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was about equal to the (fractional) 
price of a disk drive required to access 
such a record every 400 seconds, which 
they rounded to five minutes. The 
break-even interval is about inversely 
proportional to the record size. Gray and 
Putzolu reported one hour for 100-byte 
records and two minutes for 4KB pages.

The five-minute rule was reviewed 
and renewed 10 years later.14 Lots of 
prices and performance parameters 
had changed (for example, the price of 
RAM had tumbled from $5,000 to $15 
per megabyte). Nonetheless, the break-
even interval for 4KB pages was still 
around five minutes. The first goal of 
this article is to review the five-minute 
rule after another 10 years.

Of course, both previous articles 
acknowledged that prices and 
performance vary among technolo-
gies and devices at any point in time 
(RAM for mainframes versus mini-
computers, SCSI versus IDE disks, and 
so on). Interested readers are invited to  
reevaluate the appropriate formulas 
for their environments and equipment.  
The values used here (in Table 1) are  
meant to be typical for 2007 technolo-
gies rather than universally accurate. 

In addition to quantitative 
changes in prices and performance, 
qualitative changes already under 
way will affect the software and 
hardware architectures of servers 
and, in particular, database systems. 
Database software will change 
radically with the advent of new 
technologies: virtualization with 
hardware and software support, as well 
as higher utilization goals for physical 
machines; many-core processors and 
transactional memory supported both 
in programming environments and 
hardware;20 deployment in containers 
housing thousands of processors and 
many terabytes of data;17 and flash 
memory that fills the gap between 
traditional RAM and traditional 
rotating disks.

Flash memory falls between 
traditional RAM and persistent mass 
storage based on rotating disks in 
terms of acquisition cost, access 

in  1 987,  JiM  Gray and Gianfranco Putzolu published 
their now-famous five-minute rule15 for trading off 
memory and I/o capacity. Their calculation compares 
the cost of holding a record (or page) permanently 
in memory with the cost of performing disk I/o 
each time the record (or page) is accessed, using 
appropriate fractional prices of RAM chips and  
disk drives. The name of their rule refers to the  
break-even interval between accesses. If a record  
(or page) is accessed more often, it should be kept in 
memory; otherwise, it should remain on disk and  
be read when needed.

Based on then-current prices and performance 
characteristics of Tandem equipment, Gray and 
Putzolu found the price of RAM to hold a 1KB record 
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latency, transfer bandwidth, spatial 
density, power consumption, and 
cooling costs.13 Table 1 and some 
derived metrics in Table 2 illustrate 
this point (all metrics derived on 
4/11/2007 from dramexchange.com, 
dvnation.com, buy.com, seagate.com, 
and samsung.com).

Given the number of CPU 
instructions possible during the time 
required for one disk I/O has steadily 
increased, an intermediate memory in 
the storage hierarchy is desirable. Flash 
memory seems to be a highly probable 
candidate, as has been observed many 
times by now.

Many architecture details remain 
to be worked out. For example, in 
the hardware architecture, will flash 
memory be accessible via a DIMM slot, 
a SATA (serial ATA) disk interface, or 
yet another hardware interface? Given 
the effort and delay in defining a new 
hardware interface, adaptations of 
existing interfaces are likely.

A major question is whether flash 
memory is considered a special part 
of either main memory or persistent 
storage. Asked differently: if a system 
includes 1GB traditional RAM, 8GB 
flash memory, and 250GB traditional 
disk, does the software treat it as 

250GB of persistent storage and a 9GB 
buffer pool, or as 258GB of persistent 
storage and a 1GB buffer pool? The 
second goal of this article is to answer 
this question and, in fact, to argue for 
different answers in file systems and 
database systems. 

Many design decisions depend 
on the answer to this question. For 
example, if flash memory is part of the 
buffer pool, pages must be considered 
“dirty” if their contents differ from 
the equivalent page in persistent 
storage. Synchronizing the file system 
or checkpointing a database must 
force disk writes in those cases. If 
flash memory is part of persistent 
storage, these write operations are not 
required.

Designers of operating systems 
and file systems will want to use flash 
memory as an extended buffer pool 
(extended RAM), whereas database 
systems will benefit from flash 
memory as an extended disk (extended 
persistent storage). Multiple aspects 
of file systems and database systems 
consistently favor these two designs. 
Presenting the case for these designs is 
the third goal of this article.

Finally, the characteristics of flash 
memory suggest some substantial 

differences in the management of 
B-tree pages and their allocation. 
Beyond optimization of page sizes, 
B-trees can use different units of I/O for 
flash memory and disks. These page 
sizes lead to two new five-minute rules. 
Introducing these two new rules is the 
fourth goal of this article.

assumptions
Forward-looking research relies on 
many assumptions. This section 
lists the assumptions that led to the 
conclusions put forth in this article. 
Some of these assumptions are 
fairly basic, whereas others are more 
speculative.

One assumption is that file systems 
and database systems assign the same 
data to the flash memory between 
RAM and the disk drive. Both software 
systems favor pages with some 
probability that they will be touched 
in the future but not with sufficient 
probability to warrant keeping 
them in RAM. The estimation and 
administration of such probabilities 
follows the usual lines, such as LRU 
(least recently used).

We assume that the administration 
of such information uses data structures 
in RAM, even for pages whose contents 
have been removed from RAM to flash 
memory. For example, the LRU chain in 
a file system’s buffer pool might cover 
both RAM and flash memory, or there 
might be two separate LRU chains. A 
page is loaded into RAM and inserted 
at the head of the first chain when it 
is needed by an application. When it 
reaches the tail of the first chain, the 
page is moved to flash memory and its 
descriptor to the head of the second 
LRU chain. When it reaches the tail of 
the second chain, the page is moved to 
disk and removed from the LRU chain. 
Other replacement algorithms would 
work mutatis mutandis.

