design. Their method is
derived from Bertsimas et al. in [12], a numerical optimiza-
tion approach using alternating gradient ascent-descent to
optimize problems without closed-form objectives. In con-
trast to Cliffguard, Endure focuses on the LSM tree tuning
problem which uses an analytical closed form objective
in Eq. (2). This allows us to directly solve a Lagrangian
dual problem instead of relying upon numerical optimiza-
tion techniques. Furthermore, we found that the approach in
Cliffguard, when applied to our objective, fails to converge
even after an extensive hyperparameter search.

13 Conclusion

In this work, we explored the impact of workload uncer-
tainty and LSM design flexibility on the performance of
LSM tree databases. Based on our explorations, we intro-
duce Endure—a robust tuning paradigm that recommends
robust designs to mitigate performance degradation under
scenarios of deviatingworkloads.We showed that in the pres-
ence of uncertainty, Endure increases database throughput
compared to standard tunings by up to 5×. Furthermore,
we proposed a unified LSM design with an associated
flexible cost model that can express multiple LSM data
layout designs, and provide evidence that our cost model
closely matches the behavior measured on a database sys-
tem. We used this cost model to analyze the robustness
of flexible models and provide evidence that robustness is
not inherent to a particular design, rather it must be an
important consideration during the tuning process. Through
both model-based and extensive experimental evaluation
of Endure within the state-of-the-art LSM-based storage
engine RocksDB, we show that the robust tuning method-
ology consistently outperforms classical tuning strategies.
Endure can be an indispensable tool for database adminis-
trators to evaluate deployed tunings performance, as well as
recommend optimal tunings without resorting to expensive
database experiments.
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