
44 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. I I MARCH 1990

The Gamma Database Machine Project
DAVID J. DEWITT, SHAHRAM GHANDEHARIZADEH, DONOVAN A. SCHNEIDER,

ALLAN BRICKER, HUI-I HSIAO, AND RICK RASMUSSEN

Abstract-This paper describes the design of the Gamma database
machine and the techniques employed in its implementation. Gamma
is a relational database machine currently operating on an Intel
iPSC/2 hypercube with 32 processors and 32 disk drives. Gamma em-
ploys three key technical ideas which enable the architecture to be
scaled to hundreds of processors. First, all relations a re horizontally
partitioned across multiple disk drives enabling relations to be scanned
in parallel. Second, novel parallel algorithms based on hashing are used
to implement the complex relational operators such as join and aggre-
gate functions. Third, dataflow scheduling techniques are used to co-
ordinate multioperator queries. By using these techniques it is possible
to control the execution of very complex queries with minimal coordi-
nation-a necessity for configurations involving a very large number
of processors.

In addition to describing the design of the Gamma software, a thor-
ough performance evaluation of the iPSC/2 hypercube version of
Gamma is also presented. In addition to measuring the effect of rela-
tion size and indexes on the response time for selection, join, aggre-
gation, and update queries, we also analyze the performance of Gamma
relative to the number of processors employed when the sizes of the
input relations a re kept constant (speedup) and when the sizes of the
input relations a re increased proportionally to the number of proces-
sors (scaleup). The speedup results obtained for both selection and join
queries a re linear; thus, doubling the number of processors halves the
response time for a query. The scaleup results obtained a re also quite
encouraging. They reveal that a nearly constant response time can be
maintained for both selection and join queries as the workload is in-
creased by adding a proportional number of processors and disks.

Index Terms-Database machines, dataflow query processing, dis-
tributed database systems, parallel algorithms, relational database
systems.

I. INTRODUCTION
OR the last 5 years, the Gamma database machine F project has focused on issues associated with the de-

sign and implementation of highly parallel database ma-
chines. In a number of ways, the design of Gamma is
based on what we learned from our earlier database ma-
chine DIRECT [IO]. While DIRECT demonstrated that
parallelism could be successfully applied to processing
database operations, it had a number of serious design
deficiencies that made scaling of the architecture to
hundreds of processors impossible, primarily the use of

Manuscript received August 15, 1989; revised December 12, 1989. This
work was supported in part by the Defense Advanced Research Projects
Agency under Contract N00039-86-(-0578, by the National Science Foun-
dation under Grant DCR-8512862, by a DARPAiNASA sponsored Grad-
uate Research Assistantship in Parallel Processing, and by research grants
from Intel Scientific Computers, Tandem Computers, and Digital Equip-
ment Corporation.

The authors are with the Department of Computer Sciences, University
of Wisconsin, Madison, WI 53705.

IEEE Log Number 8933803.

shared memory and centralized control for the execution
of its parallel algorithms [3].

As a solution to the problems encountered with DI-
RECT, Gamma employs what appear today to be rela-
tively straightforward solutions. Architecturally, Gamma
is based on a shared-nothing [37] architecture consisting
of a number of processors interconnected by a communi-
cations network such as a hypercube or a ring, with disks
directly connected to the individual processors. It is gen-
erally accepted that such architectures can be scaled to
incorporate thousands of processors. In fact, Teradata da-
tabase machines [40] incorporating a shared-nothing ar-
chitecture with over 200 processors are already in use.
The second key idea employed by Gamma is the use of
hash-based parallel algorithms. Unlike the algorithms em-
ployed by DIRECT, these algorithms require no central-
ized control and can thus, like the hardware architecture,
be scaled almost indefinitely. Finally, to make the best of
the limited I/O bandwidth provided by the current gen-
eration of disk drives, Gamma employs the concept of
horizontal partitioning [33] (also termed declustering
[29]) to distribute the tuples of a relation among multiple
disk drives. This design enables large relations to be pro-
cessed by multiple processors concurrently without incur-
ring any communications overhead.

After the design of the Gamma software was completed
in the fall of 1984, work began on the first prototype which
was operational by the fall of 1985. This version of
Gamma was implemented on top of an existing multicom-
puter consisting of 20 VAX 1 1 /750 processors [121. In
the period of 1986-1988, the prototype was enhanced
through the addition of a number of new operators (e.g.,
aggregate and update operators), new parallel join meth-
ods (Hybrid, Grace, and Sort-Merge [34]), and a complete
concurrency control mechanism. In addition, we also
conducted a number of performance studies of the system
during this period [14], [15], [19], [20]. In the spring of
1989, Gamma was ported to a 32 processor Intel iPSC/2
hypercube and the VAX-based prototype was retired.

