
48 communications of the acm | july 2009 | vol. 52 | no. 7

practice

was about equal to the (fractional)
price of a disk drive required to access
such a record every 400 seconds, which
they rounded to five minutes. The
break-even interval is about inversely
proportional to the record size. Gray and
Putzolu reported one hour for 100-byte
records and two minutes for 4KB pages.

The five-minute rule was reviewed
and renewed 10 years later.14 Lots of
prices and performance parameters
had changed (for example, the price of
RAM had tumbled from $5,000 to $15
per megabyte). Nonetheless, the break-
even interval for 4KB pages was still
around five minutes. The first goal of
this article is to review the five-minute
rule after another 10 years.

Of course, both previous articles
acknowledged that prices and
performance vary among technolo-
gies and devices at any point in time
(RAM for mainframes versus mini-
computers, SCSI versus IDE disks, and
so on). Interested readers are invited to
reevaluate the appropriate formulas
for their environments and equipment.
The values used here (in Table 1) are
meant to be typical for 2007 technolo-
gies rather than universally accurate.

In addition to quantitative
changes in prices and performance,
qualitative changes already under
way will affect the software and
hardware architectures of servers
and, in particular, database systems.
Database software will change
radically with the advent of new
technologies: virtualization with
hardware and software support, as well
as higher utilization goals for physical
machines; many-core processors and
transactional memory supported both
in programming environments and
hardware;20 deployment in containers
housing thousands of processors and
many terabytes of data;17 and flash
memory that fills the gap between
traditional RAM and traditional
rotating disks.

Flash memory falls between
traditional RAM and persistent mass
storage based on rotating disks in
terms of acquisition cost, access

in 1 987, JiM Gray and Gianfranco Putzolu published
their now-famous five-minute rule15 for trading off
memory and I/o capacity. Their calculation compares
the cost of holding a record (or page) permanently
in memory with the cost of performing disk I/o
each time the record (or page) is accessed, using
appropriate fractional prices of RAM chips and
disk drives. The name of their rule refers to the
break-even interval between accesses. If a record
(or page) is accessed more often, it should be kept in
memory; otherwise, it should remain on disk and
be read when needed.

Based on then-current prices and performance
characteristics of Tandem equipment, Gray and
Putzolu found the price of RAM to hold a 1KB record

Doi:10.1145/1538788.1538805

 Article development led by
 queue.acm.org

Revisiting Gray and Putzolu’s
famous rule in the age of Flash.

BY Goetz GRaefe

the five-
minute Rule
20 Years Later
(and how flash memory
changes the Rules)

july 2009 | vol. 52 | no. 7 | communications of the acm 49

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 R
A

FA
E

L
 R

I
C

O
Y

50 communications of the acm | july 2009 | vol. 52 | no. 7

practice

latency, transfer bandwidth, spatial
density, power consumption, and
cooling costs.13 Table 1 and some
derived metrics in Table 2 illustrate
this point (all metrics derived on
4/11/2007 from dramexchange.com,
dvnation.com, buy.com, seagate.com,
and samsung.com).

Given the number of CPU
instructions possible during the time
required for one disk I/O has steadily
increased, an intermediate memory in
the storage hierarchy is desirable. Flash
memory seems to be a highly probable
candidate, as has been observed many
times by now.

Many architecture details remain
to be worked out. For example, in
the hardware architecture, will flash
memory be accessible via a DIMM slot,
a SATA (serial ATA) disk interface, or
yet another hardware interface? Given
the effort and delay in defining a new
hardware interface, adaptations of
existing interfaces are likely.

A major question is whether flash
memory is considered a special part
of either main memory or persistent
storage. Asked differently: if a system
includes 1GB traditional RAM, 8GB
flash memory, and 250GB traditional
disk, does the software treat it as

250GB of persistent storage and a 9GB
buffer pool, or as 258GB of persistent
storage and a 1GB buffer pool? The
second goal of this article is to answer
this question and, in fact, to argue for
different answers in file systems and
database systems.

Many design decisions depend
on the answer to this question. For
example, if flash memory is part of the
buffer pool, pages must be considered
“dirty” if their contents differ from
the equivalent page in persistent
storage. Synchronizing the file system
or checkpointing a database must
force disk writes in those cases. If
flash memory is part of persistent
storage, these write operations are not
required.

Designers of operating systems
and file systems will want to use flash
memory as an extended buffer pool
(extended RAM), whereas database
systems will benefit from flash
memory as an extended disk (extended
persistent storage). Multiple aspects
of file systems and database systems
consistently favor these two designs.
Presenting the case for these designs is
the third goal of this article.

Finally, the characteristics of flash
memory suggest some substantial

differences in the management of
B-tree pages and their allocation.
Beyond optimization of page sizes,
B-trees can use different units of I/O for
flash memory and disks. These page
sizes lead to two new five-minute rules.
Introducing these two new rules is the
fourth goal of this article.

assumptions
Forward-looking research relies on
many assumptions. This section
lists the assumptions that led to the
conclusions put forth in this article.
Some of these assumptions are
fairly basic, whereas others are more
speculative.

One assumption is that file systems
and database systems assign the same
data to the flash memory between
RAM and the disk drive. Both software
systems favor pages with some
probability that they will be touched
in the future but not with sufficient
probability to warrant keeping
them in RAM. The estimation and
administration of such probabilities
follows the usual lines, such as LRU
(least recently used).

We assume that the administration
of such information uses data structures
in RAM, even for pages whose contents
have been removed from RAM to flash
memory. For example, the LRU chain in
a file system’s buffer pool might cover
both RAM and flash memory, or there
might be two separate LRU chains. A
page is loaded into RAM and inserted
at the head of the first chain when it
is needed by an application. When it
reaches the tail of the first chain, the
page is moved to flash memory and its
descriptor to the head of the second
LRU chain. When it reaches the tail of
the second chain, the page is moved to
disk and removed from the LRU chain.
Other replacement algorithms would
work mutatis mutandis.

Such fine-grained LRU replacement
of individual pages is in contrast to
assigning entire files, directories,
tables, or databases to different storage
units. It seems that page replacement
is the appropriate granularity in buffer
pools. Moreover, proven methods exist
for loading and replacing buffer-pool
contents entirely automatically, with
no assistance from tuning tools or
directives by users or administrators
needed. An extended buffer pool in

table 1: Prices and performance of flash and disks.

