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Abstract 

tncreased Interest In using workstatlons and small processors for 
distnbuted transaction processing raises the question of how to 
Implement the logs needed for transactron recovery Although 
logs can be rmplemented wrth data wntten to duplexed disks on 
each processing node, this paper argues there are advantages tf 
log data is wntten to multtple log server nodes A simple analysts 
Of expected loggrng loads leads to the conclusion that a hrgh 
performance, microprocessor based processing node can 
Support a log server if it uses efficient communication protocols 
and low IateflCy, non volatile storage to buffer log data The buffer 
IS needed to reduce the processing time per log record and to 
Increase throughput to the logging disk An interface to the log 
servers usmg simple, robust, and efficient protocols IS presented 
Also described are the disk data structures that the log servers 
use This paper concludes with a brief dkscusslon of remammg 
design issues, the status of a prototype Implementatron, and plans 
for its completion 

1 Introduction 
Drstrrbuted transaction processing IS of mcreasmg Interest, both 

because transactions are thought to be an important tool for 

burldmg many types of distributed systems and because theie are 

increasing transaction processing performance requrrements 

Dlstnbuted transaction systems may compnse a collecbon of 

workstatrons that are widely scattered or a COlleCtIOn Of 

processors that are part of a mulbcomputer, such as a Tandem 

system [Bartlett 811 

Most transaction processing systems use loggmg for 

recovery[Gray 781, and the question arises as to how each 

processmg node should log its data This question IS COmPleX 

because log records may be written very frequently, there may be 
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very large amounts of data (e g , megabytes/second), the log must 

be stored very reliably, and log forces must occur with little delay 

In some environments, the use of shared loggmg facrktres could 

have advantages in cost, performance, survrvabrlrty, and 

operations Cost advantages can be obtained If expensive logging 

devices can be shared For example, In a workstatron 

environment, it would be wasteful to dedicate duplexed disks and 

tapes to each workstation Performance can be Improved 

because shared facrkties can have faster nardware than could be 

afforded for each processing node Sutvrvabrlrty can be better for 

shared facilities, because they can be specially hardened, or 

replicated in two or more locations Rnally, there can be 

operattonal advantages because tt IS easier to manage high 

volumes of log data at a small number of logging nodes, rather 

than at all transaction processing nodes These benefits are 

accentuated in a workstahon environment, but the benefits might 

also apply to the processing nodes of a multlcomputer 

This paper continues by descnbmg the target environment for 

distributed logging servrces Section 3 presents an algorithm for 

replicatmg logs on multiple server nodes and analyzes the 

availabrkty of replicated logs The desrgn of server nodes IS 

addressed In Section 4 The paper concludes with a description 

of addmonal design Issues and the status of a prototype log server 

implementation 

2. Target Environment 
The distributed logging services described in thus paper are 

designed for a local network of high performance microprocessor 

based processing nodes We anticipate processor speeds of at 

least a few MIPS Processing nodes might be personal 

workstatrons, or processors In a transaction processing 

multlcomputer In either case, processing nodes may have only a 

single drsk (or possibly no dtsk), but a large mam memory of four 
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to sixteen megabytes - or more Log server nodes use either 

hrgh capaclty drsks and tapes, or wrote once storage such as 

optrcal drsks 

The network that mterconnects processmg nodes and servers 1s 

a high speed local area network Because processmg nodes 

depend on bemg able to do logging, network farlures would be 

drsastrous Hence, the network should have mulhple physrcal 

links to each processing node One way to achreve rekabrlrty IS to 

have two complete networks, including two network interfaces m 

each processmg node Use of the logging services described in 

thus paper will generate a large amount of network traffic and 

special local networks havmg bandwtdth greater than 10 

megabits/second may be necessary m some mstances 

The types of transactrons executed by the system will vary, 

depending on the nature of the processmg nodes Nodes 

compnsmg a multmomputer might execute short transactions like 

the ET1 transactron [Anonymous et al 851 Workstation nodes 

might execute longer transachons on design or office automation 

databases These long runnmg transachons are likely to contam 

many subtransactions or to use frequent save points 
Unkke the parallel loggmg architecture proposed by Agrawal 

and Dewitt [Agrawaf 35, Agrawaf and DeWrtt 851, distributed 

logging IS Intended to permit mulhple transactron processors to 

share loggrng dtsks, rather than to accommodate a hrgh volume of 

log data generated by a single (mulh processor) transaction 

processor Of course, several drstnbuted log servers may operate 

rn parallel m a drstnbuted environment that generates a large 

volume of log data 

3 Rephated Logging 
Transaction facdmes typrcally Implement recovery logs by 

wntmg data to multiple disks having independent farlure 

modes [Gray 731 If logs are implemented usmg network servers, 

it IS possrble to write multrple copies of log data on separate 

servers, rather than on multtple disks at a smgle server There are 

at least four advantages to replicating log data usmg multiple 

servers 

First, server nodes become simpler and less expenswe, because 

they do not need multrple logging disks and controllers The 

number of disks and controllers that can be attached to a small 

server node IS often km&d, so this consrderatron can be important 

in practice 

Second, repkcatmg log data using multrple servers decreases 

the data’s vulnerability to loss or corruptron Separate servers are 

less likely to have a common failure mode than a single server with 

multrple disks In particular, the distance between log servers 

mterconnected with local network technology can be much higher 

than the distance between disks on a single node, hence, log data 

rephcated on multrple servers would survrve many natural and 

man made dtsasters that would destroy log data rephcated on a 

single server 

Third, replicating log data using multiple servers can increase 

the avarlabrlity of the log both for normal transaction processing 
and for recovery atter clrent node farlures An analysis given in 