Such fine-grained LRU replacement 
of individual pages is in contrast to 
assigning entire files, directories, 
tables, or databases to different storage 
units. It seems that page replacement 
is the appropriate granularity in buffer 
pools. Moreover, proven methods exist 
for loading and replacing buffer-pool 
contents entirely automatically, with 
no assistance from tuning tools or 
directives by users or administrators 
needed. An extended buffer pool in 

table 1: Prices and performance of flash and disks.

Ram flash disk sata disk

Price and capacity $3 for 8×64Mbit $999 for 32GB $80 for 250GB 

Access latency 0.1ms 12ms average

Transfer bandwidth 66MB/s API 300MB/s API

Active power 1W 10W

Idle power 0.1W 8W

Sleep power 0.1W 1W

table 2: Relative costs for flash memory and disks.

nanD flash sata disk

Price and capacity $999 for 32GB $80 for 250GB 

Price per GB $31.20 $0.32

Time to read a 4KB page 0.16ms 12.01ms

4KB reads per second 6,200 83

Price per 4KB read per second $0.16 $0.96

Time to read a 256KB page 3.98ms 12.85ms

256KB reads per second 250 78

Price per 256KB read per second $3.99 $1.03
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Variations such as “second-chance” 
or fuzzy checkpoints fit within our 
assumptions. In addition, nonlogged 
(allocation-only logged) execution is 
permitted for some operations such 
as index creation. These operations 
require appropriate write ordering and 
a “force” buffer pool policy.18

Flash memory. Hardware and device 
drivers are assumed to hide many 
implementation details such as the 
specific hardware interface to flash 
memory. For example, flash memory 
might be mounted on the computer’s 
motherboard, a DIMM slot, a PCI 
board, or within a standard disk 
enclosure. In all cases, DMA transfers 
(or something better) are assumed 
between RAM and flash memory. 
Moreover, we assume there is either 
efficient DMA data transfer between 
flash and disk or a transfer buffer in 
RAM. The size of such a transfer buffer 
should be, in a first approximation, 
about equal to the product of transfer 
bandwidth and disk latency. If it is 
desirable that disk writes should never 
delay disk reads, the increased write-
behind latency must be included in 
the calculation.

Another assumption is that transfer 
bandwidths of flash memory and disk 
are comparable. While flash write 
bandwidth has lagged behind read 
bandwidth, some products claim a 
difference of less than a factor of two 

flash memory should exploit the same 
methods as a traditional buffer pool. 
For truly comparable and competitive 
performance and administration costs, 
a similar approach seems advisable 
when flash memory is used as an 
extended disk.

File systems. Our research assumed a 
fairly traditional file system. Although 
many file systems differ from this 
model, most still generally follow it.

In our traditional system, each file 
is a large byte stream. Files are often 
read in their entirety, their contents 
manipulated in memory, and the entire 
file replaced if it is updated. Archiving, 
version retention, hierarchical storage 
management, data movement using 
removable media, among others, all 
seem to follow this model as well.

Based on this model, space allocation 
on disk attempts to use contiguous disk 
blocks for each file. Metadata is limited 
to directories, a few standard tags such 
as a creation time, and data structures 
for space management.

Consistency of these on-disk data 
structures is achieved by careful write 
ordering, fairly quick write-back of 
updated data blocks, and expensive 
file-system checks after any less-than-
perfect shutdown or media removal. 
In other words, we assume the 
absence of transactional guarantees 
and transactional logging, at least for 
file contents. If log-based recovery is 
supported for file contents such as 
individual pages or records within 
pages, then a number of the arguments 
presented here need to be revisited.

Database systems. We assume fairly 
traditional database systems with 
B-tree indexes as the workhorse storage 
structure. Similar tree structures 
capture not only traditional clustered 
and nonclustered indexes, but also 
bitmap indexes, columnar storage, 
contents indexes, XML indexes, 
catalogs (metadata), and allocation 
data structures.

With respect to transactional 
guarantees, we assume traditional 
write-ahead logging of both contents 
changes (such as inserting or deleting 
a record) and structural changes (such 
as splitting B-tree nodes). Efficient 
log-based recovery after failures is 
enabled by checkpoints that force 
dirty data from the buffer pool to 
persistent storage.

(for example, Samsung’s Flash-based 
solid-state disk used in Table 1). If 
necessary, the transfer bandwidth 
can be increased by using array 
arrangements, as is well known for disk 
drives; even redundant arrangement of 
flash memory may prove advantageous 
in some cases.6

Since the reliability of current NAND 
flash suffers after 100,000–1,000,000 
erase-and-write cycles, we assume that 
some mechanisms for wear leveling are 
provided. These mechanisms ensure 
that all pages or blocks of pages are 
written similarly often. It is important to 
recognize the similarity between wear-
leveling algorithms and log-structured 
file systems,22, 27 although the former 
also move stable, unchanged data such 
that their locations can absorb some of 
the erase-and-write cycles.

Note that traditional disk drives do 
not support more write operations, 
albeit for different reasons. For 
example, six years of continuous 
and sustained writing at 100Mbps 
overwrites an entire 250GB disk fewer 
than 80,000 times. In other words, 
assuming that a log-structured file 
system is appropriate for RAID-5 
or RAID-6 arrays, the reliability of 
current flash seems comparable. 
Similarly, overwriting a 32GB flash 
disk 100,000 times with a sustained 
average bandwidth of 30Mbps takes 
about 3.5 years.

figure 1: caching and indexing page locations.
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In addition to wear leveling, we 
assume that an asynchronous agent 
moves stale data from flash memory 
to disk and immediately erases the 
freed-up space in flash memory to 
prepare it for write operations without 
further delay. This activity also has 
an immediate equivalence in log-
structured file systems—namely, the 
cleanup activity that prepares space 
for future log writing. The difference 
is that disk contents must merely be 
moved, whereas flash contents must 
also be erased before the next write 
operation at that location.

