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Abstract

Increased interest In using workstations and small processors for
distributed transaction processing raises the question of how to
implement the logs needed for transaction recovery Although
logs can be implemented with data written to duplexed disks on
each processing node, this paper argues there are advantages if
log data is written to multipie Jog server nodes A simple analyss
of expected logging loads leads to the conclusion that a high
performance, microprocessor based processing node can
support a log server if it uses efficient communication protocols
and low latency, non volatile storage to buffer log data The buffer
18 needed to reduce the processing ttime per log record and to
increase throughput to the logging disk  An interface to the log
servers using stmple, robust, and efficient protocols i1s presented
Also described are the disk data structures that the log servers
use This paper concludes with a bnef discussion of remaning
design 1ssues, the status of a prototype implementation, and plans
for its completion

1 Introduction

Distributed transaction processing is of increasing interest, both
because fransactions are thought to be an important tool for
building many types of distributed systems and because theie are
Increasing transaction processing performance requirements
Distributed transaction systems may compnse a collection of
workstations that are widely scattered or a collecton of
processors that are part of a multicomputer, such as a Tandem
system [Bartlett 81]

Most logging for

recovery [Gray 78], and the question anses as to how each

transaction processing Systems use

processing node should log its data This question 1s complex

because log records may be written very frequently, there may be
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very large amounts of data (e g , megabytes/second), the log must
be stored very rehably, and log forces must occur with little detay

In some environments, the use of shared logging facilities could

have advantages in cost, performance, survivability, and
operations Cost advantages can be obtained if expensive logging
devices can be shared For example, in a workstation
environment, it would be wasteful to dedicate duplexed disks and
tapes to each workstation Performance can be improved
because shared facilities can have faster nardware than could be
afforded for each processing node Survivability can be better for
shared facilities, because they can be specially hardened, or
rephicated In two or more locations Finally, there can be
operational advantages because it is easier to manage high
volumes of log data at a small number of logging nodes, rather
than at all transaction processing nodes These benefits are
accentuated in a workstation environment, but the benefits might

also apply to the processing nodes of a multicomputer

This paper continues by descnbing the target environment for
distributed logging services Section 3 presents an algonthm for

replicating logs on multiple server nodes and analyzes the
avallabiity of replicated logs The design of server nodes s

addressed in Section 4 The paper conciudes with a description
of additional design 1ssues and the status of a prototype log server

implementation

2. Target Environment

The distributed logging services descrnibed in this paper are
designed for a local network of high performance microprocessor
based processing nodes We anticipate processor speeds of at
least a few MIPS

workstations, or

Processing nodes might be personat
processors in a transaction processing
mulhcomputer In esther case, processing nodes may have only a

single disk (or possibly no disk), but a large main memory of four



1o sixteen megabytes — or more Log server nodes use either
high capacity disks and tapes, or wnte once storage such as
optical disks

The network that interconnects processing nodes and servers is
a gh speed local area network Because processing nodes
depend on being able to do logging, network fallures would be
disastrous  Hence, the network should have muitiple physical
links to each processing node One way to achieve reliability is to
have two complete networks, including two network interfaces in
each processing node Use of the logging services described in
this paper will generate a large amount of network traffic and
special local networks having bandwidth greater than 10

megabits/second may be necessary in some instances

The types of transactions executed by the system will vary,
Nodes
compnising a multicomputer might execute short transactions hke

depending on the nature of the processing nodes

the ET1 transaction [Anonymous et al 85] Workstation nodes
might execute longer transactions on design or office automation
databases These long running transactions are hikely to contain

many subtransactions or to use frequent save points
Unhke the parallel logging architecture proposed by Agrawal

and DeWitt [Agrawal 85, Agrawal and DeWitt 85], disinbuted
logging 1s intended to permit multiple transaction processors to
share logging disks, rather than to accommodate a high volume of
log data generated by a single {mults processor) transaction
processor Of course, several distnbuted log servers may operate
in parallel in a distnbuted environment that generates a large
volume of log data

3 Replicated Logging

Transaction facilities typically implement recovery logs by
writing data to multiple disks having independent failure
modes [Gray 78]

it 18 possible to wnte multiple copies of log data on separate

If logs are implemented using network servers,

servers, rather than on multiple disks at a single server There are
at least four advantages to replicating log data using multiple

servers

First, server nodes become simpler and less expensive, because
The

number of disks and controllers that can be attached to a small

they do not need multiple logging disks and controllers

server node 1$ often imited, so this consideration can be important

in practice

Second, replicating log data using multiple servers decreases
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the data’s vulnerability to loss or corruption Separate servers are
less likely to have a common failure mode than a single server with
multiple disks In particular, the distance between log servers
interconnected with local network technology can be much higher
than the distance between disks on a single node, hence, log data
rephcated on multiple servers would survive many natural and
man made disasters that would destroy log data replicated on a

single server

Third, replicating fog data using multiple servers can increase

the availabihty of the log both for normal transaction processing
and for recovery atter chient node fallures An analysis given In

Section 32 shows that avalability for normal processing in
particufar can be very greatly improved Any individual server can
always be removed from the network for servicing without
interrupting normal transaction processing, and in many cases

without affecting client node falure recovery

Finally, the use of multiple servers rather than muitiple disks on
one server offers more flexibiity when configuring a system
Chents can choose to increase the degree of replication of their
log data The opportunity also exists to trade normal processing
availability for node recovery avaiability by varying the parameters
to the replicated iog algorithm described below