Section 3 2 shows that availabMy for normal processing in 

parhcular can be very greatly improved Any mdivrdual server can 

always be removed from the network for servrcmg without 

mterruptmg normal transaction processing, and In many cases 

without affecting client node failure recovery 

Finally, the use of multrple servers rather than mulhple d&s on 

one server offers more flexrbilrty when confrgurmg a system 

Clients can choose to Increase the degree of rephcation of their 

log data The opportunity also exists to trade normal processmg 

avarlabrkty for node recovery availabllrty by varying the parameters 

to the repkcated log algorithm described below 

3 1 Rephcated Log Technique 

A replicated log IS an Instance of an abstract type that IS an 

append only sequence of records Records In a replicated log are 

rdentrfmd by Log Sequence Numbers (LSNs), which are increasing 

integers A replicated log IS used by only one transactron 

processmg node The use by a single client only permits a 

rephcatron technique that IS simpler than those that support 

multrple clients The data stored m a log record depends on the 

precme recovery and transaction management algorithms used by 

the client node 

There are three mafor operations on repkcated logs, though 

rmplementatrons would have a few others for reasons of 

effrcrency The Wrt teLog operation takes a log record as an 

argument, writes It to the log, and returns the LSN associated wrth 

that record Consecutrve calls to Wrl teLog return increasing 

LSNs The ReadLog operation takes an LSN as an argument and 

returns the correspondmg log record If the argument to ReadLog 

IS an LSN that has not been returned by some preceding 

WrlteLog operatron, an exception IS signaled The EndOfLog 

operation IS used to determine the LSN of the most recently 

written log record Thus repltcatton technique could be used to 
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Server 1 
LSH Epoch Present 

1 1 Yes 

2 1 yes 

3 1 Yes _ 

3 3 Ye* 

4 3 no 

6 3 Yes 

6. 3 yes 

Server 2 
LSN Epoch present 

7-Tl-T 

2 t Yes 

3 1 Yes 

6 3 Yes 

7 3 yes 

Figure 3-1 Three log server nodes 

Implement other useful log operations 

The replicated log algorithm described in this section IS a 

speclahzed quorum consensus algorithm [Glfford 79, Daniels and 

Spector 83, Bloch et al 86, Herlihy 841 that exploits the fact that a 

replicated log has only a smgle client A replicated log uses a 

collection of M log server nodes, with each client’s log record 

being stored on N of the M log servers For cost reasons, log 

servers may store portions of the replicated logs from many 

clients Like the available copies rephcatlon algorithm [Bernstem 

and Goodman 941, this algorithm permits read operahons to use 

only one server Concurrent access and network partitions are 

not concerns because a rephcated log IS accessed by only a 

single client process 

Wrl teLog operations on a replicated log are Implemented by 

sendmg log records to N log servers The smgle logging process 

on the client node caches information about what log servers 

store log records so that each Readlog operation can be 

implemented with a request to one log server When a client node 

IS restarted after a crash, It must mltlallze the cached information 

Naturally, the algorithm cannot require the use of an underlymg 

transaction faclhty To ensure that any Wr I teLog operation that 

was interrupted by the client’s crash IS performed atomlcally, this 

replication technique uses addlttonal fields in log records stored 

Server 3 
LSN Fpoch present 

3 3 WI 

4 I 3 I”0 

?EEF 

9 3 yes 

on log servers (as described m Section 3 1 1) and the client node 

mltiallzatlon procedures described m Section 3 1 2 

3 1 1 Log Servers and their Operations 

Log servers Implement an abstractlon used by the rephcatron 

algorithm to represent mdlvldual copies of the rephcated log In 

addltlon to the log data and LSN, log records stored on log servers 

contam an epoch number and a boolean present flag mdlcatmg 

that the log record IS present m the replicated directory Epochs 

are non decreasmg integers and all log records wrltten between 

two client restarts have the same epoch number If the present 

flag IS false, no log data need be stored The present flag will be 

false for some log records that are wntten as a result of the 

recovery procedure performed when a client IS restarted 

Successive records on a log server are written with non 

decreasing LSNs and non decreastng epoch numbers A log 

record IS uniquely ldentlfred by a <LSN, Epoch> pair Log servers 

group log records Into sequences that have the same epoch 

number and consecutive LSNs For example, Server 1 in Figure 

3 1 contams log records in the intervals (<l,l> <3,1>) and 

(<3,3> <9,3>) 

Log servers implement three synchronous operations to support 

repllcated logs ’ Unlike the Wrl teLog operation on replicated 

logs, the ServerWrl teLog operation takes the LSN, epoch 

‘The operatmns are presented ln a slmpllfled way here, a more reakstlc lntertace that supports error recovery and the blockmg of multiple log operations ,nto 