Gamma is similar to a number of other active parallel
database machine efforts. In addition to Teradata [401,
Bubba [8] and Tandem [39] also utilize a shared-nothing
architecture and employ the concept of horizontal parti-
tioning. While Teradata and Tandem also rely on hashing
to decentralize the execution of their parallel algorithms,
both systems tend to rely on relatively conventional join
algorithms such as sort-merge for processing the frag-
ments of the relation at each site. Gamma, XPRS [38],

1041-4347/90/0300-0044$01 .00 O 1990 IEEE

DeWlTT (’1 U / . : THE GAMMA DATABASE MACHINE PROJECT 45

and Volcano 1221 each utilize parallel versions of the Hy-
brid join algorithm [1 11.

The remainder of this paper is organized as follows. In
Section 11, we describe the hardware used by each of the
Gamma prototypes and our experiences with each. Sec-
tion I11 discusses the organization of the Gamma software
and describes how multioperator queries are controlled.
The parallel algorithms employed by Gamma are de-
scribed in Section IV and the techniques we employ for
transaction and failure management are contained in Sec-
tion V. Section VI contains a performance study of the 32
processor Intel hypercube prototype. Our conclusions and
future research directions are described in Section VII.

11. HARDWARE ARCHITECTURE OF GAMMA
A . Overview

Gamma is based on the concept of a shared-nothing ar-
chitecture [37] in which processors do not share disk
drives or random access memory and can only commu-
nicate with one another by sending messages through an
interconnection network. Mass storage in such an archi-
tecture is generally distributed among the processors by
connecting one or more disk drives to each processor as
shown in Fig. 1. There are a number of reasons why the
shared-nothing approach has become the architecture of
choice. First, there is nothing to prevent the architecture
from scaling to thousands of processors unlike shared-
memory machines for which scaling beyond 30-40 pro-
cessors may be impossible. Second, as demonstrated in
[15], [8], and [39], by associating a small number of disks
with each processor and distributing the tuples of each
relation across the disk drives, it is possible to achieve
very high aggregate 1 /0 bandwidths without using cus-
tom disk controllers [27], 13 11. Furthermore, by employ-
ing off-the-shelf mass storage technology one can employ
the latest technology in small 3 1 /2 in. disk drives with
embedded disk controllers. Another advantage of the
shared nothing approach is that there is no longer any need
to “roll your own” hardware. Recently, both Intel and
Ncube have added mass storage to their hypercube-based
multiprocessor products.

B. Gamma Version 1.0
The initial version of Gamma consisted of 17 VAX

11/750 processors, each with 2 megabytes of memory.
An 80 Mb/s token ring [32] was used to connect the pro-
cessors to each other and to another VAX running UNIX.
This processor acted as the host machine for Gamma. At-
tached to eight of the processors were 333 megabyte Fu-
jitsu disk drives that were used for storing the database.
The diskless processors were used along with the proces-
sors with disks to execute join and aggregate function op-
erators in order to explore whether diskless processors
could be exploited effectively.

We encountered a number of problems with this pro-
totype. First, the token ring has a maximum network
packet size of 2K bytes. In the first version of the proto-
type, the size of a disk page was set to 2K bytes in order

INTERCONNECTION NETWORK

Fig. I

to be able to transfer an “intact” disk page from one pro-
cessor to another without a copy. This required, for ex-
ample, that each disk page also contain space for the pro-
tocol header used by the interprocessor communication
software. While this initially appeared to be a good idea,
we quickly realized that the benefits of a larger disk page
size more than offset the cost of having to copy tuples
from a disk page into a network packet.

The second problem we encountered was that the net-
work interface and the Unibus on the 11/750 were both
bottlenecks [181, [151. While the bandwidth of the token
ring itself was 80 Mb/s , the Unibus on the 11/750 (to
which the network interface was attached) has a band-
width of only 4 Mb/s. When processing a join query
without a selection predicate on either of the input rela-
tions, the Unibus became a bottleneck because the trans-
fer rate of pages from the disk was higher than the speed
of the Unibus [15]. The network interface was a bottle-
neck because it could only buffer two incoming packets
at a time. Until one packet was transferred into the VAX’s
memory, other incoming packets were rejected and had to
be retransmitted by the communications protocol. While
we eventually constructed an interface to the token ring
that plugged directly into the backplane of the VAX, by
the time the board was operational the VAX’s were ob-
solete and we elected not to spend additional funds to up-
grade the entire system.