Ram flash disk sata disk

Price and capacity $3 for 8×64Mbit $999 for 32GB $80 for 250GB

Access latency 0.1ms 12ms average

Transfer bandwidth 66MB/s API 300MB/s API

Active power 1W 10W

Idle power 0.1W 8W

Sleep power 0.1W 1W

table 2: Relative costs for flash memory and disks.

nanD flash sata disk

Price and capacity $999 for 32GB $80 for 250GB

Price per GB $31.20 $0.32

Time to read a 4KB page 0.16ms 12.01ms

4KB reads per second 6,200 83

Price per 4KB read per second $0.16 $0.96

Time to read a 256KB page 3.98ms 12.85ms

256KB reads per second 250 78

Price per 256KB read per second $3.99 $1.03

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 51

Variations such as “second-chance”
or fuzzy checkpoints fit within our
assumptions. In addition, nonlogged
(allocation-only logged) execution is
permitted for some operations such
as index creation. These operations
require appropriate write ordering and
a “force” buffer pool policy.18

Flash memory. Hardware and device
drivers are assumed to hide many
implementation details such as the
specific hardware interface to flash
memory. For example, flash memory
might be mounted on the computer’s
motherboard, a DIMM slot, a PCI
board, or within a standard disk
enclosure. In all cases, DMA transfers
(or something better) are assumed
between RAM and flash memory.
Moreover, we assume there is either
efficient DMA data transfer between
flash and disk or a transfer buffer in
RAM. The size of such a transfer buffer
should be, in a first approximation,
about equal to the product of transfer
bandwidth and disk latency. If it is
desirable that disk writes should never
delay disk reads, the increased write-
behind latency must be included in
the calculation.

Another assumption is that transfer
bandwidths of flash memory and disk
are comparable. While flash write
bandwidth has lagged behind read
bandwidth, some products claim a
difference of less than a factor of two

flash memory should exploit the same
methods as a traditional buffer pool.
For truly comparable and competitive
performance and administration costs,
a similar approach seems advisable
when flash memory is used as an
extended disk.

File systems. Our research assumed a
fairly traditional file system. Although
many file systems differ from this
model, most still generally follow it.

In our traditional system, each file
is a large byte stream. Files are often
read in their entirety, their contents
manipulated in memory, and the entire
file replaced if it is updated. Archiving,
version retention, hierarchical storage
management, data movement using
removable media, among others, all
seem to follow this model as well.

Based on this model, space allocation
on disk attempts to use contiguous disk
blocks for each file. Metadata is limited
to directories, a few standard tags such
as a creation time, and data structures
for space management.

Consistency of these on-disk data
structures is achieved by careful write
ordering, fairly quick write-back of
updated data blocks, and expensive
file-system checks after any less-than-
perfect shutdown or media removal.
In other words, we assume the
absence of transactional guarantees
and transactional logging, at least for
file contents. If log-based recovery is
supported for file contents such as
individual pages or records within
pages, then a number of the arguments
presented here need to be revisited.

Database systems. We assume fairly
traditional database systems with
B-tree indexes as the workhorse storage
structure. Similar tree structures
capture not only traditional clustered
and nonclustered indexes, but also
bitmap indexes, columnar storage,
contents indexes, XML indexes,
catalogs (metadata), and allocation
data structures.

With respect to transactional
guarantees, we assume traditional
write-ahead logging of both contents
changes (such as inserting or deleting
a record) and structural changes (such
as splitting B-tree nodes). Efficient
log-based recovery after failures is
enabled by checkpoints that force
dirty data from the buffer pool to
persistent storage.

(for example, Samsung’s Flash-based
solid-state disk used in Table 1). If
necessary, the transfer bandwidth
can be increased by using array
arrangements, as is well known for disk
drives; even redundant arrangement of
flash memory may prove advantageous
in some cases.6

Since the reliability of current NAND
flash suffers after 100,000–1,000,000
erase-and-write cycles, we assume that
some mechanisms for wear leveling are
provided. These mechanisms ensure
that all pages or blocks of pages are
written similarly often. It is important to
recognize the similarity between wear-
leveling algorithms and log-structured
file systems,22, 27 although the former
also move stable, unchanged data such
that their locations can absorb some of
the erase-and-write cycles.

Note that traditional disk drives do
not support more write operations,
albeit for different reasons. For
example, six years of continuous
and sustained writing at 100Mbps
overwrites an entire 250GB disk fewer
than 80,000 times. In other words,
assuming that a log-structured file
system is appropriate for RAID-5
or RAID-6 arrays, the reliability of
current flash seems comparable.
Similarly, overwriting a 32GB flash
disk 100,000 times with a sustained
average bandwidth of 30Mbps takes
about 3.5 years.

figure 1: caching and indexing page locations.

Cached

Index

Buffer

Ram

flash
memory

Cached
tracking
information

Tracking
information

52 communications of the acm | july 2009 | vol. 52 | no. 7

practice

In addition to wear leveling, we
assume that an asynchronous agent
moves stale data from flash memory
to disk and immediately erases the
freed-up space in flash memory to
prepare it for write operations without
further delay. This activity also has
an immediate equivalence in log-
structured file systems—namely, the
cleanup activity that prepares space
for future log writing. The difference
is that disk contents must merely be
moved, whereas flash contents must
also be erased before the next write
operation at that location.

In either file systems or database
systems, we assume separate
mechanisms for page tracking and
page replacement. A traditional buffer
pool, for example, provides both, but
it uses two different data structures
for these two purposes. The standard
design relies on an LRU list for page
replacement and on a hash table for
tracking pages (that is, which pages
are present in the buffer pool and
in which buffer frames). Alternative
algorithms and data structures
also separate page tracking and
replacement management.

The data structures for the
replacement algorithm are assumed
to be small and have high traffic and
are therefore kept in RAM. We also
assume that page tracking must be
as persistent as the data, including
free-space information. Thus, a buffer
pool’s hash table is reinitialized
during a system reboot, but tracking
information for pages on a persistent
store such as a disk must be stored with
the data. The tracking information may
well be cached in RAM while a volume
is active, but any changes must be
logged and written back to permanent
storage. The index required to find the
current location of a page may exist
only in RAM, being reconstructed
every time a volume is opened and the
tracking information loaded into the
cache in RAM.