a smgle server operation IS descnbed m Section 4 2 

a4 



Server 2 Server 3 Server 1 
LSN Fpoch Present 

1 1 Yes 

I I I I 

6 3 Yes 

6 3 Yes 

7 3 yet 

6 3 yes 

9 3 yes 

LSN Epoch present 

1 1 Yes 

2 1 Yes 

3 I yes 

6 3 yes 

7 3 yes 

J 

LSN Epoch Present 

3 3 Yet 

4 3 “0 

‘le=i+fy 
9 3 Yes 

10 3 yes 

L 

Flgu re 3-2 Three log server nodes with log record 10 parhally wntten 

number, and present flag for the record as arguments (along wtth 

thedata) The ServerReadLog operation returns the present flag 

and log record with highest epoch number and the requested 

LSN A log server does not respond to ServerReadLog requests 

for records that It does not store, but It must respond to requests 

for records that are stored, regardless of whether they are marked 

present or not The Interval List operation returns the epoch 

number, low LSN, and high LSN for each consecutive sequence of 

log records stored for a client node Interval Li st IS used when 

restarting a client node 

3 1 2 Rephcation algorithm 

A replicated log IS the set of <LSN,Data> pairs in all log servers 

such that the log record IS marked present and the same LSN 

does not exist with a higher epoch number The replication 

algorithm ensures that the replicated log can be read or written 

despite the failure of N- 1 or fewer log servers The replicated log 

shown m Figure 3 1 consists of records in the intervals 

(<l,l> <2,1>), (<3,3>), and (<5,3> <9,3>) Each of these records 

appears on N = 2 log servers 

Like other quorum consensus algorithms, the correctness of this 

algorithm depends on having a non empty intersection among the 

quorums used for different operations That IS, If there are M total 

nodes and the ckent writes to N of them, with M > N, ReadLog 

performed with expltctt voting will always require 2 or more 

ServerReadLog operations Yet M must be greater than N to 

provide high avallabikty for Wr 1 teLog To permit ReadLog 

J 

operations to be executed usmg a smgle ServerReadLog, this 

repkcahon algortthm caches enough information on each client 

node to enable the client to determme which log servers store 

data needed for a particular ReadLog operation 

Client nodes mihakze their cached mformatton when they are 

restarted by receiving the results of IntervalList operations 

from at least M - N + 1 log servers Thrs number guarantees 

that a merged set of interval lists will contain at least one server 

storing each log record In mergmg the interval lists, only the 

entries with the highest epoch number for a parhcular LSN are 

kept In effect, this replication algorithm performs the voting 

needed to achieve quorum consensus for all ReadLog operations 

at client node mmakzabon trme That IS, EndOf Log operahons 

return the high value in the merged Interval kst and ReadLog 

operations use the lrst to determme a server to which to direct a 

ServerReadLog operation If the requested record IS beyond the 

end of the log or if the log record returned by the ServerReadLog 

operation IS marked not present, an excephon IS signaled 

When a cltent IS mmakzed It must also obtam a new epoch 

number for use with ServerWr 1 teLog operations Thrs epoch 

number must be higher than any other epoch number used during 

the previous operabon of this client Appendix I describes a 

simple method for lmplementmg an rncreasmg umque ldenhfier 

generator that can be used to assign epoch numbers and IS 

rephcated for high availability 
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Server 1 
I 

LSN Epoch present 

I I II 

3 3 yes 

4 3 no 

5 3 Yes 

6 3 Yes 

7 3 Yes 

6 3 yes 

9 3 Yes 

9 4 YES 

to 4 no 

Server Server 2 2 
LSN LSN Epoch Epoch Present Present 

17-r-J-r 17-r-J-r 

2 2 1 1 yes yes 

3 3 1 1 Yes Yes 

6 6 3 3 yes yes 

Server 3 
ISN Epoch PreSenl 

1 

1 3 no 

E&E 

5 3 Yes 

6 3 es 

9 3 Yes 

10 3 yes 

Figure 3 3 Three log server nodes after execution of crash 
recovery procedure when Server 3 IS unavailable 

The Wr I teLog operation asslgns an LSN by Incrementing the 

highest LSN in the merged interval list and performs 

ServerWrrteLog operations on N log sewers If a server has 

received a log record In the same epoch with an LSN lmmedlately 

preceding the sequence number of the new log record, It extends 

Its current sequence of log records to include the new record, 

otherwise it creates a new sequence To prevent large numbers of 

separate sequences from bemg created, clients should attempt to 

perform consecutive writes to the same servers However, a chent 

can switch servers when necessary 

The Wr I teLog operation IS not atomic and a client node crash 

can result in a sltuatlon where ServerWrl teLog operations for 

some log record have been performed on fewer than N log 

servers In such a situation, client lnitiallzatlon might not gather 

an interval list contammg the LSN for the partially written log 

record Figure 3 2 shows a rephcated log with log record 10 

partially written If Servers 1 and 2 were used for client 

mitiallzation, then the transaction system recovery manager would 

not read log record 10 during recovery, but if Server 3 were 

included then record 10 would affect recovery 

When a client node IS mltlallzed It IS necessary to ensure that the 

log write that was occurnng at the hme of the crash appears 

atomic to users of the replicated log Because log writes are 

synchronous, there IS at most one log record that has been written 

to fewer than N log servers If such a record exists, the Wr i teLog 

operation can not have completed and the transaction processing 

node cannot have depended on whether the operation was 

successfully or unsuccessfully performed Therefore, the log 

lepllcatlon algorithm may report the record as existing or as not 

existing provided that all reports are consistent 

Since there IS doubt concerning only the log record with the 

highest LSN, It IS copied from a log server storing it (using 

ServerReadLog and ServerWrlteLog) to N log servers The 

record IS copled with the client node’s new epoch number 

Copying this log record assures that if the last record were 

partially written, It would subsequently appear in the interval lists 

of at least N log servers Finally, a log record marked as not 

present IS written to N log servers with an LSN one higher than that 

of the copied record This final record has an epoch number 

higher than that of any copy of any parttally written record and 

hence a partially wntten record with the same LSN WIII not be kept 

when Interval lists are merged in any subsequent client 

lmtlallzatlon Figure 3 3 shows the replicated log from Figure 3-2 

after execution of this procedure using Servers 1 and 2 * 

2 
The careful reader will notlce that log record 4 only appears as marked not present m Figures 3 I, 3 2 and 3 3 

usmg Servers 1 and 3 
This resulted from a prevtous chent restart 



The ckent mthakzahon procedure IS not atomic A log record 

can be partially copied, and the log record marked not present 

can be partlally written However, the procedure IS restartable in 

that the client’s recovery manager will not act on any log records 

prior to the completion of the recovery procedure Once the 

recovery procedure completes, Its effects are persistent 

3 2 The Availabrhty of Rephcated Logs 

Avarlablllty IS a crmcal issue whenever an essential resource IS 

provided by a network server With logs that are repkcated using 

the previously described algonthm, there IS the opportumty to 

trade the avadabrktres of different operations In particular, 

Wr I teLog operations can be made more available by adding log 

servers, though this does decrease the avallabllrty for ckent node 

restart Smce writmg log data IS a much more common operahon 

than node restart, this may be a reasonable trade off 

The availabllrty of ReadLog operatrons depends on N and the 

avallabdrty of the servers storing the desired log record The 

availability of the repkcated log for WriteLog operations and 

client process mitiakzahon depends on both M and N and on the 

avallabrlrty of log servers 

Assuming that log server nodes fail independently and are Client mmakzatlon availabllrty decreases as log servers are 

unavailable wtth probablktyp, then the probability that a replicated added, because almost all servers must be available to form a 

log will be avarlable for Wrl teLog operatrons IS simply the quorum In the case used as an example above, four of the five 

probabllrty that M-N or fewer log servers are unavarlable log servers must be available for ckent mmakzatlon This occurs 

simultaneously Thrs probabrkty IS given by with a probability of about 0 95 

2$yY)PYl--PF’ Similarly, the probabtkty that a replicated 

log will be available for ckent mmalization3 IS given by 

g--l rY)P’U - PY’ The probability that a replicated log WIII be 

available for readmg a particular log record IS l-pN 

In practice, the parameter N IS constrained by performance and 

cost conslderatlons to having values of two or three Thus, users 

of replicated logs must select values of M to provide some 

minimum avallabrkty for client restart Figure 3 4 shows the 

expected availabrkttes for Wr i teLog operations and client 

mmakzatlon of varrous confrgurahons of replicated logs under the 

assumphon that individual servers are unavailable Independently 

with p = 0 05 probability 

As log servers are added (M IS increased), Wr I teLog availability 

approaches unity very quickly For example, consider the case of 

dual copy repkcated logs (I e N = 2) and M = 5 log servers For 

Wr I teLog operatrons to be unavatlable m this model, at least four 

of the five servers must be down due to independent failures 

Response to Wr I t eLog operations may degrade, as fewer servers 

remain to carry the load, but such failures WIII hardly ever render 

Wr i teLog operatrons unavarlable 

*loo- h 

9 
: 95. 
P 
q 

90. 