The other serious problem we encountered with this
prototype was having only 2 megabytes of memory on
each processor. This was especially a problem since the
operating system used by Gamma does not provide virtual
memory. The problem was exacerbated by the fact that
space for join hash tables, stack space for processes, and
the buffer pool were managed separately in order to avoid
flushing hot pages from the buffer pool. While there are
advantages to having these spaces managed separately by
the software, in a configuration where memory is already
tight, balancing the sizes of these three pools of memory
proved difficult.

C. Gamma Version 2.0
In the fall of 1988, we replaced the VAX-based proto-

type with a 32 processor iPSC/2 hypercube from Intel.

Each processor is configured with a 386 CPU, 8 mega-
bytes of memory, and a 330 megabyte MAXTOR 4380
(5 1 / 4 in.) disk drive. Each disk drive has an embedded
SCSI controller which provides a 45 Kbyte RAM buffer
that acts as a disk cache on read operations.

The nodes in the hypercube are interconnected to form
a hypercube using custom VLSI routing modules. Each
module supports eight’ full-duplex, serial, reliable com-
munication channels operating at 2 . 8 megabytes/s. Small
messages (I 100 bytes) are sent as datagrams. For large
messages, the hardware builds a communications circuit
between the two nodes over which the entire message is
transmitted without any software overhead or copying.
After the message has been completely transmitted, the
circuit is released. The length of a message is limited only
by the size of the physical memory on each processor.
Table I summarizes the transmission times from one
Gamma process to another (on two different hypercube
nodes) for a variety of message sizes.

The conversion of the Gamma software to the hyper-
cube began in early December 1988. Because most users
of the Intel hypercube tend to run a single process at a
time while crunching numerical data, the operating sys-
tem provided by Intel supports only a limited number of
heavyweight processes. Thus, we began the conversion
process by porting Gamma’s operating system, NOSE (see
Section 111-E). In order to simplify the conversion, we
elected to run NOSE as a thread package inside a single
NX/2 process in order to avoid having to port NOSE to
run on the bare hardware directly.

Once NOSE was running, we began converting the
Gamma software. This process took 4-6 man months but
lasted about 6 months as, in the process of the conversion,
we discovered that the interface between the SCSI disk
controller and memory was not able to transfer disk blocks
larger than 1024 bytes (the pitfall of being a beta test site).
For the most part, the conversion of the Gamma software
was almost trivial as, by porting NOSE first, the differ-
ences between the two systems in initiating disk and mes-
sage transfers were completely hidden from the Gamma
software. In porting the code to the 386, we did discover
a number of hidden bugs in the VAX version of the code
as the VAX does not trap when a null pointer is derefer-
enced. The biggest problem we encountered was that
nodes on the VAX multicomputer were numbered begin-
ning with 1 while the hypercube uses 0 as the logical ad-
dress of the first node. While we thought that making the
necessary changes would be tedious but straightforward,
we were about half way through the port before we real-
ized that we would have to find and change every “for”
loop in the system in which the loop index was also used
as the address of the machine to which a message was to
be sent. While this sounds silly now, it took us several
weeks to find all the places that had to be changed. In
retrospect, we should have made NOSE mask the differ-
ences between the two addressing schemes.

‘On configurations *ith a mix of compute and I/O nodes, one of the
eight channels is dedicated for communication to the I/O subsystem.

TABLE I

Packet Size (in bytes) Transmission Time
50 0.74 ms.
500 1.46 ms.

loo0 1.57 ms.
4Ooo 2.69 ms.
8000 4.64 ms.

From a database system perspective, however, there are
a number of areas in which Intel could improve the design
of the iPSC/2. First, a lightweight process mechanism
should be provided as an alternative to NX/2 . While this
would have almost certainly increased the time required
to do the port, in the long run we could have avoided
maintaining NOSE. A much more serious problem with
the current version of the system is that the disk controller
does not perform DMA transfers directly into memory.
Rather, as a block is read from the disk, the disk control-
ler does a DMA transfer into a 4K byte FIFO. When the
FIFO is half full, the CPU is interrupted and the contents
of the FIFO are copied into the appropriate location in
memory.2 While a block instruction is used for the copy
operation, we have measured that about 10% of the avail-
able CPU cycles are being wasted doing the copy opera-
tion. In addition, the CPU is interrupted 13 times during
the transfer of one 8 Kbyte block partially because a SCSI
disk controller is used and partially because of the FIFO
between the disk controller and memory.