3 1 Replicated Log Technigue

A replicated log 18 an instance of an abstract type that s an
append only sequence of records Records in a replicated log are
identified by Log Sequence Numbers (LSNs), which are inCreasing
integers A rephcated log 1s used by only one transaction
processing node The use by a single client only permits a
replication technique that i1s simpler than those that support
multiple clients The data stored in a log record depends on the
precise recovery and transaction management algornthms used by

the client node

There are three major operations on replicated logs, though
implementations would have a few others for reasons of
efficiency The WritelLog operation takes a log record as an
argument, writes 1t to the log, and returns the LSN associated with
that record Consecutive calls to Writelog return increasing
LSNs The ReadlLog operation takes an LSN as an argument and
returns the corresponding log record If the argument to ReadlLog
is an LSN that has not been returned by some preceding
Writelog operation, an exception s signaled The EndOflog
operation 1s used to determine the LSN of the most recently
written log record This replication techmique could be used to
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Figure 3-1

implement other useful log operations

The replicated log algonthm described in this section s a
speciahzed quorum consensus algorithm [Gifford 79, Dantels and
Spector 83, Bloch et al 86, Herlthy 84] that exploits the fact that a
replicated log has only a single client A rephicated log uses a
collection of M log server nodes, with each client's log record
being stored on N of the M log servers For cost reasons, log
servers may store portions of the replicated logs from many
clients Like the available copies rephcation algonthm [Bernsten
and Goodman 84}, this algorithm permits read operations to use
only one server Concurrent access and network partitions are
not concerns because a replicated log 1s accessed by only a

single client process

Writelog operations on a replicated log are implemented by
sending log records to N log servers The single logging process
on the chent node caches information about what log servers
store log records so that each Readlog operation can be
implemented with a request to one log server When a client node
1s restarted after a crash, it must inihialize the cached information
Naturally, the algornthm cannot require the use of an underlying
transaction facility To ensure that any Wri1telog operation that
was interrupted by the chient’s crash 1s performed atomically, this

replication technique uses additional fields in log records stored

Three log server nodes

on log servers (as described in Section 3 1 1) and the client node

inhiahzation procedures described in Section 3 12

31 1 Log Servers and their Operations

Log servers implement an abstraction used by the replication
algonithm to represent individual copies of the replicated log In
addition to the log data and LSN, log records stored on log servers
contain an epoch number and a boolean present flag indicating
that the log record 1s present in the replicated directory Epochs
are non decreasing integers and all log records written between

two client restarts have the same epoch number If the present

flag 1s false, no log data need be stored The present flag will be
false for some log records that are wrtten as a result of the

recovery procedure performed when a clientis restarted

Successive records on a log server are wniten with non
decreasing LSNs and non decreasing epoch numbers A log
record 1s uniquely 1dentified by a <LSN, Epoch> parr Log servers
group log records into sequences that have the same epoch
number and consecutive LSNs For example, Server 1 1n Figure
31 contans log records mn the intervals (1,1 {3,1>) and
3,3 9,)

Log servers implement three synchronous operations to support
rephcated Iogs1 Unlike the WriteLog operation on rephcated
logs, the ServerWritelog operation takes the LSN, epoch

1
The operations are presented in a simplified way here, a more realistic interface that supports error recovery and the blocking of multiple log operations into

a single server aperation 1s described in Section 4 2
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Figure 3-2 Three log server nodes with log record 10 partially wnitten

number, and present flag for the record as arguments (along with
thedata) The ServerReadtog operation returns the present flag
and log record with highest epoch number and the requested
LSN A log server does not respond to ServerReadlLog requests
for records that it does not store, but it must respond to requests
for records that are stored, regardless of whether they are marked
present or not The Intervall1st operation returns the epoch
number, low LSN, and high LSN for each consecutive sequence of
log records stored for a clientnode IntervallList is used when
restarting a client node

3 1 2 Rephication algorithm

A replicated log is the set of <LSN,Data> pairs in all log servers
such that the log record is marked present and the same LSN
does not exist with a higher epoch number The replication
algonithm ensures that the replicated log can be read or written
despite the failure of N-1 or fewer log servers The replicated log
shown In Figure 31 consists of records In the intervals
K1,1> <2,1), (K3,3), and (<5,3> <9,3>) Each of these records

appears on N=2 log servers

Like other quorum consensus algonthms, the correctness of this
algorithm depends on having a non empty intersection among the
quorums used for different operations That 1s, if there are M total
nodes and the chent writes to N of them, with M > N, ReadlLog
performed with explicit voting will always require 2 or more
ServerReadLog operations Yet M must be greater than N to

provide high availlability for Writetog To permit Readlog
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operations to be executed using a single ServerReadbog, this
replication algorithm caches enough information on each chent
node to enable the chent to determine which log servers store
data needed for a particular ReadLog operation

Client nodes inihalize ther cached information when they are
restarted by receiving the results of Intervall1st operations
from at leastM - N + 1log servers This number guarantees
that a merged set of interval lists will contain at least one server
storing each log record In merging the interval lists, only the
entries with the highest epoch number for a particular LSN are
kept In effect, this replication algonthm performs the voting
needed to achieve quorum consensus for all ReadLog operations
at chent node imtalzation time That 1s, End0fLog operations
return the high value in the merged interval list and Readlog
operations use the list to determine a server to which to direct a
ServerReadlLog operation |f the requested record is beyond the
end of the log or if the log record returned by the ServerReadlog

operation is marked not present, an exception is signaled

When a client 1s inittalized 1t must also obtain a new epoch
number for use with ServerWritelLog operations This epoch
number must be higher than any other epoch number used during
the previous operation of this client Appendix | describes a
simple method for implementing an increasing unique dentifier
generator that can be used to assign epoch numbers and 1s

replicated for high availability
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Figure 3 3 Three log server nodes after execution of crash
recovery procedure when Server 3 is unavailable

The WriteLog operation assigns an LSN by incrementing the
highest LSN
ServerWritelLog operations on N log servers

in the merged interval hst and performs
If a server has
received a log record in the same epoch with an LSN immediately
preceding the sequence number of the new log record, 1t extends
its current sequence of log records to include the new record,
otherwise it creates a new sequence To prevent large numbers of
separate sequences from being created, clients should attempt to
perform consecutive writes to the same servers However, a chent

can switch servers when necessary

The Wr1telog operation is not atomic and a client node crash
can result in a situation where ServerWritelog operations for
some log record have been performed on fewer than N log
servers In such a situation, client intialization might not gather
an interval list containing the LSN for the partially written log
record Figure 3 2 shows a replicated log with log record 10
partially written If Servers 1 and 2 were used for client
inthalization, then the transaction system recovery manager would
not read log record 10 durning recovery, but if Server 3 were

included then record 10 would affect recavery

When a chient node 1s inttialized it 1s necessary to ensure that the

log write that was occurring at the tme of the crash appears

2
using Servers 1 and 3
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atoruc to users of the replicated log Because log writes are
synchronous, there 1s at most one log record that has been wntten

to fewer than N log servers If such a record exists, the Writelog
operation can not have completed and the transaction processing
node cannot have depended on whether the operation was
successfully or unsuccessfully performed Therefore, the log
«eplication algorithm may report the record as existing or as not
existing provided that all reports are consistent