As previously mentioned, we
assume page replacement on demand.
In addition, automatic policies and
mechanisms may exist for prefetch,
read-ahead, and write-behind.

Based on these considerations, we
assume the contents of flash memory
are pretty much the same, whether the
flash memory extends the buffer pool

or the disk. The central question is
therefore not what to keep in cache but
how to manage flash-memory contents
and its lifetime.

In database systems, flash memory
can also be used for recovery logs,
because its short access times permit
very fast transaction commit. However,
limitations in write bandwidth
discourage such use. Perhaps systems
with dual logs can combine low
latency and high bandwidth, one
log on a traditional disk and one
log on an array of flash chips, with a
slightly optimistic policy to consider a
transaction committed as soon as the
write operation on flash is complete.

Other hardware. In all cases, RAM
is assumed to be a substantial size,
although probably less than flash
memory or disk. The relative sizes
should be governed by the five-minute
rule.15 Note that, despite similar
transfer bandwidth, the short access
latency of flash memory compared with
disk results in surprising retention
times for data in RAM.

Finally, we assume sufficient
processing bandwidth as provided
by modern many-core processors.
Moreover, forthcoming transactional
memory (in hardware and in the
software runtime system) is expected to
permit highly concurrent maintenance
of complex data structures. For
example, page replacement heuristics
might use priority queues rather than
bitmaps or linked lists. Similarly,
advanced lock management might
benefit from more complex data
structures. Nonetheless, we neither
assume nor require data structures
more complex than those already in
common use for page replacement and
location tracking.

the five-minute Rule
If flash memory is introduced as an

intermediate level in the memory
hierarchy, relative sizing of memory
levels demands renewed consideration.

Tuning can be based on purchasing
cost, total cost of ownership, power,
mean time to failure, mean time to
data loss, or a combination of metrics.
Following Gray and Putzolu,15 this article
focuses on purchasing cost. Other
metrics and appropriate formulas to
determine relative sizes can be derived
similarly (for example, by replacing
dollar costs with energy use for caching
and moving data).

Gray and Putzolu introduced the
following formula:14, 15

BreakEvenIntervalinSeconds =
(PagesPerMBofRAM / AccessesPerSec-
ondPerDisk) × (Price-PerDiskDrive /
PricePerMBofRAM).

It is derived using formulas for the
cost of RAM to hold a page in the buffer
pool and the cost of a (fractional) disk
to perform I/O every time a page is
needed, equating these two costs, and
solving the equation for the interval
between accesses.

Assuming modern RAM, a disk drive
using 4KB pages, and the values from
Table 1 and Table 2, this produces

(256 / 83) × ($80 / $0.047) = 5,248 seconds
 ≈ 90 minutes = 1½ hours

(The “=” sign often indicates rounding
in this article.)

This compares with two minutes
(for 4KB pages) 20 years ago. If there
is a surprise in this change, it is that
the break-even interval has grown by
less than two orders of magnitude.
Recall that RAM was estimated in
1987 at about $5,000 per megabyte,
whereas the 2007 cost is about $0.05
per megabyte, a difference of five
orders of magnitude. On the other

table 3: Break-even intervals [seconds].

Page size 1KB 4KB 16KB 65KB 256KB

Ram-sata 20,978 5,248 1,316 334 88

Ram-flash 2,513 876 467 365 339

flash-sata 32,253 8,070 2,024 513 135

Ram-$400 1,006 351 187 146 136

$400-sata 80,553 20,155 5,056 1,281 337

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 53

flash memory falls
between traditional
Ram and persistent
mass storage
based on rotating
disks in terms
of acquisition
cost, access
latency, transfer
bandwidth, spatial
density, power
consumption, and
cooling costs.

hand, disk prices have also tumbled
($15,000 per disk in 1987), and disk
latency and bandwidth have improved
considerably (from 15 accesses per
second to about 100 on consumer
disks and 200 on high-performance
enterprise disks).

For RAM and flash disks of 32GB,
the break-even interval is

(256 / 6,200) × ($999 / $0.047) = 876 sec-
onds ≈ 15 minutes

If the 2007 price for flash disks
includes a “novelty premium” and
comes down closer to the price of raw
flash memory—say, to $400 (a price also
anticipated by Gray and Fitzgerald13)—
then the break-even interval is 351
seconds ≈ 6 minutes.

An important consequence is that
in systems tuned using economic
considerations, turnover in RAM is
about 15 times faster (90 minutes / 6
minutes) if flash memory rather than
a traditional disk is the next level in
the storage hierarchy. Much less RAM
is required, resulting in lower costs for
purchase, power, and cooling.

Perhaps most interesting, applying
the same formula to flash and disk
results in the following:

(256 / 83) × ($80 / $0.03) = 8,070 seconds
≈ 2¼ hours

Thus, all active data will remain in
RAM and flash memory.

Without a doubt, two hours is
longer than any common checkpoint
interval, which implies that dirty pages
in flash are forced to disk not by page
replacement but by checkpoints. Pages
that are updated frequently must be
written much more frequently (because
of checkpoints) than is optimal based
on Gray and Putzolu’s formula.

In 1987, Gray and Putzolu
speculated 20 years into the future
and anticipated a “five-hour rule”
for RAM and disks. For 1KB records,
prices and specifications typical in
2007 suggest 20,978 seconds, or just
under six hours. Their prediction was
amazingly accurate.

All break-even intervals are
different for larger page sizes (64KB or
even 256KB). Table 3 shows the break-
even intervals, including those just
cited, for a variety of page sizes and

combinations of storage technologies.
(“$400” stands for a 32GB NAND flash
drive available in the future rather
than for $999 in 2007; in fact, 32GB
SLC SATA drives are available at retail
for $400 in 2009.)

The old five-minute rule for RAM
and disk now applies to 64KB page
sizes (334 seconds). Five minutes had
been the approximate break-even
interval for 1KB in 198715 and for 8KB in
1997.14 This trend reflects the different
rates of improvement in disk-access
latency and transfer bandwidth.