In either file systems or database 
systems, we assume separate 
mechanisms for page tracking and 
page replacement. A traditional buffer 
pool, for example, provides both, but 
it uses two different data structures 
for these two purposes. The standard 
design relies on an LRU list for page 
replacement and on a hash table for 
tracking pages (that is, which pages 
are present in the buffer pool and 
in which buffer frames). Alternative 
algorithms and data structures 
also separate page tracking and 
replacement management.

The data structures for the 
replacement algorithm are assumed 
to be small and have high traffic and 
are therefore kept in RAM. We also 
assume that page tracking must be 
as persistent as the data, including 
free-space information. Thus, a buffer 
pool’s hash table is reinitialized 
during a system reboot, but tracking 
information for pages on a persistent 
store such as a disk must be stored with 
the data. The tracking information may 
well be cached in RAM while a volume 
is active, but any changes must be 
logged and written back to permanent 
storage. The index required to find the 
current location of a page may exist 
only in RAM, being reconstructed 
every time a volume is opened and the 
tracking information loaded into the 
cache in RAM.

As previously mentioned, we 
assume page replacement on demand. 
In addition, automatic policies and 
mechanisms may exist for prefetch, 
read-ahead, and write-behind.

Based on these considerations, we 
assume the contents of flash memory 
are pretty much the same, whether the 
flash memory extends the buffer pool 

or the disk. The central question is 
therefore not what to keep in cache but 
how to manage flash-memory contents 
and its lifetime.

In database systems, flash memory 
can also be used for recovery logs, 
because its short access times permit 
very fast transaction commit. However, 
limitations in write bandwidth 
discourage such use. Perhaps systems 
with dual logs can combine low 
latency and high bandwidth, one 
log on a traditional disk and one 
log on an array of flash chips, with a 
slightly optimistic policy to consider a 
transaction committed as soon as the 
write operation on flash is complete.

Other hardware. In all cases, RAM 
is assumed to be a substantial size, 
although probably less than flash 
memory or disk. The relative sizes 
should be governed by the five-minute 
rule.15 Note that, despite similar 
transfer bandwidth, the short access 
latency of flash memory compared with 
disk results in surprising retention 
times for data in RAM.

Finally, we assume sufficient 
processing bandwidth as provided 
by modern many-core processors. 
Moreover, forthcoming transactional 
memory (in hardware and in the 
software runtime system) is expected to 
permit highly concurrent maintenance 
of complex data structures. For 
example, page replacement heuristics 
might use priority queues rather than 
bitmaps or linked lists. Similarly, 
advanced lock management might 
benefit from more complex data 
structures. Nonetheless, we neither 
assume nor require data structures 
more complex than those already in 
common use for page replacement and 
location tracking.

the five-minute Rule
If flash memory is introduced as an 

intermediate level in the memory 
hierarchy, relative sizing of memory 
levels demands renewed consideration.

Tuning can be based on purchasing 
cost, total cost of ownership, power, 
mean time to failure, mean time to 
data loss, or a combination of metrics. 
Following Gray and Putzolu,15 this article 
focuses on purchasing cost. Other 
metrics and appropriate formulas to 
determine relative sizes can be derived 
similarly (for example, by replacing 
dollar costs with energy use for caching 
and moving data).

Gray and Putzolu introduced the 
following formula:14, 15

BreakEvenIntervalinSeconds = 
(PagesPerMBofRAM / AccessesPerSec-
ondPerDisk) × (Price-PerDiskDrive / 
PricePerMBofRAM). 

It is derived using formulas for the 
cost of RAM to hold a page in the buffer 
pool and the cost of a (fractional) disk 
to perform I/O every time a page is 
needed, equating these two costs, and 
solving the equation for the interval 
between accesses.

Assuming modern RAM, a disk drive 
using 4KB pages, and the values from 
Table 1 and Table 2, this produces

(256 / 83) × ($80 / $0.047) = 5,248 seconds  
 ≈ 90 minutes = 1½ hours

(The “=” sign often indicates rounding 
in this article.) 

This compares with two minutes 
(for 4KB pages) 20 years ago. If there 
is a surprise in this change, it is that 
the break-even interval has grown by 
less than two orders of magnitude. 
Recall that RAM was estimated in 
1987 at about $5,000 per megabyte,  
whereas the 2007 cost is about $0.05 
per megabyte, a difference of five 
orders of magnitude. On the other 

table 3: Break-even intervals [seconds].

Page size 1KB 4KB 16KB 65KB 256KB

Ram-sata 20,978 5,248 1,316 334 88

Ram-flash 2,513 876 467 365 339

flash-sata 32,253 8,070 2,024 513 135

Ram-$400 1,006 351 187 146 136

$400-sata 80,553 20,155 5,056 1,281 337
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flash memory falls 
between traditional 
Ram and persistent 
mass storage  
based on rotating 
disks in terms 
of acquisition 
cost, access 
latency, transfer 
bandwidth, spatial 
density, power 
consumption, and 
cooling costs. 

hand, disk prices have also tumbled 
($15,000 per disk in 1987), and disk 
latency and bandwidth have improved 
considerably (from 15 accesses per 
second to about 100 on consumer 
disks and 200 on high-performance 
enterprise disks).

For RAM and flash disks of 32GB, 
the break-even interval is 

(256 / 6,200) × ($999 / $0.047) = 876 sec-
onds ≈ 15 minutes

If the 2007 price for flash disks 
includes a “novelty premium” and 
comes down closer to the price of raw 
flash memory—say, to $400 (a price also 
anticipated by Gray and Fitzgerald13)—
then the break-even interval is 351 
seconds ≈ 6 minutes.