111. SOFTWARE ARCHITECTURE OF GAMMA
In this section, we present an overview of Gamma’s

software architecture and describe the techniques that
Gamma employs for executing queries in a dataflow fash-
ion. We begin by describing the alternative storage struc-
tures provided by the Gamma software. Next, the overall
system architecture is described from the top down. After
describing the overall process structure, we illustrate the
operation of the system by describing the interaction of
the processes during the execution of several different
queries. A detailed presentation of the techniques used to
control the execution of complex queries is presented in
Section 111-D. This is followed by an example which il-
lustrates the execution of a multioperator query. Finally,
we briefly describe WiSS, the storage system used to pro-
vide low-level database services, and NOSE, the under-
lying operating system.

A . Gamma Storage Organizations
Relations in Gamma are horizontally partitioned [33]

across all disk drives in the system. The key idea behind
horizontally partitioning each relation is to enable the da-
tabase software to exploit all the I /O bandwidth provided
by the hardware. By declustering3 the tuples of a relation,

’Intel was forced to use such a design because the I/O system was added
after the system had been completed and the only way of doing I/O was by
using a empty socket on the board which did not have DMA access to
memory.

’Declustering is another term for horizontal partitioning that was coined
by the Bubba project [29].

DeWITT cf al . : THE GAMMA DATABASE MACHINE PROJECT

the task of uarallelizinr! a selection/scan oDerator be-

47

TABLE 11
AN EXAMPLE RANGE T A B L E comes triviai as all thacis required is to star; a copy of

the operator on each processor. Distribution Condition Processo~#

The query language of Gamma provides the user with

hashed, and range partitioned. With the first strategy, tu-

emp-id S 100 1
100 < emp-id I 300 2
300 < emp-id S lo00 3
emp-id > lo00 4

three alternative declustering strategies: round robin,

ples are distributed in a round-robin fashion among the
disk drives. This is the default strategy and is used for all
relations created as the result of a query. If the hashed
partitioning strategy is selected, a randomizing function
is applied to the key attribute of each tuple (as specified
in the partition command for the relation) to select a stor-
age unit. In the third strategy, the user specifies a range
of key values for each site. For example, with a four disk
system, the command partition employee on emp-id (100,
300, ZOOO) would result in the distribution of tuples shown
in Table 11. The partitioning information for each relation
is stored in the database catalog. For range and hash-par-
titioned relations, the name of the partitioning attribute is
also kept and, in the case of range-partitioned relations,
the range of values of the partitioning attribute for each
site (termed a range table).

Once a relation has been partitioned, Gamma provides
the normal collection of relational database system access
methods including both clustered and nonclustered in-
dexes. When the user requests that an index be created on
a relation, the system automatically creates an index on
each fragment of the relation. Unlike VSAM [41] and the
Tandem file system [17], Gamma does not require the
clustered index for a relation to be constructed on the par-
titioning attribute.

As a query is being optimized, the partitioning infor-
mation for each source relation in the query is incorpo-
rated into the query plan produced by the query optimizer.
In the case of hash and range-partitioned relations, this
partitioning information is used by the query scheduler
(discussed below) to restrict the number of processors in-
volved in the execution of selection queries on the parti-
tioning attribute. For example, if relation X is hash par-
titioned on attribute y , it is possible to direct selection
operations with predicates of the form “ X . y = Constant”
to a single site; avoiding the participation of any other
sites in the execution of the query. In the case of range-
partitioned relations, the query scheduler can restrict the
execution of the query to only those processors whose
ranges overlap the range of the selection predicate (which
may be either an equality or range predicate).

In retrospect, we made a serious mistake in choosing to
decluster all relations across all nodes with disks. A much
better approach, as proposed in 181, is to use the “heat”
of a relation to determine the degree to which the relation
is declustered. Unfortunately, to add such a capability to
the Gamma software at this point in time would require a
fairly major effort-one we are not likely to undertake.

B. Gamma Process Structure

The overall structure of the various processes that form
the Gamma software is shown in Fig. 2. The role of each

process is described briefly below. The operation of the
distributed deadlock detection and recovery mechanism
are presented in Sections V - A and V-B. At system initial-
ization time, a UNIX daemon process for the catalog
manager (CM) is initiated along with a set of scheduler
processes, a set of operator processes, the deadlock de-
tection process, and the recovery process.

Catalog Manager: The function of the catalog man-
ager is to act as a central repository of all conceptual and
internal schema information for each database. The
schema information is loaded into memory when a data-
base is first opened. Since multiple users may have the
same database open at once and since each user may re-
side on a machine other than the one on which the catalog
manager is executing, the catalog manager is responsible
for ensuring consistency among the copies cached by each
user.