Since there i1s doubt concerning only the log record with the
highest LSN, it 1s copied from a log server storing it (using
ServerReadlog and ServerWritelog) to N log servers The
record 1s copied with the client node’s new epoch number
Copying this log record assures that if the last record were
partiatly written, it would subsequently appear in the interval iists
of at least N log servers Finally, a log record marked as not
presentis written to N lng servers with an LSN one higher than that
of the copied record This final record has an epoch number
higher than that of any copy of any partally wrnitten record and
hence a partially written record with the same LSN will not be kept
when interval lists are merged in any subsequent client
inhahzation Figure 3 3 shows the replicated log from Figure 3-2

after execution of this procedure using Servers 1 and 2 2

The careful reader will notice that log record 4 only appears as marked not present in Figures 31,32 and 33 This resulted from a previous chent restart



The client inihialization procedure 1s not atomic A log record
can be partially copied, and the log record marked not present
can be partially written However, the procedure is restartable in
that the chent’s recovery manager will not act on any log records
prior to the completion of the recovery procedure Once the

recovery procedure completes, its effects are persistent

3 2 The Availability of Replicated Logs

Avarlability 1s a critical 1ssue whenever an essential resource I1s
provided by a network server With logs that are replicated using
the previously described algorithm, there 1s the opportunity to
trade the availlabities of different operations In particular,
Writelog operations can be made more available by adding log
servers, though this does decrease the avaitability for chient node
restart Since writing log data 1s a much more common operation

than node restart, this may be a reasonable trade off

The availabiity of ReadLog operations depends on N and the
availability of the servers storing the desired log record The
avallabibty of the replicated log for WritelLog operations and
chent process inttialization depends on both M and N and on the
availability of log servers

Assuming that log server nodes fall independently and are
unavailable with probabulity p, then the probability that a replicated
log will be available for Writelog operations 1s simply the
probability that M-N or fewer log servers are unavaiable

Ef:N(‘t’)p'(l— Mt Similarly, the probability that a replicated
log will be available for chent mitialization® s given by
va:_ol ( A,I }P(1-pM™" The probability that a replicated log will be

available for reading a particular fog record 1s 1— pN

In practice, the parameter N 1s constrained by performance and
cost considerations to having values of two or three Thus, users
of replicated logs must select values of M to provide some
mimimum avallability for chent restart Figure 3 4 shows the
expected avallabiites for Writelog operations and client
imtiahzation of various configurations of replicated logs under the
assumption that individual servers are unavailable independently
with p=0 05 probability

As log servers are added (M is increased), Writelog avadability
approaches unity very quickly For example, consider the case of
dual copy rephicated logs e N=2) and M=5 log servers For
Writelog operations to be unavailable in this model, at least four
of the five servers must be down due to independent failures
Response to Wr1telog operations may degrade, as fewer servers
remain to carry the load, but such fatures will hardly ever render

Writelog operations unavailable

Client imitiahization avallability decreases as log servers are
added, because almost all servers must be available to form a
quorum In the case used as an exampie above, four of the five
log servers must be available for client inihalization This occurs

simultaneously This probabilty 18 given by with a probability of about 0 98
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Figure 3 4 Availability of Rephcated Logs with
Probability of individual Log Server Availability 0 95

3The probability that the rephicated log will be avaslable for chent initialization also depends on the availability of the rephicated increasing unique identifier
generator used for obtaining a new epoch number Appendix | gives the availability of replicated unique wdentifier generators Representatives of a replicated
dentifier generator s state will normally be implemented on log server nodes and typical configurations will require fewer representatives than log servers for
chent imtialization Thus the availability of the rephcated time ordered unique dentifier generator does not imit the availability of replicated logs



For apphications where survivability 1s extremely important, or
client imtialization avatlability 1s extremely important, triple copy
logs can be used With five log servers and triple copy replicated
logs, avaiability for both normal processing (WritelLog) and
client imtialization 1s about 0 999

Certainly, replicated logs provide much higher availability than a
single log server that stores multiple copies of data If only a
single server were used, then ReadlLog, WritelLog and chent
inihalization would be available with probabiity 095 With dual
copy replicated logs, 095 or better avalability for client
inihahzation would be achieved using up to M=7 log servers, and
Writelog and Readlog operations would be almost always

available

The above analysis predicts the instantaneous avauability of
replicated logs for client process imtiahization In practice, M-N+1
log servers do not have to be simultaneously available to imitiahze
a client process The client process can poll until it receives
responses from enough servers to find the sites that store its iog
records Predicting the expected time for clent process
mitialization to complete requires a more complicated model that
includes the expected rates of log server failures and the expected

times for repair

4 Log Server Design

Designing high performance servers to implement rephcated
logs requires determining the server hardware that Is needed, the
communication protocol for accessing a server, and the
representation of log data Naturally, it is desirable to provide a
simple design while stll delivering good performance
Performance 15 measured by the time required to perform an
operation on the log server, and the number of operations per

second that a log server can handle

This section begins with a simple analysis of the capacity
requirements for log servers The analysis provides a concrete
basis for many design decisions Next, the client interface to log
servers and the protocols used for accessing them are described
The last aspect of log server design addressed in detail in this
paper 1s the representation of log data on the server Section 5
describes additronal 1ssues not treated in this paper

4 1 Log Server Capacity Requirements

The goal of this analysis is to understand what occurs In a
distributed transaction processing system that 1s executing a
heavy load In particular, it 1s important to determine the rate of
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calls to each log server, the total data volume logged i the whole
system and on each log server, and the frequency with which data
must be forced to disk Such an analysis also leads to an
understanding of which resources become saturated first Once
bottlenecks are exposed, server designs that reduce contention
for these resources can be explored