An important consequence is that 
in systems tuned using economic 
considerations, turnover in RAM is 
about 15 times faster (90 minutes / 6 
minutes) if flash memory rather than 
a traditional disk is the next level in 
the storage hierarchy. Much less RAM 
is required, resulting in lower costs for 
purchase, power, and cooling.

Perhaps most interesting, applying 
the same formula to flash and disk 
results in the following:

(256 / 83) × ($80 / $0.03) = 8,070 seconds 
≈ 2¼ hours

Thus, all active data will remain in 
RAM and flash memory.

Without a doubt, two hours is 
longer than any common checkpoint 
interval, which implies that dirty pages 
in flash are forced to disk not by page 
replacement but by checkpoints. Pages 
that are updated frequently must be 
written much more frequently (because 
of checkpoints) than is optimal based 
on Gray and Putzolu’s formula.

In 1987, Gray and Putzolu 
speculated 20 years into the future 
and anticipated a “five-hour rule” 
for RAM and disks. For 1KB records, 
prices and specifications typical in 
2007 suggest 20,978 seconds, or just 
under six hours. Their prediction was 
amazingly accurate. 

All break-even intervals are 
different for larger page sizes (64KB or 
even 256KB). Table 3 shows the break-
even intervals, including those just 
cited, for a variety of page sizes and 

combinations of storage technologies. 
(“$400” stands for a 32GB NAND flash 
drive available in the future rather 
than for $999 in 2007; in fact, 32GB 
SLC SATA drives are available at retail 
for $400 in 2009.) 

The old five-minute rule for RAM 
and disk now applies to 64KB page 
sizes (334 seconds). Five minutes had 
been the approximate break-even 
interval for 1KB in 198715 and for 8KB in 
1997.14 This trend reflects the different 
rates of improvement in disk-access 
latency and transfer bandwidth.

The five-minute break-even interval 
also applies to RAM and the expensive 
flash memory of 2007 for page sizes of 
64KB and above (365 seconds and 339 
seconds). As the price premium for 
flash memory decreases, so does the 
break-even interval (146 seconds and 
136 seconds).

Two new five-minute rules are 
indicated with values in bold italics 
in Table 3. We will come back to this 
table and these rules in the discussion 
on optimal node sizes for B-tree 
indexes.

Page movement
In addition to I/O to and from RAM, a 
three-level memory hierarchy also re-
quires data movement between flash 
memory and disk storage.

The pure mechanism for moving 
pages can be realized in hardware 
(for example, by DMA transfer), or it 
might require an indirect transfer via 
RAM. The former case promises better 
performance, whereas the latter design 
can be realized entirely in software 
without novel hardware. On the other 
hand, hybrid disk manufacturers 
might have cost-effective hardware 
implementations already available.

The policy for page movement is 
governed or derived from demand-
paging and LRU replacement. As 
mentioned earlier, replacement 
policies in both file systems and 
database systems may rely on LRU and 
can be implemented with appropriate 
data structures in RAM. As with buffer 
management in RAM, there may be 
differences resulting from prefetch, 
read-ahead, and write-behind. In 
database systems these may be 
directed by hints from the query 
execution layer, whereas file systems 
must detect page-access patterns 
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and worthwhile read-ahead actions 
without the benefit of such hints.

If flash memory is part of the 
persistent storage, page movement 
between flash memory and disk is 
similar to page movement during 
defragmentation, both in file systems 
and database systems. The most 
significant difference is how page 
movement and current page locations 
are tracked in these two kinds of systems.

tracking Page Locations
The mechanisms for tracking page 
locations are quite different in file 
systems and database systems. In file 
systems, pointer pages keep track of 
data pages or runs of contiguous data 
pages. Moving an individual page may 
require breaking up a run. It always 
requires updating and then writing a 
pointer page.

In database systems, most data is 
stored in B-tree indexes, including 
clustered (primary, nonredundant) and 
nonclustered (secondary, redundant) 
indexes on tables, materialized views, 
and database catalogs. Bitmap indexes, 
columnar storage, and master-detail 
clustering can be readily and efficiently 
represented in B-trees.12 Tree structures 
derived from B-trees are also used for 
blobs (binary large objects) and are 
similar to the storage structures of 
some file systems.5, 25

For B-trees, moving an individual 
page can be very expensive or very 
cheap. The most efficient mechanisms 
are usually found in utilities for 
defragmentation or reorganization. 
Cost or efficiency results from two 
aspects of B-tree implementation—
namely, maintenance of neighbor 
pointers, and logging for recovery.

First, if physical neighbor pointers 
are maintained in each B-tree page, 
moving a single page requires updating 
two neighbors in addition to the 

parent node. If the neighbor pointers 
are logical using fence keys, only the 
parent page requires an update during 
a page movement.10 Figure 2 shows 
such a B-tree, with neighbor pointers 
replaced by copies of the separator 
keys propagated to the parent node 
during leaf splits. If the parent page 
is in memory, perhaps even pinned 
in the buffer pool, recording the new 
location is rather like updating an in-
memory indirection array. The pointer 
change in the parent page is logged in 
the recovery log, but there is no need 
to force the log immediately to stable 
storage because this change is merely 
a structural change, not a database 
contents change.

Second, database systems log 
changes in the physical database, and 
in the extreme case both the deleted 
page image and the newly created 
page image are logged. Thus, an 
inefficient implementation fills two 
log pages whenever a single data page 
moves from one location to another. 
A more efficient implementation logs 
only allocation actions and delays de-
allocation of the old page image until 
the new image is safely written in its 
intended location.10 In other words, 
moving a page from one location (for 
example, on persistent flash memory) 
to another (for example, on disk) 
requires only a few bytes in the database 
recovery log.