The five-minute break-even interval
also applies to RAM and the expensive
flash memory of 2007 for page sizes of
64KB and above (365 seconds and 339
seconds). As the price premium for
flash memory decreases, so does the
break-even interval (146 seconds and
136 seconds).

Two new five-minute rules are
indicated with values in bold italics
in Table 3. We will come back to this
table and these rules in the discussion
on optimal node sizes for B-tree
indexes.

Page movement
In addition to I/O to and from RAM, a
three-level memory hierarchy also re-
quires data movement between flash
memory and disk storage.

The pure mechanism for moving
pages can be realized in hardware
(for example, by DMA transfer), or it
might require an indirect transfer via
RAM. The former case promises better
performance, whereas the latter design
can be realized entirely in software
without novel hardware. On the other
hand, hybrid disk manufacturers
might have cost-effective hardware
implementations already available.

The policy for page movement is
governed or derived from demand-
paging and LRU replacement. As
mentioned earlier, replacement
policies in both file systems and
database systems may rely on LRU and
can be implemented with appropriate
data structures in RAM. As with buffer
management in RAM, there may be
differences resulting from prefetch,
read-ahead, and write-behind. In
database systems these may be
directed by hints from the query
execution layer, whereas file systems
must detect page-access patterns

54 communications of the acm | july 2009 | vol. 52 | no. 7

practice

and worthwhile read-ahead actions
without the benefit of such hints.

If flash memory is part of the
persistent storage, page movement
between flash memory and disk is
similar to page movement during
defragmentation, both in file systems
and database systems. The most
significant difference is how page
movement and current page locations
are tracked in these two kinds of systems.

tracking Page Locations
The mechanisms for tracking page
locations are quite different in file
systems and database systems. In file
systems, pointer pages keep track of
data pages or runs of contiguous data
pages. Moving an individual page may
require breaking up a run. It always
requires updating and then writing a
pointer page.

In database systems, most data is
stored in B-tree indexes, including
clustered (primary, nonredundant) and
nonclustered (secondary, redundant)
indexes on tables, materialized views,
and database catalogs. Bitmap indexes,
columnar storage, and master-detail
clustering can be readily and efficiently
represented in B-trees.12 Tree structures
derived from B-trees are also used for
blobs (binary large objects) and are
similar to the storage structures of
some file systems.5, 25

For B-trees, moving an individual
page can be very expensive or very
cheap. The most efficient mechanisms
are usually found in utilities for
defragmentation or reorganization.
Cost or efficiency results from two
aspects of B-tree implementation—
namely, maintenance of neighbor
pointers, and logging for recovery.

First, if physical neighbor pointers
are maintained in each B-tree page,
moving a single page requires updating
two neighbors in addition to the

parent node. If the neighbor pointers
are logical using fence keys, only the
parent page requires an update during
a page movement.10 Figure 2 shows
such a B-tree, with neighbor pointers
replaced by copies of the separator
keys propagated to the parent node
during leaf splits. If the parent page
is in memory, perhaps even pinned
in the buffer pool, recording the new
location is rather like updating an in-
memory indirection array. The pointer
change in the parent page is logged in
the recovery log, but there is no need
to force the log immediately to stable
storage because this change is merely
a structural change, not a database
contents change.

Second, database systems log
changes in the physical database, and
in the extreme case both the deleted
page image and the newly created
page image are logged. Thus, an
inefficient implementation fills two
log pages whenever a single data page
moves from one location to another.
A more efficient implementation logs
only allocation actions and delays de-
allocation of the old page image until
the new image is safely written in its
intended location.10 In other words,
moving a page from one location (for
example, on persistent flash memory)
to another (for example, on disk)
requires only a few bytes in the database
recovery log.

The difference between traditional
file systems and database systems
is the efficiency of updates enabled
by the recovery log. In a file system,
the new page location must be saved
as soon as possible by writing a
new image of the pointer page. In a
database system, only a single log
record or a few short log records must
be added to the log buffer. Thus, the
overhead for a page movement in a
file system is writing an entire pointer

page using a random access, whereas
a database system adds a log record
of a few dozen bytes to the log buffer
that will eventually be written using
large sequential write operations.

If a file system uses flash memory
as persistent storage, moving a page
between a flash memory location and
an on-disk location adds substantial
overhead. Thus, most file-system
designers will probably prefer flash
memory as an extension to the buffer
pool rather than as an extension of the
disk, thus avoiding this overhead.

A database system, however, has
built-in mechanisms that can easily
track page movements. These mecha-
nisms are inherent in the “workhorse”
data structure, B-tree indexes. Com-
pared with file systems, these mecha-
nisms permit efficient page movement,
each one requiring only a fraction of
a sequential write (in the recovery log)
rather than a full random write.

Moreover, the database mecha-
nisms are reliable. Should a failure
occur during a page movement, data-
base recovery is driven by the recovery
log, whereas a traditional file system
requires checking the entire volume
during reboot.

checkpoint Processing
To ensure fast recovery after a system
failure, database systems use check-
points. Their effect is that recovery
needs to consider database activity only
from the most recent checkpoint, plus
some limited activity explicitly indicat-
ed in the checkpoint information. The
main effort is writing dirty pages from
the buffer pool to persistent storage.

If pages in flash memory are part
of the buffer pool, dirty pages must
be written to disk during database
checkpoints. Common checkpoint
intervals are measured in seconds or
minutes. Alternatively, if checkpoints
are not truly points but intervals, it is
reasonable to flush pages and perform
checkpoint activities continuously,
starting the next checkpoint as soon
as one finishes. With flash memory as
part of the buffer pool, many writes to
flash memory require a write to disk
soon thereafter as part of checkpoint
processing, and flash memory as the
intermediate level in the memory
hierarchy fails to absorb write activity.
Recall, this effect may be exacerbated

figure 2: a write-optimized B-tree with fence keys instead of neighbor pointers.

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 55

is 351 seconds. This is the second new
five-minute rule.

The implication of two different
optimal page sizes is that any uniform
node size for B-trees on flash memory
and traditional rotating hard disks is
suboptimal. Optimizing page sizes for
both media requires a change in buffer
management, space allocation, and
some of the B-tree logic.