For simplicity, we have chosen to analyze a ioad generated by a
The load 1s

generated by a collection of fifty client nodes of the capacity

single transaction mix that we understand well

described in Section 2 with service provided by six log servers
Client nodes write log data to two log servers and are assumed to
execute ten local ET1 [Anonymous et al 85) transactions per
second, thus providing an aggregate rate of 500 TPS We chose
this target load, not so much because we thought it would be
representative of workstation loads, but because we knew that it
was an ambitious load in excess of that being supported on any
distributed system currently in use

Each ET1 transaction in the TABS prototype [Spector et al
85a, Spector et al 85b] transaction processing system writes 700
bytes of log data in seven log records Only the final commt
record written by a local ET1 transaction must be forced to disk,
preceding records are buffered in virtual memory until a force

occurs or the buffer fills

If each log record were written to log servers with individual
remote procedure calls (RPCs) each log server would have to
process about 2400 incoming or outgoing messages per second,
a load that i1s too high to achieve easilly on moderate power
processors Fortunately, recovery managers commonly support
the grouping of log record writes by providing different calls for
forced and buffered log writes The client interface to log servers
must be designed to exploit grouping In a similar way, this permits
log records to be stored on a chient node until they are explicitly

forced by the recovery manager

In the target load, only one log write per transaction needs to be
forced to disk, thus, grouping log records until they need to be
forced reduces the number of RPCs by a factor of seven S,
each server must process about 170 RPCs per second Many
researchers have demonstrated that low level implementations
are very important for good RPC performance [Nelson 81, Spector
82, Birrell and Nelson 84]
should be performed using only a single packet for each request

In particular, simple, error free RPCs

and reply if this objective 1s met, and if the network and RPC

implementation processing can be performed in one thousand



instructions per packet, then communication processing will

around seven million total bits per second of network traffic With
the use of multicast, this amount would be approximately halved
This load could saturate many local area networks However, two
networks are needed for avaslability reasons, and together they
could support the load Higher speed, typically fiberophc,

networks having a bandwidth of approximately 100
megabits/second are becoming more prevalent [Kronenberg 86],
and they could be substituted

Log servers will frequently encounter back to back requests,
and so must have sophisticated network interfaces that can buffer
multiple packets Chent nodes will wish to send requests to
different servers in paraliel, and so client nodes must also be able
to receive back to back (response) packets

Although message processing is not likely to be a bottleneck for
log servers, performing 170 writes to non volatle storage per

perform seeks to different files for wnites to different logs, instead
records from different logs must be interleaved in a data stream
that 1s written sequentially to disk

However, the rotational latencies would still be too high to permit

iest to bhe forced to disk tndependently Waiting for

accumulate could delay responses, increasing lock

oach ren
each req
requests to

contention and sysiem response

ime  Using
distribute writes increases the cost and complexity of log servers
To provide acceptable logging performance with a small number
of disks, log servers should have low latency, non volatile buffers
so that an entire track of log data may be written to disk at once
ral s that may be used for constructing
such a buffer, including CMOS memory with a battery for backup

o mna Adase s dnmd o

power issues In designing such a buiier device aré described in
Section 51 If two thousand instructions are used to process the
log records tn each message and to copy them to low latency
non volatite memory, and If writing a track to disk requires an

addiional two thousand instructions, then even with small track

sizes only ten to twenty percent of a log server's CPU capacity will

DILTO Uiy waal SNTORY ¢ 2]

be used for writing log records to non volatile storage Disk
A Emu al y Aialees wnth

OW GIiSKS Witit

utilization wiil be higher ciose to fifty percent for sio
small tracks The additional disk utiization induced by read

operations is difficult to predict because it depends on the

frequency of reads anu on whether reads are manly for sequential

log records The

use of local caches for processing transaction
aborts, as described in Section 52, means that server read
operations wiii be used mainiy for node restari and media recovery

processing

With this target load, approximately ten billion bytes of log data
will be written to each log server per day Current technology
permits the storage of this much data online, so that simple log

space management strategies could be used For example,

simply accumulate between dumps However, storage for this
much iog data wouid dominate iog server hardware costs it may
be desirable for cost, performance, or reliability reasons to used
more sophisticated checkpointing and dumping strategies to hmit
tbe onhne log needed for node or media recovery as Section 53
discusses

To summarize, this capacity analysis has exposed several

important poin

te for lnag se
1 tor log se

rver dest
log servers through interfaces which group together muitiple log
records and send them using specialized low level protocois
Second, multiple high bandwidth networks must be used and
network interfaces must be capable of receiving back to back
packets Third, log records from multiple chents must be merged

into a single data stream that 1s buffered on a special low latency

tme Finally, the volume of log data generated, while large, I1s not
SO great as to require compiicated processing simply to reduce
online log storage requirements If these points are taken into
account, it should be possible to achieve acceptable performance
from servers implemented using the same processors as chent

nodes

4 2 Log Server Interfaces and Protocols

The preceding section demonsiraied ihai the interiaces and
protocols used to access log servers must be carefully designed
to avoid bottienecks First, the interface must transfer multiple log
records in each network message to reduce the number of
messages that must be processed Second, the interface must be

implemented using specialized protocols,

spetiallccu UL,

rather than being
layered on top of expensive general

A R ta

AQTITION

purpose protocols

aii ally, the pr(m)cots uSeq 10r accessing IOQ servers shouid

permit large volumes of data to be written to the server efficiently

Because power fallures are likely to be a common failure mode for log servers, it 18 not acceptable to buffer log data in volatile storage
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Asynchronous Messages from Client to Log Server

WriteLog(IN Clientld, EpochNum, LSNs, LogRecords)

ForceLog(IN Clientld, EpochNum, LSNs, LogRecords)

NewInterval(IN Cl1entId, EpochNum, StartingLSN)

Asynchronous Messages from Log Server to Chent

NewHi1ghLSN(IN NewHighLSN)

MissingInterval(IN MissingInterval)

Synchronous Calls from Chent to Log Server

Intervallist(IN ClientId, OUT IntervallList)

ReadlogForward(IN ClientId, LSN, OUT LSNs, LogRecords, PresentFlags)

ReadlLogBackward(IN ClientId, LSN, OUT LSNs, LogRecords, PresentFlags)