The difference between traditional 
file systems and database systems 
is the efficiency of updates enabled 
by the recovery log. In a file system, 
the new page location must be saved 
as soon as possible by writing a 
new image of the pointer page. In a 
database system, only a single log 
record or a few short log records must 
be added to the log buffer. Thus, the 
overhead for a page movement in a 
file system is writing an entire pointer 

page using a random access, whereas 
a database system adds a log record 
of a few dozen bytes to the log buffer 
that will eventually be written using 
large sequential write operations.

If a file system uses flash memory 
as persistent storage, moving a page 
between a flash memory location and 
an on-disk location adds substantial 
overhead. Thus, most file-system 
designers will probably prefer flash 
memory as an extension to the buffer 
pool rather than as an extension of the 
disk, thus avoiding this overhead.

A database system, however, has 
built-in mechanisms that can easily 
track page movements. These mecha-
nisms are inherent in the “workhorse” 
data structure, B-tree indexes. Com-
pared with file systems, these mecha-
nisms permit efficient page movement, 
each one requiring only a fraction of 
a sequential write (in the recovery log) 
rather than a full random write.

Moreover, the database mecha-
nisms are reliable. Should a failure 
occur during a page movement, data-
base recovery is driven by the recovery 
log, whereas a traditional file system 
requires checking the entire volume 
during reboot.

checkpoint Processing
To ensure fast recovery after a system 
failure, database systems use check-
points. Their effect is that recovery 
needs to consider database activity only 
from the most recent checkpoint, plus 
some limited activity explicitly indicat-
ed in the checkpoint information. The 
main effort is writing dirty pages from 
the buffer pool to persistent storage.

If pages in flash memory are part 
of the buffer pool, dirty pages must 
be written to disk during database 
checkpoints. Common checkpoint 
intervals are measured in seconds or 
minutes. Alternatively, if checkpoints 
are not truly points but intervals, it is 
reasonable to flush pages and perform 
checkpoint activities continuously, 
starting the next checkpoint as soon 
as one finishes. With flash memory as 
part of the buffer pool, many writes to 
flash memory require a write to disk 
soon thereafter as part of checkpoint 
processing, and flash memory as the 
intermediate level in the memory 
hierarchy fails to absorb write activity. 
Recall, this effect may be exacerbated 

figure 2: a write-optimized B-tree with fence keys instead of neighbor pointers.
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is 351 seconds. This is the second new 
five-minute rule.

The implication of two different 
optimal page sizes is that any uniform 
node size for B-trees on flash memory 
and traditional rotating hard disks is 
suboptimal. Optimizing page sizes for 
both media requires a change in buffer 
management, space allocation, and 
some of the B-tree logic.

Fortunately, Patrick O’Neil of the 
University of Massachusetts already 
designed a space allocation scheme 
for B-trees in which neighboring leaf 
nodes usually reside within the same 
contiguous extent of pages.23 When 
a new page is needed for a node split, 
another page within the same extent is 
allocated. When an extent overflows, 
half its pages are moved to a newly 
allocated extent. In other words, the 

if RAM is kept small because of the 
presence of flash memory.

If, on the other hand, flash memory 
is considered persistent storage, 
writing to flash memory is sufficient. 
Write-through to disk is required only 
as part of page replacement (such 
as, when a page’s usage suggests 
placement on disk rather than in flash 
memory). Thus, checkpoints do not 
incur the cost of moving data from 
flash memory to disk.

Checkpoints might even be faster 
in systems with flash memory because 
dirty pages in RAM need to be written 
merely to flash memory, not to disk. 
Given the very fast random access in 
flash memory relative to disk drives, 
this difference might speed up 
checkpoints significantly.

To summarize, database systems 
benefit if flash memory is treated as 
part of the system’s persistent storage. 
In contrast, traditional file systems do 
not have systemwide checkpoints that 
flush the recovery log and any dirty 
data from the buffer pool. Instead, 
they rely on carefully writing modified 
file-system pages because of the lack of 
a recovery log protecting file contents.

Page sizes
In addition to tuning based on the 
five-minute rule, another optimiza-
tion based on access performance is 
sizing of B-tree nodes. The optimal 
page size minimizes the time spent 
on I/O during a root-to-leaf search. It 
balances a short I/O (that is, the desire 
for small pages) with a high reduction 
in remaining search space (that is, the 
desire for large pages).

Assuming binary search within 
each B-tree node, the reduction in 
remaining search space is measured by 
the logarithm of the number of records 
within each node. This measure was 
called a node’s utility in our earlier 
work.14 This optimization is essentially 
equivalent to one described in the 
original research on B-trees.3

Table 4 illustrates this optimization 
for 20-byte records (typical with prefix 
and suffix truncation4) and for nodes 
filled at about 70%.

Not surprisingly, the optimal node 
size for B-tree indexes on modern 
high-bandwidth disks is much larger 
than the page sizes in traditional 
database systems. With those disks, 

the access time dominates for all small 
page sizes, such that additional byte 
transfer and thus additional utility are 
almost free. 

B-tree nodes of 256KB are near 
optimal. For those, Table 3 indicates 
a break-even time for RAM and disk of 
88 seconds. For a $400 flash disk and 
a traditional rotating hard disk, Table 
4 indicates 337 seconds or just over 
five minutes. This is the first of the two 
new five-minute rules. 

Table 5 illustrates the same cal–
culations for B-trees on flash memory. 
Because there is no mechanical seeking 
or rotation, transfer time dominates 
access time even for small pages. The 
optimal page size for B-trees on flash 
memory is 2KB, much smaller than 
for traditional disk drives. In Table 3, 
the break-even interval for 4KB pages 

table 4: Page utility for B-tree nodes on disk.