Fortunately, Patrick O’Neil of the
University of Massachusetts already
designed a space allocation scheme
for B-trees in which neighboring leaf
nodes usually reside within the same
contiguous extent of pages.23 When
a new page is needed for a node split,
another page within the same extent is
allocated. When an extent overflows,
half its pages are moved to a newly
allocated extent. In other words, the

if RAM is kept small because of the
presence of flash memory.

If, on the other hand, flash memory
is considered persistent storage,
writing to flash memory is sufficient.
Write-through to disk is required only
as part of page replacement (such
as, when a page’s usage suggests
placement on disk rather than in flash
memory). Thus, checkpoints do not
incur the cost of moving data from
flash memory to disk.

Checkpoints might even be faster
in systems with flash memory because
dirty pages in RAM need to be written
merely to flash memory, not to disk.
Given the very fast random access in
flash memory relative to disk drives,
this difference might speed up
checkpoints significantly.

To summarize, database systems
benefit if flash memory is treated as
part of the system’s persistent storage.
In contrast, traditional file systems do
not have systemwide checkpoints that
flush the recovery log and any dirty
data from the buffer pool. Instead,
they rely on carefully writing modified
file-system pages because of the lack of
a recovery log protecting file contents.

Page sizes
In addition to tuning based on the
five-minute rule, another optimiza-
tion based on access performance is
sizing of B-tree nodes. The optimal
page size minimizes the time spent
on I/O during a root-to-leaf search. It
balances a short I/O (that is, the desire
for small pages) with a high reduction
in remaining search space (that is, the
desire for large pages).

Assuming binary search within
each B-tree node, the reduction in
remaining search space is measured by
the logarithm of the number of records
within each node. This measure was
called a node’s utility in our earlier
work.14 This optimization is essentially
equivalent to one described in the
original research on B-trees.3

Table 4 illustrates this optimization
for 20-byte records (typical with prefix
and suffix truncation4) and for nodes
filled at about 70%.

Not surprisingly, the optimal node
size for B-tree indexes on modern
high-bandwidth disks is much larger
than the page sizes in traditional
database systems. With those disks,

the access time dominates for all small
page sizes, such that additional byte
transfer and thus additional utility are
almost free.

B-tree nodes of 256KB are near
optimal. For those, Table 3 indicates
a break-even time for RAM and disk of
88 seconds. For a $400 flash disk and
a traditional rotating hard disk, Table
4 indicates 337 seconds or just over
five minutes. This is the first of the two
new five-minute rules.

Table 5 illustrates the same cal–
culations for B-trees on flash memory.
Because there is no mechanical seeking
or rotation, transfer time dominates
access time even for small pages. The
optimal page size for B-trees on flash
memory is 2KB, much smaller than
for traditional disk drives. In Table 3,
the break-even interval for 4KB pages

table 4: Page utility for B-tree nodes on disk.

Page size Records per page node utility access time utility/time

 4KB 140 7 12.0ms 0.58

 16KB 560 0 12.1ms 0.75

 64KB 2,240 11 12.2ms 0.90

 128KB 4,480 12 12.4ms 0.97

 256KB 8,960 13 12.9ms 1.01

 512KB 17,920 14 13.7ms 1.02

 1MB 35,840 15 15.4ms 0.97

table 5: Page utility for B-tree nodes on flash memory.

Page size Records per page node utility access time utility/time

 1KB 35 5 0.11ms 43.4

 2KB 70 6 0.13ms 46.1

 4KB 140 7 0.16ms 43.6

 8KB 280 8 0.22ms 36.2

 16KB 560 9 0.34ms 26.3

 64KB 2,240 11 1.07ms 10.3

figure 3: Pages and extents in an sB-tree.

Page 75.0

extent 75

extent 93

Page 93.0 Page 93.1

Page 75.2

Page 93.2

Page 75.3

Page 93.3

Page 75.4

Page 93.4

Page 75.5Page 75.1

56 communications of the acm | july 2009 | vol. 52 | no. 7

practice

“split in half when full” logic of B-trees
is applied not only to pages containing
records, but also to contiguous disk
extents containing pages.

Using O’Neil’s SB-trees (S meaning
sequential), 256KB extents can be the
units of transfer between flash memory
and disk, whereas 4KB pages can be the
unit of transfer between RAM and flash
memory. Figure 3 shows pages within
two extents. Child pointers in a B-tree
(also shown) refer to individual pages.
If multiple neighboring child pointers
refer to neighboring pages (as shown),
the pointer values can be represented
compactly with run-length encoding
applied not to a set of duplicate key
values but to a series of values with
constant increments. For example,
the five child pointers in extent 75.1 in
Figure 3 can be represented by the page
identifier 93.0 and the counter 5.

Similar notions of self-similar B-trees
have also been proposed for higher
levels in the memory hierarchy, for
example, in the form of B-trees of cache
lines for the indirection vector within a
large page.19 Given that there are at least
three levels of B-trees and three node
sizes now (cache lines, flash memory
pages, and disk pages), research into
cache-oblivious B-trees2 might be
promising.

Database-Query Processing
Self-similar designs apply both to data
structures such as B-trees and to algo-
rithms. For example, sort algorithms
already use algorithms similar to tradi-
tional external merge sorts in multiple
ways—to merge runs not only on disk
but also in memory, where the initial
runs are sized to limit run creation to
the CPU cache.11, 21

The same technique might be
applied three times instead of twice:
first, cache-size runs in memory are
merged into memory-size runs in
memory; second, in larger sort operations,
memory-size runs in flash memory are
merged into runs on disk; and third,
runs on disk are merged to form
the final sorted result. Read-ahead,
forecasting, write-behind, and page sizes
all deserve a new look in a multilevel
memory hierarchy consisting of cache,
RAM, flash memory, and traditional
disk drives. These page sizes can then
inform the break-even calculation for
page retention versus I/O and thus

guide the optimal capacities at each
level of the memory hierarchy.

We can surmise that a variation of
this sort algorithm will be not only
fast but also energy efficient. While
energy efficiency has always been
crucial for battery-powered devices,
research into energy-efficient query
processing on server machines is only
now beginning.24 For example, for
both flash memory and disks, energy-
optimal page sizes might well differ
from performance-optimal page sizes.