CopyLog(IN Clientld, EpochNum, LSNs, LogRecords, PresentFlags)

InstallCopies(IN ClientId, EpochNum)

Figure 4-1

The need for streaming is not well illustrated by ET1 transactions,
but it 1s important for transactions that update larger amounts of
data

Extra care must be taken to make the low level protocols robust
Lost or delayed messages must be tolerated, and recovery from

server fallures must be possible Realistically, remote logging will

only be feasible when local area networks are used, hence, the
protocols should exploit the inherent reliabiity of local area
networks and use endtoend error detection and
correction [Saltzer et al 84] to ehminate the expense of redundant

acknowledgments and error detection

Simplicity, both In specification and tmplementation, is an
additional desirable property for the interface to a log server
RPCs possess this property and they can be implemented very
dirathy "Unfrotunrdchy, MPOS we theyaithy syrdimutrous > b
do not permit the eff cient streaming of large amounts of data
The interface presented here includes strict RPCs for infrequently
used operations, such as for reading log records, and
asynchronous messages for wrnting and acknowledging log

records

Figure 4 1 shows RPC and message header defimtions for the
log server and chent interface This mterface differs from the
abstract operations defined on log servers in Section 3 1 because
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Client Interface to Log Servers

of the support for transrmussion of multiple log records in each call,
streaming of data to log servers, and error detection and recovery

To establish communication with a log server, a client inthates a
three way handshake Both client and server then mantain a
small amount of state while the connection is active This allows
packets to contain permanently unique sequence numbers, and
permits duplicate packets to be detected even across a crash of
the receiving node All calls participate in a moving window flow
control strategy at the packet level An allocation inserted in every
packet specifies the highest sequence number the other party 1s
permitted to send without waiing Deadlocks are prevented by
allowing erther party to exceed its atlocation, so long as it pauses
several seconds between packets to avoild overrunning the
receiver Each party attempts to supply the other with unused
alfocation at all tmes This connection establishment and flow
wortrdrrettansm s'oased on a witonidi by WarsonTivatsonyiy

the
ReadlLogForward, and ReadLogBackward calls transmit multiple

The WriteLog and Forcelog messages, and
log records Chent processes and log servers attempt to pack as
many fog records as will fit in a network packet in each call The
ReadlLogForward and ReadlogBackward calls differ as to
whether log records with log sequence number (LSN) greater or
The

Intervallist call 1s used when a chent i1s mitiahzed as

fess than the input LSN are used to fill the packet



described in Section 31 The nput parameter to this call Is a
client identifier and the output 1s a list of intervals of log records

stored by the server for that client

Multiple WritelLog operations on a distnbuted log are grouped
together by the client and records are streamed to log servers

asynchronously  Error detection and recovery is based on
requested positive acknowledgments, prompt negative
acknowledgments, and prompt responses to negative

acknowledgments A client writes log records with the Forcelog
message when it needs an immediate acknowledgment, and with
the Wr1telog message when it does not 1 1t uses the Forcelog
message and does not get a response, it retries a number of imes
before moving to a different server A log server acknowledges a
successful Forcelog message by returning the highest forced
log sequence number 1n a NewHighLSN message A server
detects lost messages when 1t receives a ForcelLog or Writelog
message with log sequence numbers that are not contiguous with
those it has previously received from the same client it notifies

the client of the mussing interval immediately through a

MissingInterval message

When a client receives a MissingInterval message it will
either resend the missing log records in a Forcel og message, or
use the NewInterval message to inform the server that it should
The

NewInterval message Is used when the missing log records

ignore the missing log records and start a new interval

have already been written to other log servers, as happens when a

chent switches log servers

Log servers should make every effort to reply to Intervallist,
ReadLogForward and ReadLogBackward calls, but they are free
to ignore Forcelog and Wr 1telLog messages if they become too
heavily foaded Clients will simply assume that the server has

farled and will take their logging elsewhere

Because the chent interface to log servers 1s designed to group

log records and send multiple packets of log records
asynchronously, more than one record might have been written to
fewer than N log servers when a client node crashes The client
must imit the number of records contained m unacknowledged
Writelog and Forcelog messages to ensure that no more than
§ log records are partially written Even with such a bound, two
additional calls on log servers are need for client recovery The
Copylog synchronous call 1s used to rewnte records that may
have been partially written Unlike the Forcelog and Writelog

messages, log servers accept CopylLog calls for records with

M

LSNs that are lower than the highest log sequence number wntten
to the log server The Install1Copies call is used to atomically
install alt log records copied (with the Copylog call) with a
particular epoch number Thus, during recovery the most recent
8 log records are copied with a new epoch number using
CopylLog calls Then, § new log records marked not present are
written with Copylog calls Finally, the copied records are

installed with the Instal1Copies call

The protocol described here is not the only one that might be
used If most log records are smaller than a network packet, the
log sequence numbers themselves can be used efficiently for
duplicate detection and flow controt  This permits a much stmpler
implementation (and possibly better performance), and eliminates
the need for special messages to establish a connection The
disadvantage to this approach is that any log record larger than a
network packet must be sent with an acknowledgment for each

packet, or through a separate connection based protocol

If most log data must be written synchronously (as will be the
case when transactions are short), it 1s appropriate to use a more
synchronous Interface than that described here A strictly
synchronous interface will be simpler to implement, and might
perform better if the need for asynchronous streaming of farge
amounts of data i1s rare
4 3 Disk Data Structures for Log Servers

The capacity analysis i Section 4 1 demonstrated the need for
data structures that use log servers’ disks efficiently In particular,
log servers should not have to perform disk seeks in order to log
data from different clients Thus, the first objective in the design
of the disk representation for log servers is to reduce seeks while
writing  An additional objective 1s to design data structures that
permit the use of wrte once (optical) storage, because that
technology may prove useful for capacity and rehability reasons

There are two types of data that must be kept in non volatile
storage by log servers First, the server must store the interval lists
describing the consecutive sequences of log records stored for
each client node Second, the server must store the consecutive
sequences of log records themselves