Page size Records per page node utility access time utility/time

 4KB  140  7  12.0ms  0.58

 16KB  560  0  12.1ms  0.75

 64KB  2,240  11  12.2ms  0.90

 128KB  4,480  12  12.4ms  0.97

 256KB  8,960  13  12.9ms  1.01

 512KB  17,920  14  13.7ms  1.02

 1MB  35,840  15  15.4ms  0.97

table 5: Page utility for B-tree nodes on flash memory.

Page size Records per page node utility access time utility/time

 1KB  35  5  0.11ms  43.4

 2KB  70  6  0.13ms  46.1

 4KB  140  7  0.16ms  43.6

 8KB  280  8  0.22ms  36.2

 16KB  560  9  0.34ms  26.3

 64KB  2,240  11  1.07ms  10.3

figure 3: Pages and extents in an sB-tree.
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extent 75

extent 93
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“split in half when full” logic of B-trees 
is applied not only to pages containing 
records, but also to contiguous disk 
extents containing pages.

Using O’Neil’s SB-trees (S meaning 
sequential), 256KB extents can be the 
units of transfer between flash memory 
and disk, whereas 4KB pages can be the 
unit of transfer between RAM and flash 
memory. Figure 3 shows pages within 
two extents. Child pointers in a B-tree 
(also shown) refer to individual pages. 
If multiple neighboring child pointers 
refer to neighboring pages (as shown), 
the pointer values can be represented 
compactly with run-length encoding 
applied not to a set of duplicate key 
values but to a series of values with 
constant increments. For example, 
the five child pointers in extent 75.1 in 
Figure 3 can be represented by the page 
identifier 93.0 and the counter 5.

Similar notions of self-similar B-trees 
have also been proposed for higher 
levels in the memory hierarchy, for 
example, in the form of B-trees of cache 
lines for the indirection vector within a 
large page.19 Given that there are at least 
three levels of B-trees and three node 
sizes now (cache lines, flash memory 
pages, and disk pages), research into 
cache-oblivious B-trees2 might be 
promising.

Database-Query Processing
Self-similar designs apply both to data 
structures such as B-trees and to algo-
rithms. For example, sort algorithms 
already use algorithms similar to tradi-
tional external merge sorts in multiple 
ways—to merge runs not only on disk 
but also in memory, where the initial 
runs are sized to limit run creation to 
the CPU cache.11, 21

The same technique might be 
applied three times instead of twice: 
first, cache-size runs in memory are 
merged into memory-size runs in 
memory; second, in larger sort operations, 
memory-size runs in flash memory are 
merged into runs on disk; and third, 
runs on disk are merged to form 
the final sorted result. Read-ahead, 
forecasting, write-behind, and page sizes 
all deserve a new look in a multilevel 
memory hierarchy consisting of cache, 
RAM, flash memory, and traditional 
disk drives. These page sizes can then 
inform the break-even calculation for 
page retention versus I/O and thus 

guide the optimal capacities at each 
level of the memory hierarchy.

We can surmise that a variation of 
this sort algorithm will be not only 
fast but also energy efficient. While 
energy efficiency has always been 
crucial for battery-powered devices, 
research into energy-efficient query 
processing on server machines is only 
now beginning.24 For example, for 
both flash memory and disks, energy-
optimal page sizes might well differ 
from performance-optimal page sizes.

The I/O pattern of an external 
merge sort is similar (albeit in the 
opposite direction) to the I/O pattern 
of an external distribution sort. Figure 
4 illustrates how merging combines 
many small files into a large file, with 
many seek operations in the small files 
as demanded by the merge logic, and 
how partitioning divides a single large 
file into many small files, with many 
seek operations in the small files as 
demanded by the partitioning function. 
The I/O pattern of a distribution sort 
is equal to that of partitioning during 
hash join and hash aggregation.8 All of 
these algorithms require reevaluation 
and redesign in a three-level memory 
hierarchy, or even a four-level hierarchy 
if CPU caches are also considered.26

Flash memory with its very fast 
access times may well revive interest in 
index-based query execution.7, 9 Instead 
of large scans and memory-intensive 
operations such as sorting and hash 
join, fast accesses to index pages shift 
the break-even point toward index-to-
index navigation. For example, assume 
a table with 100 million rows of 100 
bytes and table scans at 100MB per 
second. A table scan takes 100 seconds. 
Searching a secondary index requires 
fetching individual rows from the table. 
If the table is stored on a traditional 
disk, then a period of 100 seconds 
permits fetching about 10,000 records. 
If more than 10,000 rows satisfy the 
query predicate, then the table scan is 
faster. If, however, the table is stored 
on a flash device, 100 seconds will 
permit fetching about 500,000 records. 
Thus, flash storage shifts the break-
even point between table scan and 
index search from 10,000 to 500,000 
rows satisfying the query predicate, 
and many more query execution plans 
will rely on index-to-index navigation 
rather than large scans and hash joins.

the 20-year-old 
five-minute rule for 
Ram and disks still 
holds, but for ever-
larger disk pages. 
moreover, it should 
be augmented by 
two new five-minute 
rules: one for small 
pages moving 
between Ram and 
flash memory and 
one for large pages 
moving between 
flash memory and 
traditional disks. 
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figure 5: Graceful degradation with multiple levels in the memory hierarchy.

Run retained in memory sort output

Runs on disk

Runs on flash

Multiple secondary indexes for 
a single table can be exploited into 
index intersection, index joins, among 
others. Fast access to individual 
pages and records also benefits 
those query execution plans. Like 
secondary indexes, column stores or 
more generally vertical partitioning 
also require fetching records from 
multiple places to assemble complete 
rows. Thus, as seen in the example 
of database query processing, using 
flash memory in addition to or even as 
replacement of traditional disks not 
only forces reevaluation of optimal use 
of the hardware but also means some 
substantial software changes. 