Query Manager: One query manager process is asso-
ciated with each active Gamma user. The query manager
is responsible for caching schema information locally,
providing an interface for ad-hoc queries using gdl (our
variant of Que1 [3 7]) , query parsing, optimization, and
compilation.

Scheduler Processes: While executing, each multisite
query is controlled by a scheduler process. This process
is responsible for activating the operator processes used
to execute the nodes of a compiled query tree. Scheduler
processes can be run on any processor, ensuring that no
processor becomes a bottleneck. In practice, however,
scheduler processes consume almost no resources and it
is possible to run a large number of them on a single pro-
cessor. A centralized dispatching process is used to assign
scheduler processes to queries. Those queries that the op-
timizer can detect to be single-site queries are sent di-
rectly to the appropriate node for execution, bypassing the
scheduling process.

Operator Process: For each operator in a query tree,
at least one operator process is employed at each proces-
sor participating in the execution of the operator. These
operators are primed at system initialization time in order
to avoid the overhead of starting processes at query exe-
cution time (additional processes can be forked as
needed). The structure of an operator process and the
mapping of relational operators to operator processes is
discussed in more detail below. When a scheduler wishes
to start a new operator on a node, it sends a request to a
special communications port known as the “new task”
port. When a request is received on this port, an idle op-
erator process is assigned to the request and the commu-
nications port of this operator process is returned to the
requesting scheduler process.

48 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. I , MARCH 1990

p q MANAGER fq
MANAGER 9

c
GAMMA

PROCESSORS

I

OPERATOR OPERATOR OPERATOR OPERATOR
PROCESSES PROCESSES PROCESSES PROCESSES

Fig. 2. Gamma process structure.

C. An Overview of Query Execution
Ad-hoc and Embedded Query Interfaces: Two inter-

faces to Gamma are available: an ad-hoc query language
and an embedded query language interface in which quer-
ies can be embedded in a C program. When a user invokes
the ad-hoc query interface, a query manager (QM) pro-
cess is started which immediately connects itself to the
CM process through the UNIX Internet socket mecha-
nism. When the compiled query interface is used, the pre-
processor translates each embedded query into a compiled
query plan which is invoked at run-time by the program.
A mechanism for passing parameters from the C program
to the compiled query plans at run time is also provided.

Query Execution: Gamma uses traditional relational
techniques for query parsing, optimization [3 6] , [2 6] , and
code generation. The optimization process is somewhat
simplified as Gamma only employs hash-based algorithms
for joins and other complex operations. Queries are com-
piled into a left-deep tree of operators. At execution time,
each operator is executed by one or more operator pro-
cesses at each participating site.

In designing the optimizer for the VAX version of
Gamma, the set of possible query plans considered by the
optimizer was restricted to only left-deep trees because
we felt that there was not enough memory to support right-
deep or bushy plans. By using a combination of left-deep
query trees and hash-based join algorithms, we were able
to ensure that no more than two join operations were ever
active simultaneously and hence were able to maximize
the amount of physical memory which could be allocated

to each join operator. Since this memory limitation was
really only an artifact of the VAX prototype, we have re-
cently begun to examine the performance implications of
right-deep and bushy query plans [3 5] .

As discussed in Section 111-A, in the process of opti-
mizing a query, the query optimizer recognizes that cer-
tain queries can be directed to only a subset of the nodes
in the system. In the case of a single site query, the query
is sent directly by the QM to the appropriate processor for
execution. In the case of a multiple site query, the opti-
mizer establishes a connection to an idle scheduler pro-
cess through a centralized dispatcher process. The dis-
patcher process, by controlling the number of active
schedulers, implements a simple load control mechanism.
Once it has established a connection with a scheduler pro-
cess, the QM sends the compiled query to the scheduler
process and waits for the query to complete execution.
The scheduler process, in turn, activates operator pro-
cesses at each query processor selected to execute the op-
erator. Finally, the QM reads the results of the query and
returns them through the ad-hoc query interface to the user
or through the embedded query interface to the program
from which the query was initiated.

D. Operator and Process Structure
The algorithms for all the relational operators are writ-

ten as if they were to be run on a single processor. As
shown in Fig. 3 , the input to an operator process is a
stream of tuples and the output is a stream of tuples that
is demultiplexed through a structure we term a split table.

DeWlTT et a l . : THE GAMMA DATABASE MACHINE PROJECT

0

1

2

3

1 CONTROL PACKET

(Processor #3, Port #5)

(Processor #2, Port #13)

(Processor #7, Port #6)

(Processor #9, Port #15)

49

STREAM OF TUPLES
b

\y

PROCESS
EXECUTING

OPERATOR

Fig. 3.