An essential assumption of the replicated logging algonthm is
that interval lists are short In general, new infervals should be
created only when a client crashes or when a server crashes or
runs out of capacity Storing one interval requires space for three
integers the epoch number and a beginning and ending LSN

This wilt be only a tiny fraction of the space required to store the



log records in the interval

Because interval lists are shont, it 1s reasonable for a server to
keep them in volatile memory dunng normal operation This Is
particularly convenient because the last intervals in the lists for
active clients are changing as new log records are written
Interval hists are checkpointed to non volatile storage periodically
They may be checkpointed to a known location on a reusable disk
or to a wnte once disk along with the log data stream After a
crash, a server must scan the end of the log data stream to find
the ends of active Intervals, unless there 1s sufficient low latency
non volatile memory to store active intervals

Organization of the storage for the consecutive sequences of
log records i1s a more difficult problem To reduce seeking, data
from different chents must be interleaved on disk Any sequence
may be hundreds of megabytes in length and be spread over
gigabytes of disk A data structure that permits random access by
log sequence number is needed

Loganthmic read access to records may be achieved using a
data structure that we call an append-forest New records may be
added to an append forest in constant time using append only
storage, providing that keys are appended to the tree in stnictly
increasing order A complete append forest (with 2"—1 nodes)
resembles and Is accessed in the same manner as a binary search
tree having the following two properties

1 The key of the root of any subtree 1s greater than all its
descendants’ keys

2 All the keys In the night subtree of any node are
greater than ali keys in the left subtree of the node

height n

An incomplete append forest (with more than 2"—1 nodes and
less than 2"*!~1 nodes) consists of a forest of (at most n+1)
complete binary search trees, as described above Trees in the
forest have height n or less, and only the two smallest trees may
have the same height All but at most one of the smallest trees in
the forest will be left subtrees of nodes in a complete append
forest (with 2"*'—1 nodes) Figure 4 2 1s a schematic diagram of

an append forest

All nodes in the append forest are reachable from its root, which
The data

structure supports incomplete append forests by adding an extra

1s the node most recently appended to the forest

pointer, called the forest pointer, to each node This ponter links
a new append forest root (which is also the root of the nght most
tree in the append forest) to the root of the next tree to the left A
chain of forest pointers pointers permits access to nodes that are
not dependents of the root of the append forest

Searches 1n an append forest follow a chain of forest ponters
from the root until a tree (potentially) containing the desired key i1s
found Binary tree search Is then used on the tree  An append
forest with n nodes contains at most[log2(n)] trees in its forest,

therefore searches perform O(Iogz(n)) pointer traversals

Figure 4-3 illustrates an eleven node append forest The sohd
Iines are the pointers for the night and left sons of the trees in the
forest Dashed lines are the forest pointers that would be used for
searches on the eleven node append forest Dotted lines are
forest pointers that were used for searches in smaller trees The
last node Inserted into the append forest was the node with key

11 A new root with key 12 would be appended with a forest

root

at most n+1 trees A

r 0
at most two smallest
trees of same height

Figure 4-2 Schematic of incomplete append forest
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Figure 4-3 Eleven Node Append forest

pointer linking it to the node with key 11 An additional node with
key 13 would have height 1, the nodes with keys 11 and 12 as its
left and night sons, and a forest pointer linking it to the tree rooted
at the node with key 10  Another node with key 14 could then be
added with the nodes with keys 10 and 13 as sons, and a forest
pointer pointing to the node with key 7

When an append forest i1s used to index a log server client's
records, the keys will be ranges of log sequence numbers Each
node of the append forest will contain pointers to each log record
in its range With this data structure, each page sized node of the
tree can index one thousand or more records

5 Discussion

This paper has presented an approach to distributed logging for
transaction processing The approach 1s intended to support
transaction processing for workstations or to be used to construct
multicomputer systems for high performance transaction
processing Designs for a replicated logging algonthm, for an
interface to log servers, and for disk data structures for log
storage have been presented Additional design issues are
described below, and the paper concludes with the status of our

implementation of prototype log servers

5 1 Low Latency Non volatile Memory

CMOS battery backup memory is almost certamnly the technology
of choice for implementing low fatency non volatile memory Less
certain is the mechanism by which the host processor should
access the memory Section 4 3 indicated than an additional use
for low latency non volatile memory besides disk buffering would
be storing active intervais [t 1s likely that others could be found
and, therefore it can be argued that the non volatile memory
should be accessible as ordinary memory, rather than integrated
into a disk controller However, data in directly addressable non
volatile memory may be more prone to corruption by software
error Needham et al [Needham et al 83} have suggested that a
solution to this problem 1s to provide hardware to help check that
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each new value for the non volatile memory was computed from a

previous value

5 2 Log Record Sphtting and Caching

Often, log records written by a recovery manager contain
independent redo and undo components The redo component of
a log record must be written stably to the log before transaction
commit The undo component of alog record does not need to be
written to the log until just before the pages referenced in the log
record are written to non volatile storage Frequently transactions
commit before the pages they modify are wnitten to non volahle
storage

The volume of logged data may be reduced if log records can be
spht into separate redo and undo components Redo components
of log records are sent to log servers as they are generated, with
the rest of the log data stream Undo components of log records
are cached n virtual memory at client nodes When a transaction
commits, the undo components of log records written by the
transaction are flushed from the cache If a page referenced by
an undo component of a log record n the cache i1s scheduled for
cleaning, the undo component must be sent to log servers first I
a transaction aborts while the undo components of its log records
are 1n the cache, then the log records are available locally and do

not need to be retrieved from a log server

The performance improvements possible with log record
sphtting and caching depend on the size of the cache, and on the
length of transactions If transactions are very short, then the
fraction of fog records that may be spht will be small, and splitting
will not save much data volume Very long running transactions
will not complete before pages they modify are cleaned, and
sphtting will also not save data volume The cached log records
will speed up aborts and relieve disk arm movement contention on
log servers because log reads will go to the caches at the chents



5 3 Log Space Management

Log servers may be required to store large amounts of data as
indicated in Section 41
may be used in different combinations to reduce the amount of