Record and object caches
Page sizes in database systems have 
grown over the years, although not as 
fast as disk-transfer bandwidth. On the 
other hand, small pages require less 
buffer-pool space for each root-to-leaf 
search. For example, consider an index 
with 20 million entries. With index pag-
es of 128KB and 4,500 records, a root-
to-leaf search requires two nodes and 
thus 256KB in the buffer pool, although 
half of that (the root node) can prob-
ably be shared with other transactions. 
With 8KB index pages and 280 records 
per page, a root-to-leaf search requires 
three nodes or 24KB in the buffer pool, 
or one order of magnitude less.

In traditional database architecture, 
the default page size is a compromise 
between efficient index search (using 
large B-tree nodes as previously 
discussed here and in the original B-tree 
papers3) and moderate buffer-pool 
requirements for each index search. 
Nonetheless, the previous example 
requires 24KB in the buffer pool for 
finding a record of perhaps only 20 bytes, 

ware techniques with the highest im-
pact on energy consumption. Note that 
traditional database-query processing 
relies on asynchronous I/O to reduce 
response times; if the primary cost 
metric for query processing is energy 
consumption, asynchronous I/O has 
no advantage over synchronous I/O.

Second, the five-minute rule applies 
to permanent data and its management 
in a buffer pool. The optimal retention 
time for temporary data such as run 
files in sorting and overflow files 
in hash join and hash aggregation 
may be different. For sorting, as for 
B-tree searches, the goal should be to 
maximize the number of comparisons 
per unit of I/O time or per unit of energy 
spent on I/O. Our initial research 
and algorithm design has focused on 
algorithms with graceful degradation 
in sorting and for hybrid hash join 
(that is, spilling memory contents to 
flash only when and as much as truly 
required, and similarly spilling flash 
contents to disk only when and as 
much as truly required). The different 
optimal page sizes can be exploited to 
achieve very high effective merge fan-in 
and partitioning fan-out with relatively 
little main memory. Figure 5 shows the 
final merge step—very large runs on 
disk use large pages that are buffered in 
flash memory (shown as vertical boxes), 
a few small runs have remained in flash 

and it requires 8KB of the buffer pool for 
retaining these 20 bytes in memory. An 
alternative design uses large on-disk 
pages and a record cache that serves 
applications, because record caches 
minimize memory needs yet provide 
the desired data retention. In-memory 
databases represent a specific form of 
record caches when used as front ends 
for traditional disk-based databases.

The introduction of flash memory 
with its fast access latency and its small 
optimal page size may render record 
caches obsolete. With the large on-disk 
pages in flash memory and only small 
pages in the in-memory buffer pool, the 
desired compromise can be achieved 
without the need for two separate data 
structures (such as, a transacted B-tree 
and a separate record cache).

future Work
Several directions for future research 
suggest themselves. First, while the 
analyses in this article focused on 
purchasing costs, a consideration of 
other costs could capture the total cost 
of ownership. A focus on energy con-
sumption, for example, could lead to 
different break-even points or even en-
tirely different conclusions. Along with 
CPU scheduling, algorithms for stag-
ing data in the memory hierarchy—in-
cluding buffer-pool replacement and 
asynchronous I/O—may be the soft-

figure 4: merging and partitioning files.

merging

Partitioning
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and never were merged to form very 
large runs on disk (shown as horizontal 
boxes), and the available RAM is used 
to merge a very large number of runs 
exploiting the small page size optimal 
for flash devices. 

Third, Gray and Putzolu offered 
further rules of thumb, such as the 
10-byte rule for trading memory 
and CPU power. These rules also 
warrant revisiting for both costs and 
energy. Compared with 1987, the 
most fundamental change may be 
that CPU power should be measured 
not in instructions but in cache line 
replacements. Trading off space and 
time seems like a new problem in 
an environment with multiple levels 
in the memory hierarchy. A modern 
memory hierarchy might be very deep: 
multiple levels of CPU caches, main 
memory (possibly in a NUMA design), 
flash devices, and finally performance-
optimized “enterprise” disks and 
capacity-optimized “consumer” disks. 
The lower levels may rely on various 
software techniques with different 
trade-offs between performance and 
reliability, such as striping, mirroring, 
single-redundancy RAID-5, dual-
redundancy RAID-6, log-structured file 
systems, and write-optimized B-trees.

Fourth, what are the best data 
movement policies? One extreme is 
a database administrator explicitly 
moving entire files, tables, or indexes 
between flash memory and traditional 
disk. Another extreme is automatic 
movement of individual pages, 
controlled by a replacement policy 
such as LRU. Intermediate policies may 
focus on the roles of individual pages 
within a database or on the current 
query-processing activity. For example, 
all catalog pages may be moved as a 

affordable, and popular based on 
memory inexpensively extended with 
flash memory rather than RAM? Will 
they become less popular as a result of 
very fast traditional database systems 
using flash memory instead of (or in 
addition to) disks? Can a traditional 
code base using flash memory instead 
of traditional disks compete with 
a specialized in-memory database 
system in terms of performance, total 
cost of ownership, development and 
maintenance costs, or time to market of 
features and releases? What techniques 
in the buffer pool are required to 
achieve performance competitive with 
in-memory databases? For example, 
the upper levels of B-tree indexes 
can be pinned in the buffer pool and 
augmented with memory addresses 
of all child pages (or their buffer 
descriptors) also pinned in the buffer 
pool, and auxiliary structures may 
enable efficient interpolation search 
instead of binary search.