85 - 

* * W&Log Avallablhty, N = 2 
80. 0 +J - WrwLog AvallabMy, N = 3 

- Client lmttakatlon Avallabtllty, N = 2 
+ - 3 Cltent lnltlallzatton Avatlablldy, N =3 

75- 
0 2 4 6 

, 
8 10 72 14 16 

M (Number of replrcated log servers) 

Figure 3 4 Availabrllty of Replicated Logs with 
Probability of lndivldual Log Server Avallablllty 0 95 

3The probabihty that the replIcated log wll be avaIlable for cflent mltlallratmn also depends on the availabdlty of the replIcated mcreasmg umque ldentlfler 
generator used for obtammg a new epoch number Appendix I gwes the avallablhty of repkated unque ldentlfler generators Representatwes of a repllcated 

fdenttfler generators stale wll normally be Implemented on log server nodes and typtcal conflgurattons wll reqwre fewer representatwes than log servers for 
client mltlaltzabon Thus the avallablllty of the repkated time ordered umque ldentlfler generator does not lmxt the avallablhty of repkated logs 
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For applrcatrons where survrvabrlrty IS extremely Important, or 

clrent rnmalrzatron avadabrltty IS extremely Important, triple copy 

logs can be used With five log servers and triple copy replicated 

logs, avarlabrlrty for both normal processtng (Wrl telog) and 

client initiakzation IS about 0 999 

Certainly, replrcated logs provide much higher avarlabrlrty than a 

single log server that stores multiple copres of data If only a 

single server were used, then ReadLog, WriteLog and cltent 

mmalrzatron would be avarlable with probabrlrty 095 Wrth dual 

copy replicated logs, 0 95 or better avarlabrlrty for client 

mitraltzatron would be achieved using up to M = 7 log servers, and 

Wrl teLog and ReadLog operations would be almost always 

available 

The above analysrs predicts the instantaneous avarlabrlrty of 

replicated logs for client process inrtralizatron In practice, M-N+1 

log servers do not have to be simultaneously available to mltralrze 

a client process The client process can poll until It receives 

responses from enough servers to find the sites that store Its log 

records Predrctmg the expected time for client process 

mitializatton to complete requires a more complicated model that 

includes the expected rates of log server failures and the expected 

times for reparr 

4 Log Server Design 
Desrgnmg high performance servers to implement replicated 

logs requires determining the server hardware that IS needed, the 

communication protocol for accessmg a server, and the 

representation of log data Naturally, tt IS desirable to provrde a 

sample design while stall dekvenng good performance 

Performance IS measured by the time requrred to perform an 

operation on the log server, and the number of operations per 

second that a log server can handle 

This section begins with a simple analysis of the capacity 

requirements for log servers The analysis provides a concrete 

basis for many design decrsrons Next, the ckent Interface to log 

servers and the protocols used for accessmg them are described 

The last aspect of log server design addressed in detarl In this 

paper IS the representatron of log data on the server Section 5 

describes additronal Issues not treated in thus paper 

4 1 Log Server Capacity Requrrements 

The goal of thus analysis IS to understand what occurs In a 

distributed transactron processmg system that IS executmg a 

heavy load In parhcular, it IS important to determme the rate of 

calls to each fog server, the total data volume logged In the whole 

system and On each log server, and the frequency wrth whrch data 

must be forced to drsk Such an analysrs also leads to an 

understandmg of which resources become saturated first Once 

bottlenecks are exposed, server designs that reduce contentron 

for these resources can be explored 

For simplrcrty, we have chosen to analyze a load generated by a 

single transaction mix that we understand well The load IS 

generated by a collection of fifty client nodes of the capacity 

described in Section 2 with service provided by SIX log servers 

Client nodes write log data to two log servers and are assumed to 

execute ten local ET1 [Anonymous et al 851 transactions per 

second, thus provrdmg an aggregate rate of 500 TPS We chose 

this target load, not so much because we thought it would be 

representatrve of workstatron loads, but because we knew that It 

was an ambmous load in excess of that being supported on any 

distributed system currently In use 

Each ET1 transaction in the TABS prototype [Spector et al 

65a, Spector et al 85b] transaction processing system writes 700 

bytes of log data in seven log records Only the final commrt 

record written by a local ET1 transaction must be forced to disk, 

preceding records are buffered in virtual memory until a force 

occurs or the buffer fills 

If each log record were written to log servers with mdrvrdual 

remote procedure calls (RPCs) each log server would have to 

process about 2400 incoming or outgoing messages per second, 

a load that IS too high to achieve easily on moderate power 

processors Fortunately, recovery managers commonly support 

the grouping of log record writes by provrdmg different calls for 

forced and buffered log writes The client interface to log servers 

must be designed to exploit grouping in a srmrlar way, this permits 

log records to be stored on a client node until they are eXpllCrtly 

forced by the recovery manager 

In the target load, only one log write per transaction needs to be 

forced to disk, thus, groupmg log records until they need to be 

forced reduces the number of RPCs by a factor of seven Stall, 

each server must process about 170 RPCs per second Many 

researchers have demonstrated that low level rmplementatrons 

are very important for good RPC performance [Nelson 81, Spector 

82, Burell and Nelson 841 In particular, simple, error free RPCs 

should be performed using only a smgle packet for each request 