The I/O pattern of an external
merge sort is similar (albeit in the
opposite direction) to the I/O pattern
of an external distribution sort. Figure
4 illustrates how merging combines
many small files into a large file, with
many seek operations in the small files
as demanded by the merge logic, and
how partitioning divides a single large
file into many small files, with many
seek operations in the small files as
demanded by the partitioning function.
The I/O pattern of a distribution sort
is equal to that of partitioning during
hash join and hash aggregation.8 All of
these algorithms require reevaluation
and redesign in a three-level memory
hierarchy, or even a four-level hierarchy
if CPU caches are also considered.26

Flash memory with its very fast
access times may well revive interest in
index-based query execution.7, 9 Instead
of large scans and memory-intensive
operations such as sorting and hash
join, fast accesses to index pages shift
the break-even point toward index-to-
index navigation. For example, assume
a table with 100 million rows of 100
bytes and table scans at 100MB per
second. A table scan takes 100 seconds.
Searching a secondary index requires
fetching individual rows from the table.
If the table is stored on a traditional
disk, then a period of 100 seconds
permits fetching about 10,000 records.
If more than 10,000 rows satisfy the
query predicate, then the table scan is
faster. If, however, the table is stored
on a flash device, 100 seconds will
permit fetching about 500,000 records.
Thus, flash storage shifts the break-
even point between table scan and
index search from 10,000 to 500,000
rows satisfying the query predicate,
and many more query execution plans
will rely on index-to-index navigation
rather than large scans and hash joins.

the 20-year-old
five-minute rule for
Ram and disks still
holds, but for ever-
larger disk pages.
moreover, it should
be augmented by
two new five-minute
rules: one for small
pages moving
between Ram and
flash memory and
one for large pages
moving between
flash memory and
traditional disks.

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 57

figure 5: Graceful degradation with multiple levels in the memory hierarchy.

Run retained in memory sort output

Runs on disk

Runs on flash

Multiple secondary indexes for
a single table can be exploited into
index intersection, index joins, among
others. Fast access to individual
pages and records also benefits
those query execution plans. Like
secondary indexes, column stores or
more generally vertical partitioning
also require fetching records from
multiple places to assemble complete
rows. Thus, as seen in the example
of database query processing, using
flash memory in addition to or even as
replacement of traditional disks not
only forces reevaluation of optimal use
of the hardware but also means some
substantial software changes.

Record and object caches
Page sizes in database systems have
grown over the years, although not as
fast as disk-transfer bandwidth. On the
other hand, small pages require less
buffer-pool space for each root-to-leaf
search. For example, consider an index
with 20 million entries. With index pag-
es of 128KB and 4,500 records, a root-
to-leaf search requires two nodes and
thus 256KB in the buffer pool, although
half of that (the root node) can prob-
ably be shared with other transactions.
With 8KB index pages and 280 records
per page, a root-to-leaf search requires
three nodes or 24KB in the buffer pool,
or one order of magnitude less.

In traditional database architecture,
the default page size is a compromise
between efficient index search (using
large B-tree nodes as previously
discussed here and in the original B-tree
papers3) and moderate buffer-pool
requirements for each index search.
Nonetheless, the previous example
requires 24KB in the buffer pool for
finding a record of perhaps only 20 bytes,

ware techniques with the highest im-
pact on energy consumption. Note that
traditional database-query processing
relies on asynchronous I/O to reduce
response times; if the primary cost
metric for query processing is energy
consumption, asynchronous I/O has
no advantage over synchronous I/O.

Second, the five-minute rule applies
to permanent data and its management
in a buffer pool. The optimal retention
time for temporary data such as run
files in sorting and overflow files
in hash join and hash aggregation
may be different. For sorting, as for
B-tree searches, the goal should be to
maximize the number of comparisons
per unit of I/O time or per unit of energy
spent on I/O. Our initial research
and algorithm design has focused on
algorithms with graceful degradation
in sorting and for hybrid hash join
(that is, spilling memory contents to
flash only when and as much as truly
required, and similarly spilling flash
contents to disk only when and as
much as truly required). The different
optimal page sizes can be exploited to
achieve very high effective merge fan-in
and partitioning fan-out with relatively
little main memory. Figure 5 shows the
final merge step—very large runs on
disk use large pages that are buffered in
flash memory (shown as vertical boxes),
a few small runs have remained in flash

and it requires 8KB of the buffer pool for
retaining these 20 bytes in memory. An
alternative design uses large on-disk
pages and a record cache that serves
applications, because record caches
minimize memory needs yet provide
the desired data retention. In-memory
databases represent a specific form of
record caches when used as front ends
for traditional disk-based databases.

The introduction of flash memory
with its fast access latency and its small
optimal page size may render record
caches obsolete. With the large on-disk
pages in flash memory and only small
pages in the in-memory buffer pool, the
desired compromise can be achieved
without the need for two separate data
structures (such as, a transacted B-tree
and a separate record cache).

future Work
Several directions for future research
suggest themselves. First, while the
analyses in this article focused on
purchasing costs, a consideration of
other costs could capture the total cost
of ownership. A focus on energy con-
sumption, for example, could lead to
different break-even points or even en-
tirely different conclusions. Along with
CPU scheduling, algorithms for stag-
ing data in the memory hierarchy—in-
cluding buffer-pool replacement and
asynchronous I/O—may be the soft-

figure 4: merging and partitioning files.

merging

Partitioning

58 communications of the acm | july 2009 | vol. 52 | no. 7

practice

and never were merged to form very
large runs on disk (shown as horizontal
boxes), and the available RAM is used
to merge a very large number of runs
exploiting the small page size optimal
for flash devices.

Third, Gray and Putzolu offered
further rules of thumb, such as the
10-byte rule for trading memory
and CPU power. These rules also
warrant revisiting for both costs and
energy. Compared with 1987, the
most fundamental change may be
that CPU power should be measured
not in instructions but in cache line
replacements. Trading off space and
time seems like a new problem in
an environment with multiple levels
in the memory hierarchy. A modern
memory hierarchy might be very deep:
multiple levels of CPU caches, main
memory (possibly in a NUMA design),
flash devices, and finally performance-
optimized “enterprise” disks and
capacity-optimized “consumer” disks.
The lower levels may rely on various
software techniques with different
trade-offs between performance and
reliability, such as striping, mirroring,
single-redundancy RAID-5, dual-
redundancy RAID-6, log-structured file
systems, and write-optimized B-trees.