Finally, techniques similar to 
generational garbage collection may 
benefit storage hierarchies.22 Selective 
reclamation applies not only to 
unreachable in-memory objects but 
also to buffer-pool pages and favored 
locations on permanent storage. Such 
research also may provide guidance 
for log-structured file systems, wear 
leveling for flash memory, and write-
optimized B-trees on RAID storage.

conclusion
The 20-year-old five-minute rule for 
RAM and disks still holds, but for 
ever-larger disk pages. Moreover, it 
should be augmented by two new 
five-minute rules: one for small pag-
es moving between RAM and flash 
memory and one for large pages mov-
ing between flash memory and tradi-
tional disks. For small pages moving 
between RAM and disk, Gray and Put-
zolu were amazingly accurate in pre-
dicting a five-hour break-even point 
two decades into the future.

Research into flash memory and 
its place in system architectures is 
urgent and important. Within a few 
years, flash memory will be used to 
fill the gap between traditional RAM 
and traditional disk drives in many 
operating systems, file systems, and 
database systems.

Flash memory can be used to extend 

figure 6: Local flash drives versus hybrid 
drives in network-attached storage.

CPu + RAM

CPu + RAM

Flash disk traditional disk

traditional disk

Flash disk

unit after schema changes to facilitate 
fast recompilation of all cached query 
execution plans, and all relevant upper 
B-tree levels may be prefetched and 
cached in RAM or in flash memory 
during execution of query plans relying 
on index-to-index navigation. The 
variety of possibilities may overwhelm 
automatic policies and may require 
hints or directives from applications or 
database software.

Fifth, what are the secondary and 
tertiary effects of introducing flash 
memory into the memory hierarchy of 
a database server? For example, short 
access times permit a lower multi-
programming level, because only 
short I/O operations must be hidden 
by asynchronous I/O and context 
switching. A lower multi-programming 
level in turn may reduce contention for 
memory in sort and hash operations, 
locks (concurrency control for database 
contents), and latches (concurrency 
control for in-memory data structures). 
Should this effect prove significant, the 
effort and complexity of using a fine 
granularity of locking may be reduced. 
Page-level concurrency control may 
also be sufficient simply as a result 
of small page sizes. Similarly, in-
page data structures may require 
less optimization, although some 
techniques may apply to small pages 
(optimized for flash) within large pages 
(optimized for disks)—for example, 
clustering records versus clustering 
fields.1

Sixth, will hardware architecture 
considerations invalidate some of 
the findings and conclusions of this 
article? For example, disks are currently 
separated from the main processors 
(for example, in network-attached 
storage or storage-area networks). Will 
flash devices be placed with the main 
processors? If so, is it still a good idea 
to use flash devices as extended disk 
rather than extended buffer pool? 
Figure 6 shows two of these alternatives. 
In the top arrangement, questions arise 
about the scope and effectiveness of 
centralized storage management, the 
granularity of failures and replacement, 
and so on,  whereas many of these 
questions have much more obvious 
answers in the bottom arrangement.

Seventh, how will flash memory 
affect in-memory database systems? 
Will they become more scalable, 
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RAM or persistent storage. These 
models are called extended buffer pool 
and extended disk here. Both models 
may seem viable in operating systems, 
file systems, and in database systems. 
The different characteristics of each 
of these systems, however, will require 
different usage models.

In both models, contents of RAM 
and flash will be governed by LRU-like 
replacement algorithms that attempt 
to keep the most valuable pages in 
RAM and the least valuable pages on 
traditional disks. The linked list or 
other data structure implementing the 
replacement policy for flash memory 
will be maintained in RAM.

Operating systems and traditional 
file systems will use flash memory 
mostly as transient memory (for 
example, as a fast backup store for 
virtual memory and as a secondary 
file-system cache). Both of these 
applications fall into the extended 
buffer-pool model. During an orderly 
system shutdown, the flash memory 
contents must be written to persistent 
storage. During a system crash, 
however, the RAM-based description of 
flash-memory contents will be lost and 
must be reconstructed by a contents 
analysis similar to a traditional file-
system check. Alternatively, flash-
memory contents can be voided and 
reloaded on demand.

Database systems, on the other 
hand, will employ flash memory as 
persistent storage, using the extended 
disk model. The current contents 
will be described in persistent data 
structures, such as parent pages in 
B-tree indexes. Traditional durability 
mechanisms—in particular, logging 
and checkpoints—ensure consistency 
and efficient recovery after system 
crashes. Checkpoints and orderly 
system shutdowns have no need to 
write flash memory contents to disk, 
and the pre-shutdown of flash contents 
is required for a complete restart.

There are two reasons for these 
different usage models for flash 
memory. First, database systems rely 
on regular checkpoints during which 
dirty pages are flushed from the buffer 
pool to persistent storage. If a dirty page 
is moved from RAM to the extended 
buffer pool in flash memory, it creates 
substantial overhead during the next 
checkpoint. A free buffer must be found 

in RAM, the page contents must be 
read from flash memory into RAM, and 
then the page must be written to disk. 
Adding such overhead to checkpoints 
is not attractive in database systems 
with frequent checkpoints. Operating 
systems and traditional file systems, 
on the other hand, do not rely on 
checkpoints and thus can exploit flash 
memory as an extended buffer pool.

Second, the principal persistent 
data structures of databases, B-tree 
indexes, provide precisely the mapping 
and location-tracking mechanisms 
needed to complement frequent page 
movement and replacement. Thus, 
tracking a data page when it moves 
between disk and flash relies on the 
same data structure maintained for 
efficient database search. In addition,  
avoiding indirection in locating a 
page also makes database searches as 
efficient as possible.

Finally, as the ratio of access 
latencies and transfer bandwidth is 
very different for flash memory and 
disks, different B-tree node sizes are 
optimal. O’Neil’s SB-tree exploits 
two different node sizes as needed in 
a multilevel storage hierarchy. The 
required inexpensive mechanisms for 
moving individual pages are the same 
as those required when moving pages 
between flash memory and disk.
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