and reply If thus objective IS met, and if the network and RPC 

implementation processing can be performed m one thousand 

88 



InstructIons per packet, then communtcahon processmg WIII 

consume less than ten percent of log server CPU capacity 

Fifty client nodes, each using two log servers, ~111 generate 

around seven million total bits per second of network traffic With 

the use of mulhcast, this amount would be approximately halved 

This load could saturate many local area networks However, two 

networks are needed for avarlabillty reasons, and together they 

could support the load Higher speed, typically hberoptlc, 

networks havmg a bandwidth of approximately 100 

megabits/second are becommg more prevalent [Kronenberg 861, 

and they could be substituted 

Log servers WIII frequently encounter back to back requests, 

and SO must have sophlshcated network interfaces that can buffer 

multlple packets Client nodes wtll wish to send requests to 

different servers In parallel, and so client nodes must also be able 

to recetve back to back (response) packets 

Although message processing IS not likely to be a bottleneck for 

log servers, performmg 170 writes to non volatile storage per 

second could easily be a problem 4 Certamly, It IS mfeaslble to 

perform seeks to different flies for writes to different logs, instead 

records from different logs must be Interleaved In a data stream 

that IS wntten sequentially to disk 

However, the rotatlonal latencles would still be too high to permit 

each request to be forced to disk Independently Waltlng for 

requests to accumulate could delay responses, IncreasIng lock 

contentlon and system response time Using addihonal disks to 

dlstnbute writes Increases the cost and COmplexltY of log servers 

To provide acceptable logging performance with a small number 

of disks, log servers should have low latency, non vofatlle buffers 

so that an entire track of log data may be written to disk at once 

There are several technologies that may be used for Constructing 

such a buffer, mcludmg CMOS memory with a battery for backup 

power Issues In designing such a buffer device are described In 

Section !j I If two thousand mstructlons are used to Process the 

log records m each message and to copy them to low latency 

non volatile memory, and If writing a track to disk requires an 

additional two thousand mstructlons, then even with small track 

sizes only ten to twenty percent of a log server’s CPU capacity will 

be used for writing log records to non volatile Storage Disk 

utlllzntlon will be higher close to fifty percent for slow disks with 

small tracks The addltlonal disk utlllzatlon Induced by read 

operations IS dtfflcult to predict because it depends on the 

frequency of reads anu on whether reads are mainly for sequential 

log records The use of local caches for processing transaction 

aborts, as described m SectIon 52, means that server read 

operations will be used mainly for node restart and media recovery 

processing 

With this target load, approximately ten bllllon bytes of log data 

will be written to each log server per day Current technology 

permits the storage of this much data onlme, so that simple log 

space management strategies could be used For example, 

database dumps could be taken daily, and the onlme log could 

simply accumulate between dumps However, storage for this 

much log data would dominate log server hardware costs It may 

be desirable for cost, performance, or rellabMy reasons to used 

more sophlshcated checkpomtmg and uumpmg strategies to limit 

toe online log needed for node or media recovery as Secbon 5 3 

discusses 

To summarize, this capacity analysis has exposed several 

important points for log server design First, clients must access 

log servers through interfaces whtch group together multlple log 

records and send them usmg specialized low level protocols 

Second, multiple high bandwidth networks must be used and 

network interfaces must be capable of receiving back to back 

packets Third, log records from multiple clients must be merged 

into a single data stream that IS buffered on a special low latency 

non volatile storage device and then written to disk a track at a 

time Finally, the volume of log data generated, while large, IS not 

so great as to require complicated processing simply to reduce 

online log storage requirements If these points are taken into 

account, it should be possible to achieve acceptable performance 

from servers Implemented using the same processors as client 

nodes 

4 2 Log Server Interfaces and Protocols 

The preceding section demonstrated that the Interfaces and 

protocols used to access log servers must be carefully deslgned 

to avoid bottlenecks First, the interface must transfer multlple log 

records in each network message to reduce the number of 

messages that must be processed Second, the interface must be 

implemented using specialized protocols, rather than being 

layered on top of expensive general purpose protocols 

Addmonally, the protocols used for accessmg log servers should 

permit large volumes of data to be written to the server efficiently 

leecause power failures are hkely to baa common fanlure mode for log servers, It IS not acceptable to buffer log data tn volatile storage 
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Asynchronous Messages from Client to Log Server 

WriteLog(IN CllentId, EpochNum, LSNs, LogRecords) 

ForceLog(IN ClIentId, EpochNum, LSNs, LogRecords) 

NowInterval(IN ClientId, EpochNum, StartingLSN) 

Asynchronous Messages from Log Server to Client 

NewHlghLSN(IN NewHighLSN) 

fdissingInterval(IN MissingInterval) 

Synchronous Calls from Chent to Log Server 

IntervalLlst(IN ClIentId, OUT IntervalLlst) 

ReadLogForward(IN ClientId, LSN. OUT LSNs, LogRecords, PresentFlags) 

ReadLogBackward(IN ClIentId, LSN, OUT LSNs, LogRecords, PresentFlags) 

CopyLog(IN ClientId, EpochNum. LSNs, LogRecords, PresentFlags) 

InstallCoples(IN ClientId, EpochNum) 