Fourth, what are the best data
movement policies? One extreme is
a database administrator explicitly
moving entire files, tables, or indexes
between flash memory and traditional
disk. Another extreme is automatic
movement of individual pages,
controlled by a replacement policy
such as LRU. Intermediate policies may
focus on the roles of individual pages
within a database or on the current
query-processing activity. For example,
all catalog pages may be moved as a

affordable, and popular based on
memory inexpensively extended with
flash memory rather than RAM? Will
they become less popular as a result of
very fast traditional database systems
using flash memory instead of (or in
addition to) disks? Can a traditional
code base using flash memory instead
of traditional disks compete with
a specialized in-memory database
system in terms of performance, total
cost of ownership, development and
maintenance costs, or time to market of
features and releases? What techniques
in the buffer pool are required to
achieve performance competitive with
in-memory databases? For example,
the upper levels of B-tree indexes
can be pinned in the buffer pool and
augmented with memory addresses
of all child pages (or their buffer
descriptors) also pinned in the buffer
pool, and auxiliary structures may
enable efficient interpolation search
instead of binary search.

Finally, techniques similar to
generational garbage collection may
benefit storage hierarchies.22 Selective
reclamation applies not only to
unreachable in-memory objects but
also to buffer-pool pages and favored
locations on permanent storage. Such
research also may provide guidance
for log-structured file systems, wear
leveling for flash memory, and write-
optimized B-trees on RAID storage.

conclusion
The 20-year-old five-minute rule for
RAM and disks still holds, but for
ever-larger disk pages. Moreover, it
should be augmented by two new
five-minute rules: one for small pag-
es moving between RAM and flash
memory and one for large pages mov-
ing between flash memory and tradi-
tional disks. For small pages moving
between RAM and disk, Gray and Put-
zolu were amazingly accurate in pre-
dicting a five-hour break-even point
two decades into the future.

Research into flash memory and
its place in system architectures is
urgent and important. Within a few
years, flash memory will be used to
fill the gap between traditional RAM
and traditional disk drives in many
operating systems, file systems, and
database systems.

Flash memory can be used to extend

figure 6: Local flash drives versus hybrid
drives in network-attached storage.

CPu + RAM

CPu + RAM

Flash disk traditional disk

traditional disk

Flash disk

unit after schema changes to facilitate
fast recompilation of all cached query
execution plans, and all relevant upper
B-tree levels may be prefetched and
cached in RAM or in flash memory
during execution of query plans relying
on index-to-index navigation. The
variety of possibilities may overwhelm
automatic policies and may require
hints or directives from applications or
database software.

Fifth, what are the secondary and
tertiary effects of introducing flash
memory into the memory hierarchy of
a database server? For example, short
access times permit a lower multi-
programming level, because only
short I/O operations must be hidden
by asynchronous I/O and context
switching. A lower multi-programming
level in turn may reduce contention for
memory in sort and hash operations,
locks (concurrency control for database
contents), and latches (concurrency
control for in-memory data structures).
Should this effect prove significant, the
effort and complexity of using a fine
granularity of locking may be reduced.
Page-level concurrency control may
also be sufficient simply as a result
of small page sizes. Similarly, in-
page data structures may require
less optimization, although some
techniques may apply to small pages
(optimized for flash) within large pages
(optimized for disks)—for example,
clustering records versus clustering
fields.1

Sixth, will hardware architecture
considerations invalidate some of
the findings and conclusions of this
article? For example, disks are currently
separated from the main processors
(for example, in network-attached
storage or storage-area networks). Will
flash devices be placed with the main
processors? If so, is it still a good idea
to use flash devices as extended disk
rather than extended buffer pool?
Figure 6 shows two of these alternatives.
In the top arrangement, questions arise
about the scope and effectiveness of
centralized storage management, the
granularity of failures and replacement,
and so on, whereas many of these
questions have much more obvious
answers in the bottom arrangement.

Seventh, how will flash memory
affect in-memory database systems?
Will they become more scalable,

practice

july 2009 | vol. 52 | no. 7 | communications of the acm 59

RAM or persistent storage. These
models are called extended buffer pool
and extended disk here. Both models
may seem viable in operating systems,
file systems, and in database systems.
The different characteristics of each
of these systems, however, will require
different usage models.

In both models, contents of RAM
and flash will be governed by LRU-like
replacement algorithms that attempt
to keep the most valuable pages in
RAM and the least valuable pages on
traditional disks. The linked list or
other data structure implementing the
replacement policy for flash memory
will be maintained in RAM.

Operating systems and traditional
file systems will use flash memory
mostly as transient memory (for
example, as a fast backup store for
virtual memory and as a secondary
file-system cache). Both of these
applications fall into the extended
buffer-pool model. During an orderly
system shutdown, the flash memory
contents must be written to persistent
storage. During a system crash,
however, the RAM-based description of
flash-memory contents will be lost and
must be reconstructed by a contents
analysis similar to a traditional file-
system check. Alternatively, flash-
memory contents can be voided and
reloaded on demand.

Database systems, on the other
hand, will employ flash memory as
persistent storage, using the extended
disk model. The current contents
will be described in persistent data
structures, such as parent pages in
B-tree indexes. Traditional durability
mechanisms—in particular, logging
and checkpoints—ensure consistency
and efficient recovery after system
crashes. Checkpoints and orderly
system shutdowns have no need to
write flash memory contents to disk,
and the pre-shutdown of flash contents
is required for a complete restart.

There are two reasons for these
different usage models for flash
memory. First, database systems rely
on regular checkpoints during which
dirty pages are flushed from the buffer
pool to persistent storage. If a dirty page
is moved from RAM to the extended
buffer pool in flash memory, it creates
substantial overhead during the next
checkpoint. A free buffer must be found

in RAM, the page contents must be
read from flash memory into RAM, and
then the page must be written to disk.
Adding such overhead to checkpoints
is not attractive in database systems
with frequent checkpoints. Operating
systems and traditional file systems,
on the other hand, do not rely on
checkpoints and thus can exploit flash
memory as an extended buffer pool.