Various space management functions

online log data There are at least four functions that can be
combined to develop a space management strategy First, client
recovery managers can use checkpoints and other mechanisms to
limit the online log storage required for node recovery Second,
periodic dumps can be used to imit the total amount of log data
needed for media failure recovery Third, log data can be spooled
to offline storage Finally, log data can be compressed to

elimenate redundant or unnecessary log records

Log space management strategies should be compared in terms
of their cost and performance for various recovery operations
Recovery operations of interest include node recovery, media
faillure recovery, the reparir of a log when one redundant copy i1s
lost, and recovery from a disaster that destroys all copies of part of
a log Relevant cost measures include online storage space,
processing requirements in log servers and clients, and software
complexity Performance measures include whether recovery
operations can be performed with online or offline data and the
relative speed of the operations
5 4 Load Assignment

The interface presented in Section 42 does not contain
protocols for assigning clients to log servers Ideally, clents
should distribute their load evenly among log servers so as to

minimize response times

If the only techmque for detecting overloaded servers 1s for a
chent to recognize degraded performance with a short timeout,
then chients might change servers too frequently resulting in very
long interval ists If servers shed load by ignoring clients, then
chents of failed servers might try one server after another without
success Presumably, simple decentralized strategies for
assigmng loads farrly can be used The development of these
strategies s likely to be a problem that is very amenable to analytic

modeling and simple experimentation

5 5 Common Commit Coordination

If remote logging were performed using a server having mirrored
disks, rather than using the replicated logging algorithm described
in Section 3, that server could be a coordinator for an optimized
commit protocol The number of messages and the number of
forces of data to non volatle storage required for commit could be
reduced, compared with frequently used distnbuted commit

protocols [Lindsay et al 78] Optimizations are applicable only
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when transactions modify data on more than one node Latency
for log forces s not as great a consideration If low latency non-
volatile storage 1s being used in log servers, and careful design of
commit protocols can reduce the number of messages required
Still, f mulh node

transactions are frequent then common commit coordination 1s an

for commit of distnbuted transactions

argument against replicated logging

5 6 Implementing A Prototype Log Server

The authors are currently implementing a prototype distributed
logging service based on the design presented in this paper The
implementation 1s being carried out in several stages

The first stage, an implementation of the log server interface and
protocols described in Section 42 1s complete It uses Perq
workstations running the Accent operating system [Perq Systems
Corporation 84, Rashid and Robertson 81] Accent inter node
communication 1s not as low level or efficient as Section 41
suggests 1s necessary, and only a skeleton log server process
without data storage was impiemented This implementation was
completed i January 1986 and was used for validatng the

protocols

The second stage of implementation augmented the first stage
with data storage in the log server’s virtual memory The TABS
distnibuted transaction processing system was used as a client for
this stage of the log server Thus, the second stage permitted
operational experience with a working transaction system as a
client As of April 1986, remote logging to virtual memory on two
remote servers used less than twice the elapsed time required for

local logging to a single disk

The first version of our final implementation of distributed
logging began operating in February 1987 in support of the
Camelot distributed transaction facility [Spector et al 86] Both
Camelot and the log servers use the Mach operating system
[Accetta et al 86] and currently run on both 1BM RT PCs and DEC
This
implementations and stores log data on magnetic disks

low level protocol
The

append forest I1s not currently implemented because the amount

Vaxes implementation  uses

of data stored is comparatively small When optical disks are
avallable, the append forest will be used Low latency non volatile
storage 1s assumed by the implementation and we expect to

implement such storage with a battery based standby power
supply for the entire workstation  After performance tuning and

evaluation, this implementation will be the basis for additional
research In the other aspects of distributed logging mentioned

above
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I Replicated Increasing Unique
Identifiers

This appendix considers the problem of generating increasing
unique identifiers  Section 3 1 describes how these identifiers are
used to distinguish log records wnitten in different client crash
epochs and hence tc make atomic any log writes that might be
interrupted by crashes This method for replicating identifier
generators only permits a a single chent process to generate
identifiers at one time  Atomic updates of data at more than one
node are not required for this method of replicating unique

dentifier generators

Increasing identifiers are given out by a replhicated abstract
datatype called a replicated identifier generator The only
operation provided by a rephcated identifier generator 1s NewID, a
function that returns a new unique identifier {dentifiers issued by
the same generator can be compared with = (equal) and < (less
than) operators Two identifiers are equal only if they are the
result of the same NewID invocation One identifier 1s less than

another only if 1t was the result of an earlier invocation of NewID

identifiers given out by a replicated identifier generator are

integers and integer comparisons are used for the < and =

operations The state of the replicated identifier generator 1s
rephcated on N generator state representative nodes that each
store an integer n non volatile storage5 Generator state
representatives provide Read and Write operations that are

atomic at individual representatives

The NewID operation first reads the generator state from [@]
representatives Then, NewID writes a value higher than any read
to [g'l representatives Any overlapping assignment of reads and
writes can be used Finally, the value written is returned as a new

identifier

Because the set of generator state representatives read by any
NewID operation intersects the set of representatives written by all

preceding NewID operations that returned values, identifiers

returned by a NewID invocation are always greater than those

returned by previous invocations If a crash interrupts a NewID

operation, then a value written to too few representatives could be
omitted from the sequence of identifiers generated

The difference between an infinite sequence of unique
dentifiers generated as descrnibed here and a sequence of log
sequence numbers generated by the replicated log Writelog
operation described m Section 31 is that the replicated log
ReadlLog operation may be used to determine whether the
sequence contains some integer Similarly, the scheme described
here provides no way to determine the last identifier generated

The availabity of the replicated increasing unique identifier
generator depends on the avalabiity of the generator state

representatives and on the number of generator state

representatives I generator state representatives are unavailable

with probability p then the probability that a replicated unique
identifier generator 1s available i1s the probability that [#J or

fewer nodefl_a}re unavallable simultaneously This probabilty 1s
awen by 7 (V)1 - ¥
=0

References

[Accetta et al 86] Mike Accetta, Robert Baron, Wiliam Bolosky,
Dawvid Golub, Richard Rashid, Avadis Tevanian, Michael
Young Mach A New Kernel Foundation for UNIX
Development In Proceedings of Summer Usenix July,
1986