Figure 4-l Client Interface to Log Servers 

The need for streammg IS not well dlustrated by ET1 transactions, 

but It IS important for transactlons that update larger amounts of 

data 

Extra care must be taken to make the low level protocols robust 

Lost or delayed messages must be tolerated, and recovery from 

server failures must be possible ReaBstlcally, remote logging WIII 

only be feasible when local area networks are used, hence, the 

protocols should exploit the inherent rellablhty of local area 

networks and use end to end error detection and 

correctlon [Saltzer et al 841 to ehmmate the expense of redundant 

acknowledgments and error detection 

Simplicity, both in specification and implementation, IS an 

additional desirable property for the interface to a log server 

RPCs possess this property and they can be implemented very 

?h?mthy ‘bfnrf~mrdd~y, TKTl; -dts nhrtmft~y syn-&nvnau% -&i 

do not permit the eff crent streaming of large amounts of data 

The Interface presented here Includes strict RPCs for infrequently 

used operations, such as for reading log records, and 

asynchronous messages for wnhng and acknowledging log 

records 

Figure 4 1 shows RPC and message header definitions for the 

log server and client interface This Interface differs from the 

abstract operations defined on log servers In Section 3 1 because 

of the support for transmission of mulhple log records in each call, 

streaming of data to log servers, and error detection and recovery 

To establrsh communrcahon with a log server, a client imtiates a 

three way handshake Both client and server then marntam a 

small amount of state while the connection IS active This allows 

packets to contain permanently unique sequence numbers, and 

permits duphcate packets to be detected even across a crash of 

the recelvmg node All calls participate in a movmg window flow 

control strategy at the packet level An allocation inserted in every 

packet specifies the highest sequence number the other party IS 

permitted to send without waiting Deadlocks are prevented by 

allowing either party to exceed its allocatron, so long as rt pauses 

several seconds between packets to avold overrunning the 

receiver Each party attempts to supply the other with unused 

allocation at all times This connection establishment and flow 

t&rrdm&nanmn &uaseb on a niroridi oy VQarsonlt+arson%j 

The Wr rteLog and ForceLog messages, and the 

ReadLogForward, and ReadLogBackward calls transmit multiple 

log records Client processes and log servers attempt to pack as 

many log records as will fit in a network packet in each call The 

ReadLogForward and ReadLogBackward calls differ as to 

whether log records wtth log sequence number (LSN) greater or 

less than the Input LSN are used to fill the packet The 

IntervalList call IS used when a client IS mltlahzed as 
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described m Section 3 1 The Input parameter to this call IS a 

chent ldentmer and the output IS a list of intervals of log records 

stored by the server for that client 

Multlple Wr 1 teLog operahons on a distributed log are grouped 

together by the client and records are streamed to log servers 

asynchronously Error detectton and recovery IS based on 

requested positive acknowledgments, prompt negative 

acknowledgments, and prompt responses to negative 

acknowledgments A chent writes log records with the ForceLog 

message when It needs an lmmedlate acknowledgment, and with 

the Wr 1 teLog message when it does not If It uses the ForceLog 

message and does not get a response, It retries a number of times 

before moving to a different server A log server acknowledges a 

successful ForceLog message by returning the highest forced 

log sequence number in a NewHighLSN message A server 

detects lost messages when it receives a ForceLog or Wr 1 teLog 

message with log sequence numbers that are not contiguous with 

those it has previously received from the same client It notifies 

the client of the missing interval immediately through a 

NissingInterval message 

When a client receives a MissingInterval message It Wlli 

either resend the missing log records in a ForceLog message, or 

use the NewInterval message to inform the server that it should 

Ignore the mlssmg log records and start a new interval The 

NewInterval message IS used when the missing log records 

have already been written to other log servers, as happens when a 

chent switches log servers 

Log servers should make every effort to reply to Interval Lls t, 

ReadLogForward and ReadLogBackward calls, but they are free 

to ignore ForceLog and Wr 1 teLog messages If they become too 

heavily loaded Clients WIII simply assume that the server has 

failed and will take their logging elsewhere 

Because the client Interface to log servers IS deslgned to group 

log records and send multlple packets of log records 

asynchronously, more than one record might have been written to 

fewer than N log servers when a client node crashes The client 

must limit the number of records contamed In unacknowledged 

Wr 1 teLog and ForceLog messages to ensure that no more than 

8 log records are partlally written Even with such a bound, two 

additional calls on log servers are need for client recovery The 

CopyLog synchronous call IS used to rewrite records that may 

have been partially written Unlike the ForceLog and Wr 1 teLog 

messages, log servers accept CopyLog calls for records with 

LSNs that are lower than the highest log sequence number wntten 

to the log server The InstallCopies call IS used to atomrcally 

install all log records copied (with the CopyLog call) with a 

particular epoch number Thus, dunng recovery the most recent 

6 log records are copied with a new epoch number using 

CopyLog calls Then, 6 new log records marked not present are 

written with CopyLog calls Finally, the copied records are 

installed with the InstallCopies call 

The protocol described here IS not the only one that might be 

used If most log records are smaller than a network packet, the 

log sequence numbers themselves can be used efficiently for 

duplicate detection and flow control This permits a much simpler 

implementahon (and possibly better performance), and eliminates 

the need for special messages to establish a connection The 

disadvantage to thrs approach IS that any log record larger than a 

network packet must be sent with an acknowledgment for each 

packet, or through a separate connection based protocol 

If most log data must be wntten synchronously (as will be the 

case when transactions are short), it IS appropriate to use a more 

synchronous interface than that described here A strictly 

synchronous Interface WIII be simpler to implement, and might 

perform better If the need for asynchronous streaming of large 

amounts of data IS rare 

4 3 Dtsk Data Structures for Log Servers 

The capacity analysis in Sectlon 4 1 demonstrated the need for 

data structures that use log servers’ disks efflclently In particular, 

log servers should not have to perform disk seeks m order to log 

data from drfferent ckents Thus, the first oblectlve rn the design 

of the dmk representatton for log servers IS to reduce seeks while 

writing An additional oblectlve IS to design data structures that 

permit the use of write once (optcal) storage, because thaf 

technology may prove useful for capacity and rellablhty reasons 

There are two types of data that must be kept In non volatile 

storage by log servers First, the server must store the Interval II&S 

describing the consecubve sequences of log records stored for 

each client node Second, the server must store the consecutive 

sequences of log records themselves 

An essential assumption of the replicated logging algorithm IS 

that interval lists are shot-l In general, new intervals should be 

created only when a client crashes or when a server crashes or 

runs out of capacity Storing one interval requires space for three 

integers the epoch number and a begming and ending LSN 

This will be only a tmy fraction of the space reqmred to store the 
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log records m the Interval 