Once the process begins execution, it continuously reads
tuples from its input stream, operates on each tuple, and
uses a split table to route the resulting tuple to the process
indicated in the split table.4 When the process detects the
end of its input stream, it first closes the output streams
and then sends a control message to its scheduler process
indicating that it has completed execution. Closing the
output streams has the side effect of sending “end of
stream” messages to each of the destination processes.

The split table defines a mapping of values to a set of
destination processes. Gamma uses three different types
of split tables depending on the type of operation being
performed [141. As an example of one form of split table,
consider the use of the split table shown in Fig. 4 in con-
junction with the execution of a join operation using four
processors. Each process producing tuples for the join will
apply a hash function to the join attribute of each output
tuple to produce a value between 0 and 3. This value is
then used as an index into the split table to obtain the
address of the destination process that should receive the
tuple.

An Example: As an example of how queries are exe-
cuted, consider the query shown in Fig. 5 . In Fig. 6, the
processes used to execute the query are shown along with
the flow of data between the various processes for a
Gamma configuration consisting of two processors with
disks and two processors without disks. Since the two in-
put relations A and B are partitioned across the disks at-
tached to processors P1 and P2, selection and scan oper-
ators are initiated on both processors P1 and P2. The split
tables for both the select and scan operators each contain
two entries since two processors are being used for the
join operation. The split tables for each selection and scan
are identical-routing tuples whose join attribute values
hash to 0 (dashed lines) to P3 and those which hash to 1
(solid lines) to P4. The join operator executes in two
phases. During the first phase, termed the building phase,
tuples from the inner relation (A in this example) are in-
serted into a memory-resident hash table by hashing on
the join attribute value. After the first phase has com-
pleted, the probing phase of the join is initiated in which

‘Tuples are actually sent as 8K byte batches, except for the last batch.

OUTGOING STREAMS
71 OFTUPLES

I r

Value I Destination Process
I

Fig. 4. An example split table

6 Gb
A B

Fig. 5.

tuples from the outer relation are used to probe the hash
table for matching tuple^.^ Since the result relation is par-
titioned across two disks, the split table for each join op-
erator contains two entries and tuples of C are distributed
in a round-robin fashion among P1 and P2.

One of the main problems with the DIRECT prototype
was that every data page processed required at least one
control message to a centralized scheduler. In Gamma,
this bottleneck is completely avoided. In fact, the number
of control messages required to execute a query is ap-
proximately equal to three times the number of operators
in the query times the number of processors used to exe-
cute each operator. As an example, consider Fig. 7 which
depicts the flow of control messages6 from a scheduler
process to the processes on processors PI and P3 in Fig.
6 (an identical set of messages would flow from the sched-

‘This is actually a description of the simple hash join algorithm. The
operation of the hybrid hash join algorithm is contained in Section 1V.

‘The “Initiate” message is sent to a “new operator” port on each pro-
cessor. A dispatching process accepts incoming messages on this port and
assigns the operator to a process. The process, which is assigned, replies
to the scheduler with an “ID” message which indicates the private port
number of the operator process. Future communications to the operator by
the scheduler use thi’s private port number.

50

STORE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. I . MARCH 1990

I l l I 1 I I I

SELECT SCAN SELECT SCAN STORE

r
I
I

P3 I
I
I
I
I
I
I
I
I
L

I t t
PI

t f I '

L ~ I

DONE (#6)
W N E (# 1 3) j I

L.......... , I
: I

I P4
I

r.......... 1

P2

; I

1 JOIN I HASH I JOIN I BUILD TABLE PROBE
P3

.........................
ID(#8) ID(#4)

SELECT SCHEDULER - - - - - - - - P1 STORE - - - - - - -+

9
1'1

Fig. I .

! I

i l
INITIATE(#IO) j I ID(#II)

uler to P2 and P4). The scheduler begins by initiating the
building phase of the join and the selection operator on
relation A . When both these operators have completed,
the scheduler next initiates the store operator, the probing
phase of the join, and the scan of relation B . When each
of these operators has completed, a result message is re-
turned to the user.

W N E (# 1 2)

E. Operating and Storage System
Gamma is built on top of an operating system designed

specifically for supporting database management systems.
NOSE provides multiple, lightweight processes with
shared memory. A nonpreemptive scheduling policy is
used to prevent convoys [4] from occurring. NOSE pro-
vides communications between NOSE processes using the
reliable message passing hardware of the Intel iPSC /2
hybercube. File services in NOSE are based on the Wis-

consin Storage System (WiSS) [7]. Critical sections of
WiSS are protected using the semaphore mechanism pro-
vided by NOSE.