Second, the principal persistent
data structures of databases, B-tree
indexes, provide precisely the mapping
and location-tracking mechanisms
needed to complement frequent page
movement and replacement. Thus,
tracking a data page when it moves
between disk and flash relies on the
same data structure maintained for
efficient database search. In addition,
avoiding indirection in locating a
page also makes database searches as
efficient as possible.

Finally, as the ratio of access
latencies and transfer bandwidth is
very different for flash memory and
disks, different B-tree node sizes are
optimal. O’Neil’s SB-tree exploits
two different node sizes as needed in
a multilevel storage hierarchy. The
required inexpensive mechanisms for
moving individual pages are the same
as those required when moving pages
between flash memory and disk.

acknowledgments
This article is dedicated to Jim Gray,
who suggested this research and
helped the author and many others
many times in many ways. Barb Peters,
Lily Jow, Harumi Kuno, José Blakeley,
Mehul Shah, the DaMoN 2007 review-
ers, and particularly Harumi Kuno sug-
gested multiple improvements after
reading earlier versions of this work.

References
1. Ailamaki, A., DeWitt, D.J. and hill, M.D. Data page

layouts for relational databases on deep memory
hierarchies. VLDB Journal 11, 3 (2002), 198–215.

2. Bender, M.A. Demaine, E.D. and Farach-Colton, M.
Cache-oblivious B-trees. SIAM Journal on Computing
35, 2 (2005), 341–358.

3. Bayer, R. and McCreight, E.M. Organization and
maintenance of large ordered indexes. SIGFI-DET
Workshop (1970), 107–141.

4. Bayer, R. and Unterauer, k. Prefix B-trees. ACM
Transactions on Database Systems 2, 1 (1977), 11–26.

5. Carey, M.J., DeWitt, D.J., Richardson, J.E. and Shekita,
E.J. Storage management in EXODUS. In Object-
Oriented Concepts, Databases, and Applications. W.
kim and F. Lochovsky, Eds. ACM, N.Y., 1989, 341–369.

6. Chen, P.M., Lee, E.L. Gibson, G.A., katz, R.h. and Patterson,
D.A. 1994. RAID: high-performance, reliable secondary
storage. ACM Computing Surveys 26(2): 145–185.

7. DeWitt, D.J., Naughton, J.F. and Burger, J. Nested
loops revisited. Parallel and Distributed Information

Systems (1993), 230–242.
8. Graefe, G. Query evaluation techniques for large

databases. ACM Computing Surveys 25, 2 (1993), 73–170.
9. Graefe, G. Executing nested queries. Database Systems

for Business, Technology and Web (2003), 58–77.
10. Graefe, G. Write-optimized B-trees. VLDB Journal

(2004), 672–683.
11. Graefe, G. Implementing sorting in database systems.

ACM Computing Surveys 38, 3 (2006), 69–106.
12. Graefe, G. Master-detail clustering using merged

indexes. Informatik–Forschung und Entwicklun, 2007.
13. Gray, J. and Fitzgerald, B. 2007. Flash disk opportunity

for server-applications; http://research.microsoft.
com/~gray/papers/FlashDiskPublic.doc.

14. Gray, J., Graefe, G. 1997. The five-minute rule ten
years later, and other computer storage rules of
thumb. SIGMOD Record 26, 4 (1997), 63–68.

15. Gray, J. and Putzolu, G.R. The 5-minute rule for
trading memory for disk accesses and the 10-byte
rule for trading memory for CPU time. SIGMOD
Journal (1987), 395–398.

16. härder, T. Implementing a generalized access path
structure for a relational database system. ACM
Transactions on Database Systems 3, 3 (1978), 285–298.

17. hamilton, J. An architecture for modular data centers.
In Proceedings of the Conference on Innovative Data
Systems Research, 2007.

18. härder, T. and Reuter, A. Principles of transaction-
oriented database recovery. ACM Computing Surveys
15, 4 (1983), 287–317.

19. Lomet, D.B. The evolution of effective B-tree page
organization and techniques: a personal account.
SIGMOD Record 30, 3, 64–69.

20. Larus, J.R. and Rajwar, R. Transactional Memory.
Synthesis Lectures on Computer Architecture. Morgan
& Claypool, 2007.

21. Nyberg, C., Barclay, T., Cvetanovic, z., Gray, J. and
Lomet, D.B. AlphaSort: A cache-sensitive parallel
external sort. VLDB Journal (1995), 603–627.

22. Ousterhout, J.k. and Douglis, F. Beating the I/O
bottleneck: A case for log-structured file systems.
Operating Systems Review 23, 1 (1989), 11–28.

23. O’Neil, P.W. The SB-tree: An index-sequential structure
for high-performance sequential access. Acta
Informatica 29, 3 (1992), 241–265.

24. Rivoire, S., Shah, M., Ranganathan, P. and kozyrakis, C.
JouleSort: A balanced energy-efficiency benchmark.
SIGMOD Record, 2007.

25. Stonebraker, M. Operating system support for database
management. Commun. ACM 24, 7 (July 1981), 412–418.

26. Shatdal, A., kant, C. and Naughton, J.F. Cache-
conscious algorithms for relational query processing.
VLDB Journal (1994), 510–521.

27. Woodhouse, D. JFFS: The Journaling Flash File
System. Ottawa Linux Symposium, Red hat Inc., 2001.

 Related articles
 on queue.acm.org

Flash Storage Today

Adam Leventhal
http://queue.acm.org/detail.cfm?id=1413262

Flash Disk Opportunity
for Server Applications

Jim Gray, Bob Fitzgerald
http://queue.acm.org/detail.cfm?id=1413261

Enterprise SSDs
Mark Moshayedi, Patrick Wilkison
http://queue.acm.org/detail.cfm?id=1413263

Goetz Graefe (Goetz.Graefe@hP.com) joined hewlett-
Packard Laboratories after seven years as an academic
researcher and teacher followed by 12 years as a product
architect and developer at Microsoft. he was recently
named an hP Fellow. his Volcano research project
was awarded the 10-year Test-of-Time Award at ACM
SIGMOD 2000 for work on query execution.

An earlier version of this article was originally published
in Proceedings of the Third International Workshop on
Data Management on New Hardware (June 15, 2007),
Beijing, China.

© 2009 ACM 0001-0782/09/0700 $10.00