Because Interval It.& are short, It IS reasonable for a server to 

keep them in volatile memory during normal operation This IS 

Particularly convenient because the last intervals m the lusts for 

aCtlve CllentS are changing as new log records are wntten 

Interval lists are checkpomted to non volatile storage permdlcally 

They may be checkpomted to a known locatlon on a reusable disk 

or to a write once disk along with the log data stream After a 

crash, a server must scan the end of the log data stream to find 

the ends of active intervals, unless there IS sufflclent low latency 

non volatile memory to store acttve Intervals 

Organization of the storage for the consecutive sequences of 

log records IS a more difficult problem To reduce seekmg, data 

from different clients must be interleaved on disk Any sequence 

may be hundreds of megabytes m length and be spread over 

glgabytes of disk A data structure that permits random access by 

log sequence number IS needed 

Logarithmic read access to records may be achieved using a 

data structure that we call an append-forest New records may be 

added to an append forest In constant time using append only 

storage, provldmg that keys are appended to the tree in strictly 

increasing order A complete append forest (with 2”-1 nodes) 

resembles and IS accessed m the same manner as a binary search 

tree having the followmg two properties 

1 The key of the root of any subtree IS greater than all its 
descendants’ keys 

2 All the keys in the right subtree of any node are 
greater than all keys m the left subtree of the node 

height n 

An mcomplete append forest (with more than 2”-1 nodes and 

less than 2”+‘-1 nodes) conslsts of a forest of (at most n-l-l) 

complete binary search trees, as described above Trees in the 

forest have height n or less, and only the two smallest trees may 

have the same height All but at most one of the smallest trees m 

the forest will be left subtrees of nodes in a complete append 

forest (with 2”+‘- 1 nodes) Figure 4 2 IS a schematic diagram of 

an append forest 

All nodes In the append forest are reachable from its root, whtch 

IS the node most recently appended to the forest The data 

structure supports mcomplete append forests by adding an extra 

pointer, called the forest pointer, to each node Thus pomter links 

a new append forest root (which IS also the root of the right most 

tree m the append forest) to the root of the next tree to the left A 

chain of forest pomters pointers permits access to nodes that are 

not dependents of the root of the append forest 

Searches m an append forest follow a chain of forest pointers 

from the root until a tree (potentially) contammg the desired key IS 

found Btnary tree search IS then used on the tree An append 

forest with II nodes contains at most[log,(n)l trees in its forest, 

therefore searches perform 0(&(n)) pointer traversals 

Figure 4-3 illustrates an eleven node append forest The solid 

lines are the pointers for the right and left sons of the trees m the 

forest Dashed lines are the forest pointers that would be used for 

searches on the eleven node append forest Dotted lmes are 

forest pointers that were used for searches m smaller trees The 

last node inserted into the append forest was the node with key 

11 A new root with key 12 would be appended with a forest 

at most n+l trees f 
at most two smallest 

\ 

trees of same height 

Figura 4-2 Schematrc of incomplete append forest 
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Figure 4-3 Eleven Node Append forest 

pornter knkmg It to the node wrth key 11 An addrtronal node wrth 

key 13 would have herght 1, the nodes with keys 11 and 12 as 1t.s 

left and right sons, and a forest pomter knkmg rt to the tree rooted 

at the node wrth key 10 Another node wrth key 14 could then be 

added wrth the nodes wrth keys 10 and 13 as sons, and a forest 

pointer pointing to the node wrth key 7 

When an append forest IS used to Index a log server client’s 

records, the keys will be ranges of log sequence numbers Each 

node of the append forest WIII contain pointers to each log record 

in its range Wrth thus data structure, each page sued node of the 

tree can index one thousand or more records 

5 Dtscusslon 
This paper has presented an approach to distnbuted loggmg for 

transactron processing The approach IS intended to support 

transaction processing for workstations or to be used to construct 

multmomputer systems for high performance transaction 

processing Designs for a replicated logging algonthm, for an 

interface to log servers, and for disk data structures for log 

storage have been presented AddItIonal design Issues are 

described below, and the paper concludes with the status of our 

implementation of prototype log servers 

5 1 Low Latency Non volatile Memory 

CMOS battery backup memory IS almost certamly the technology 

of choice for rmplementmg low latency non volatile memory Less 

certain IS the mechanism by which the host processor should 

access the memory Section 4 3 Indicated than an additional use 

for low latency non volatrle memory besides disk buffering would 

be storing active Intervals It IS likely that others could be found 

and, therefore it can be argued that the non volatile memory 

should be accessrble as ordinary memory, rather than integrated 

mto a dtsk controller However, data in dtrectly addressable non 

volatile memory may be more prone to corruption by software 

error Needham et al [Needham et al 831 have suggested that a 

solution to this problem IS to provide hardware to help check that 

each new value for the non volatile memory was computed from a 

previous value 

5 2 Log Record Spllttmg and Caching 

Often, log records written by a recovery manager contam 

independent redo and undo components The redo component of 

a log record must be written stably to the log before transaction 

commit The undo component of a log record does not need to be 

wrrtten to the log until Just before the pages referenced a the log 

record are written to non volatrle storage Frequently transactrons 

commit before the pages they modify are written to non volatile 

storage 

The volume of logged data may be reduced if log records can be 

splrt into separate redo and undo components Redo components 

of log records are sent to log servers as they are generated, with 

the rest of the log data stream Undo components of log records 

are cached in virtual memory at client nodes When a transaction 

commits, the undo components of log records written by the 

transaction are flushed from the cache If a page referenced by 

an undo component of a log record in the cache IS scheduled for 

cleaning, the undo component must be sent to log servers first If 

a transactton aborts while the undo components of its log records 

are In the cache, then the log records are available locally and do 

not need to be retrieved from a log server 

The performance Improvements possible with log record 

splitting and cachtng depend on the size of the cache, and on the 

length of transacttons If transactions are very short, then the 

fraction of log records that may be split will be small, and splitting 

will not save much data volume Very long running transactions 

will not complete before pages they modify are cleaned, and 

spkttmg will also not save data volume The cached log records 

WIII speed up aborts and relieve disk arm movement contention on 

log servers because log reads will go to the caches at the clients 
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5 3 Log Space Management 