The file services provided by WiSS include structured
sequential files, byte-stream files as in UNIX, B+ in-
dexes, long data items, a sort utility, and a scan mecha-
nism. A sequential file is a sequence of records. Records
may vary in length (up to one page in length), and may
be inserted and deleted at arbitrary locations within a se-
quential file. Optionally, each file may have one or more
associated indexes which map key values to the record
identifiers of the records in the file that contain a matching
value. One indexed attribute may be designated as a clus-
tering attribute for the file. The scan mechanism is similar
to that provided by System R's RSS [2] except that the
predicates are compiled by the query optimizer into 386
machine language to maximize performance.

DeWITT P I a l . : THE GAMMA DATABASE MACHINE PROJECl 51

IV. QUERY PROCESSING ALGORITHMS

A . Selection Operator
Since all relations are declustered over multiple disk

drives parallelizing the selection operation involves sim-
ply initiating a selection operator on the set of relevant
nodes with disks. When the predicate in the selection
clause is on the partitioning attribute of the relation and
the relation is hash or range partitioned, the scheduler can
direct the selection operator to a subset of the nodes. If
either the relation is round-robin partitioned or the selec-
tion predicate is not on the partitioning attribute, a selec-
tion operator must be initiated on all nodes over which the
relation is declustered. To enhance performance, Gamma
employs a one page read-ahead mechanism when scan-
ning the pages of a file sequentially or through a clustered
index. This mechanism enables the processing of one page
to be overlapped with the 1/0 for the subsequent page.

B. Join Operator
The multiprocessor join algorithms provided by Gamma

are based on the concept of partitioning the two relations
to be joined into disjoint subsets called buckets [21], [28],
[6] by applying a hash function to the join attribute of
each tuple. The partitioned buckets represent disjoint sub-
sets of the original relations and have the important char-
acteristic that all tuples with the same join attribute value
are in the same bucket. We have implemented parallel
versions of four join algorithms on the Gamma prototype:
sort-merge, Grace [28], Simple [1 I], and Hybrid [I I] .
While all four algorithms employ this concept of hash-
based partitioning, the actual join computation depends
on the algorithm. The parallel hybrid join algorithm is
described in the following section. Additional informa-
tion on all four parallel algorithms and their relative per-
formance can be found in [34]. Since this study found that
the Hybrid hash join almost always provides the best per-
formance, it is now the default algorithm in Gamma and
is described in more detail in the following section. Since
these hash-based join algorithms cannot be used to exe-
cute nonequijoin operations, such operations are not cur-
rently supported. To remedy this situation, we are in the
process of designing a parallel nonequijoin algorithm for
Gamma.

Hybrid Hash-Join: A centralized Hybrid hash-join al-
gorithm [l l] operates in three phases. In the first phase,
the algorithm uses a hash function to partition the inner
(smaller) relation R into N buckets. The tuples of the first
bucket are used to build an in-memory hash table while
the remaining N - 1 buckets are stored in temporary files.
A good hash function produces just enough buckets to en-
sure that each bucket of tuples will be small enough to fit
entirely in main memory. During the second phase, rela-
tion S is partitioned using the hash function from step 1.
Again, the last N - 1 buckets are stored in temporary files
while the tuples in the first bucket are used to immediately
probe the in-memory hash table built during the first

phase. During the third phase, the algorithm joins the re-
maining N - 1 buckets from relation R with their respec-
tive buckets from relation S . The join is thus broken up
into a series of smaller joins; each of which hopefully can
be computed without experiencing join overflow. The size
of the smaller relation determines the number of buckets;
this calculation is independent of the size of the larger
relation.

Our parallel version of the Hybrid hash-join algorithm
is similar to the centralized algorithm described above. A
partitioning split table first separates the joining relations
into N logical buckets. The number of buckets is chosen
such that the tuples corresponding to each logical bucket
will fit in the aggregate memory of the joining processors.
The N - 1 buckets intended for temporary storage on disk
are each partitioned across all available disk sites. Like-
wise, ajoining split table will be used to route tuples to
their respective joining processor (these processors do not
necessarily have attached disks), thus parallelizing the
joining phase. Furthermore, the partitioning of the inner
relation R into buckets is overlapped with the insertion of
tuples from the first bucket of R into memory-resident hash
tables at each of the join nodes. In addition, the partition-
ing of the outer relation S into buckets is overlapped with
the joining of the first bucket of S with the first bucket of
R. This requires that the partitioning split table for R and
S be enhanced with the joining split table as tuples in the
first bucket must be sent to those processors being used
to effect the join. Of course, when the remaining N - 1
buckets are joined, only the joining split table will be
needed. Fig. 8 depicts relation R being partitioned into N
buckets across k disk sites where the first bucket is to be
joined on m processors (m may be less than, equal to, or
greater than k).