[Agrawal 85] Rakesh Agrawal A Parallel Logging Algorithm for
Multiprocessor Database Machines In Proceedings of
the Fourth International Workshop on Database
Machines, pages 256 276 March, 1985

[Agrawal and DeWitt 85] Rakesh Agrawal, David J DeWitt
Recovery Architectures for Multiprocessor Database
Machines In Proceedings of ACM SIGMOD 1985
International Conference on Management of Data, pages
132 145 May, 1985

[Anonymous et al 85] Anonymous, etal A Measure of
Transaction Processing Power Datamation 31(7), Apnil,
1985 Also available as Technical Report TR 85 2,
Tandem Corporation, Cupertino, California, January
1985

[Bartlett 81] Joel Bartlett A NonStopTM Kerne! In Proceedings
of the Eighth Symposium on Operating System Principles
ACM, 1981

[Bernstein and Goodman 84] P Bernstein and N Goodman An
algorithm for concurrency contro! and recovery in
rephcated distributed databases ACM Transactions on
Database Systems 9(4) 596 615, December, 1984

5Append only storage may be used to implement generator state representatives

95



[Birrell and Nelson 84] Andrew D Birrell, Bruce J Nelson
Implementing Remote Procedure Calls ACM
Transactions on Computer Systems 2(1) 39 59, February,
1984

[Blochetal 86] Joshuad Bloch, Dean S Daniels, Alfred
Z Spector A Weighted Voting Algorithm for Replicated
Directories Techmcal Report CMU CS 86 132, Carnegie
Mellon University, June, 1986 Rewision of Report CMU
CS 84-114, Apnil 1984 To appear in JACM in 1987

[Daniels and Spector 83] Dean S Daniels, Alfred Z Spector An
Algorithm for Replicated Directonies In Proceedings of
the Second Annual Symposium on Principles of
Distributed Computing, pages 104 113  ACM, August,
1983 Also available in Operating Systems Review 20(1),
January 1986, pp 24 43

[Gifford 79] Dawvid K Gifford Weighted Voting for Replicated
Data [n Proceedings of the Seventh Symposium on
Operating System Principies, pages 150 162 ACM,
December, 1979

[Gray 78] James N Gray Notes on Database Operating Systems
InR Bayer,R M Graham, G Seegmuller (editors),
Lecture Notes in Computer Science Volume 60
Operating Systems - An Advanced Course, pages
393 481 Springer Verlag, 1978 Also available as
Technical Report RJ2188, IBM Research Laboratory, San
Jose, Califorma, 1978

[Herlihy 84] Maurice P Herlthy General Quorum Consensus A
Replication Method for Abstract Data Types Technical
Report CMU CS 84 164, Carnegie Mellon University,
December, 1984

[Kronenberg 86] Nancy P Kronenberg, Henry M Levy, and
Wiliam D Strecker VAXclusters A Closely Coupled
Distributed System ACM Transactions on Computer
Systems 4(2), May, 1986 Presented at the Tenth
Symposium on Operating System Principles, Orcas
Island, Washington, December, 1985

[Lindsay et al 79] Bruce G Lindsay, etal Notes on Distributed
Databases Technical Report RJ2571, IBM Research
Laboratory, San Jose, California, July, 1979 Also
appears in Droffen and Poole (editors), Distributed
Databases, Cambridge University Press, 1980

[Needham et al 83] R M Needham, A J Herbert, J G Mitchell
How to Connect Stable Memory to a Computer
Operating Systems Review 17(1) 16, January, 1983

[Nelson 81] Bruce Jay Nelson Remote Procedure Call PhD
thests, Carnegie Mellon University, May, 1981 Available
as Technical Report CMU CS 81 119a, Camegie Mellon
University

[Perq Systems Corporation 84) Perq System Overview March
1984 edition, Perq Systems Corporation, Pittsburgh,
Pennsylvania, 1984

[Rashid and Robertson 81] Richard Rashid, George Robertson
Accent A Communication Oriented Network Operating
System Kernel In Proceedings of the Eighth Symposium
on Operating System Principles, pages 64 76 ACM,
December, 1981

Q6

[Saltzeret al 84] J H Saltzer, D P Reed, DD Clark
End To End Arguments in System Design ACM
Transactions on Computer Systems 2(4) 277 288,
November, 1984

[Spector 82] Alfred Z Spector Performing Remote Operations
Efficiently on a Local Computer Network
Communications of the ACM 25(4) 246 260, Apnii, 1982

[Spector et al 85a] Alfred Z Spector, Jacob Butcher, Dean
S Daniels, Daniel J Duchamp, Jeffrey L. Eppinger,
Charles E Fineman, Abdelsalam Heddaya, Peter
M Schwarz Support for Distributed Transactions in the
TABS Prototype IEEE Transactions on Software
Engineering SE 11(6) 520 530, June, 1985 Also available
in Proceedings of the Fourth Symposium on Reliability in
Distributed Software and Database Systems, Silver
Springs, Maryland, IEEE, October, 1984 and as Technical
Report CMU CS 84-132, Carnegie Mellon University, July,
1984

[Spector et al 85b] Alfred Z Spector, Dean S8 Daniels, Damel
J Duchamp, Jeffrey L Eppinger, Randy Pausch
Distributed Transactions for Reliable Systems in
Proceedings of the Tenth Symposium on Operating
System Principles, pages 127 146 ACM, December,
1985 Also avaitable in Concurrency Control and
Reliability in Distributed Systems, Van Nostrand Reinhold
Company, New York, and as Technical Report CMU
CS 85 117, Carnegie Mellon University, September 1985

[Spectoret al 86] Alfred Z Spector, Joshua J Bloch, Dean
S Dantels, Richard P Draves, Dan Duchamp, Jeffrey
L Eppinger, Shern G Menees, Dean S Thompson The
Camelot Project Database Engineering 9(4), December,
1986 Also available as Technical Report CMU
CS-86 166, Carnegie Mellon University, November 1986

[Watson 81] RW Watson IPC Interface and End To End
Protocols In BW Lampson (editors), Lecture Notes in
Computer Science Volume 105 Distributed Systems -
Architecture and Implementation An Advanced Course,
chapter 7, pages 140 174 Springer Verlag, 1981