Log servers may be required to store large amounts of data as 

mdlcated m Sectron 4 1 Various space management functions 

may be used in different combmahons to reduce the amount of 

online log data There are at least four functions that can be 

combmed to develop a space management strategy First, client 

recovery managers can use checkpomts and other mechanisms to 

limit the onlme log storage required for node recovery Second, 

periodic dumps can be used to llmlt the total amount of log data 

needed for media farlure recovery Third, log data can be spooled 

to offlme storage Finally, log data can be compressed to 

elfmlnate redundant or unnecessary log records 

Log space management strategies should be compared In terms 

of their cost and performance for various recovery operations 

Recovery operations of interest Include node recovery, media 

failure recovery, the repalr of a log when one redunUant copy IS 

lost, and recovery from a disaster that destroys all copies of part of 

a log Relevant cost measures Include online storage space, 

processmg requirements in log servers and clients, and software 

complexity Performance measures include whether recovery 

operahons can be performed with online or offline data and the 

relative speed of the operations 

5 4 Load Assignment 

The Interface presented in Sectlon 42 does not contain 

protocols for assigning clients to log servers Ideally, clients 

should distribute their load evenly among log servers so as to 

minimize response times 

If the only technique for detecting overloaded servers IS for a 

client to recognize degraded performance with a short timeout, 

then clients might change servers too frequently resulting In very 

long Interval lists If servers shed load by rgnonng chents, then 

chents of failed servers might try one server after another without 

success Presumably, simple decentralized strategies for 

assigmng loads fairly can be used The development of these 

strategies IS likely to be a problem that IS very amenable to analytic 

modeling and simple experimentation 

5 5 Common Commit Coordmatlon 

If remote logging were performed using a server havmg mirrored 

disks, rather than using the replicated logging algorithm described 

In Sectlon 3, that server could be a coordmator for an optimized 

commit protocol The number of messages and the number of 

forces of data to non volatile storage required for commit could be 

reduced, compared with frequently used distributed commit 

protocols [Lndsay et al 791 Optimrzations are applicable only 

when transactions modify data on more than one node Latency 

for log forces IS not as great a consideration If low latency non- 

volahle storage IS being used in log servers, and careful design of 

commit protocols can reduce the number of messages required 

for commit of distributed transactions Still, if multi node 

transactlons are frequent then common commit coordination IS an 

argument against replicated logging 

5 6 Implementing A Prototype Log Server 

The authors are currently implementing a prototype distributed 

logging service based on the design presented In this paper The 

implementation IS berng carried out in several stages 

The first stage, an lmplementahon of the log server Interface and 

protocols described m Section 4 2 IS complete It uses Perq 

workstatlons running the Accent operating system [Perq Systems 

Corporation 84, Rashld and Robertson 811 Accent inter node 

communication IS not as low level or efficient as Secbon 4 1 

suggests IS necessary, and only a skeleton log server process 

without data storage was Implemented This lmplementatlon was 

completed in January 1986 and was used for valldatmg the 

protocols 

The second stage of lmplementatlon augmented the first stage 

with data storage m the log server’s virtual memory The TABS 

distributed transaction processing system was used as a client for 

this stage of the log server Thus, the second stage permitted 

operational experience with a working transaction system as a 

client As of April 1986, remote logging to virtual memory on two 

remote servers used less than twice the elapsed time required for 

local logging to a single disk 

The first version of our final lmplementatlon of distributed 

logging began operating In February 1987 in support of the 

Camelot distributed transaction facility [Spector et al 881 Both 

Camelot and the log servers use the Mach operating system 

[Accetta et al @3] and currently run on both IBM RT PCs and DEC 

Vaxes This Implementation uses low level protocol 

implementations and stores log data on magnetic disks The 

append forest IS not currently Implemented because the amount 

of data stored IS comparatively small When optical disks are 

available, the append forest will be used Low latency non volatile 

storage IS assumed by the lmplementahon and we expect to 

implement such storage with a battery based standby power 
supply for the entlre workstation After performance tuning and 

evaluation, this lmplementatlon will be the basis for additional 

research In the other aspects of distributed logging mentioned 

above 
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I Replicated Increasing Unique 
ldentiflers 

This appendix considers the problem of generating Increasing 

unique ldentlflers Section 3 1 describes how these ldentlfters are 

used to distmgulsh log records written in different cltent crash 

epochs and hence to make atomtc any log writes that might be 

interrupted by crashes This method for replicating Identifier 

generators only permits a a single client process to generate 

identifiers at one time Atomic updates of data at more than one 

node are not required for this method of replicating unique 

Identifier generators 

lncreasmg Identifiers are given out by a replicated abstract 

datatype called a replrcated ,dentrher generator The only 

operation provided by a replicated identifier generator IS NewID, a 

function that returns a new unique ldentlfier Identifiers issued by 

the same generator can be compared with = (equal) and < (less 

than) operators Two Identifiers are equal only if they are the 

result of the same NewID tnvocation One identifier IS less than 

another only if tt was the result of an earher mvocation of NewID 

Identifiers given out by a replicated Identifier generator are 

Integers and Integer compansons are used for the < and = 

operations The state of the replicated identifier generator IS 

repllcated on N generator state represenlafrve nodes that each 

store an integer in non volatile storage 5 Generator state 

representatives provide Read and Write operations that are 

atomic at individual representatives 

The NewID operation first reads the generator state from [?I 

representatives Then, NewID writes a value higher than any read 

to [:I representatives Any overlappmg assignment of reads and 

writes can be used Finally, the value written IS returned as a new 

Identifier 

Because the set of generator state representatives read by any 

NewID operation intersects the set of representatives written by all 

preceding NewID operations that returned values, Identifiers 

returned by a NewID mvocatlon are always greater than those 

returned by previous lnvocatlons If a crash interrupts a NewID 

operation, then a value wntten to too few representatives could be 

omitted from the sequence of Identifiers generated 

The difference between an infimte sequence of umque 

identifiers generated as described here and a sequence of log 

sequence numbers generated by the replicated log Wr1 teLog 

operation described n Sectlon 3 1 IS that the replicated log 

ReadLog operation may be used to determme whether the 

sequence contams some Integer Slmllarly, the scheme described 

here provides no way to determme the last ldentlfler generated 

The availablllty of the repllcated mcreasmg umque Identifier 

generator depends on the availability of the generator state 

representatives and on the number of generator state 

representabves If generator state representatives are unavailable 

with probablllty p then the probablllty that a rephcated unique 

ldentlfier generator IS available IS the probablkty that [$!J or 

fewer node% :re unavailable simultaneously 

given by$-?’ (N)pf(l-p)N-’ I 

This probablllty IS 
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