C. Aggregate Operations
Gamma implements scalar aggregates by having each

processor compute its piece of the result in parallel. The
partial results are then sent to a single process which com-
bines these partial results into the final answer. Aggregate
functions are computed in two steps. First, each processor
computes a piece of the result by calculating a value for
each of the partitions. Next, the processors redistribute
the partial results by hashing on the “group by” attribute.
The result of this step is to collect the partial results for
each partition at a single site so that the final result for
each partition can be computed.

D. Update Operators
For the most part, the update operators (replace, delete,

and append) are implemented using standard techniques.
The only exception occurs when a replace operator mod-
ifies the partitioning attribute of a tuple. In this case, rather
than writing the modified tuple back into the local frag-
ment of the relation, the modified tuple is passed through
a split table to determine which site should contain the
tuple.

52 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2 . NO. 1 , MARCH 1990

M PROCFSSORS

BLCKI:’I2

I3LCKI:I I

I’AR1’1’l70NISG SI’LIT
, , , , , I

I ,

I , , ,
I , , ,

+
1”

(K ENTRIES) I +w
PI P2

(M ENTRIES) (K ENTRIES)

R
Fig. 8. Partitioning of R into N logical buckets for hybrid hash-join.

V . TRANSACTION A N D FAILURE MANAGEMENT

In this section, we describe the mechanisms that Gamma
uses for transaction and failure management. While the
locking mechanisms are fully operational, the recovery
system is currently being implemented. We expect to be-
gin the implementation of the failure management mech-
anism in early 1990.

A. Concurrency Control in Gamma
Concurrency control in Gamma is based on two-phase

locking [23]. Currently, two lock granularities, file and
page, and five lock modes, S , X , I S , I X , and SIX are pro-
vided. Each site in Gamma has its own local lock manager
and deadlock detector. The lock manager maintains a lock
table and a transaction wait-for-graph. The cost of setting
a lock varies from approximately 100 instructions, if there
is no conflict, to 250 instructions if the lock request con-
flicts with the granted group. In this case, the wait-for-
graph must be checked for deadlock and the transaction
that requested the lock must be suspended via a sema-
phore mechanism.

In order to detect multisite deadlocks, Gamma uses a
centralized deadlock detection algorithm. Periodically, the
centralized deadlock detector sends a message to each
node in the configuration, requesting the local transaction
wait-for-graph of that node. Initially, the period for run-
ning the centralized deadlock detector is set at 1 s. Each
time the deadlock detector fails to find a global deadlock,
this interval is doubled and each time a deadlock is found
the current value of the interval is halved. The upper
bound of the interval is limited to 60 s and the lower bound
is 1 s. After collecting the wait-for-graph from each site,
the centralized deadlock detector creates a global trans-
action wait-for-graph. Whenever a cycle is detected in the
global wait-for-graph, the centralized deadlock manager
chooses to abort the transaction holding the fewest num-
ber of locks.

B. Recovery Architecture and Log Manager
The algorithms currently being implemented for coor-

dinating transaction commit, abort, and rollback operate

as follows. When an operator process updates a record, it
also generates a log record which records the change of
the database state. Associated with every log record is a
log sequence number (LSN) which is composed of a node
number and a local sequence number. The node number
is statically determined at the system configuration time
whereas the local sequence number, termed current LSN,
is a monotonically increasing value.

Log records are sent by the query processors to one or
more log managers (each running on a separate processor)
which merges the log records it receives to form a single
log stream. If M is the number of log processors being
used, query processor i will direct its log records to the (i
mod M) log processor [11. Because this algorithm selects
the log processor statically and a query processor always
sends its log records to the same log processor, the recov-
ery process at a query processing node can easily deter-
mine where to request the log records for processing a
transaction abort.

When a page of log records is filled, it is written to
disk. The log manager maintains a table, called thejushed
log table, which contains, for each node, the LSN of the
last log record from that node that has been flushed to
disk. These values are returned to the nodes either upon
request or when they can be piggybacked on another mes-
sage. Query processing nodes save this information in a
local variable, termed the jushed LSN.

The buffer managers at the query processing nodes ob-
serve the WAL protocol [23]. When a dirty page needs to
be forced to disk, the buffer manager first compares the
page’s LSN with the local value of flushed LSN. If the
LSN of a page is smaller or equal to the flushed LSN, that
page can be safely written to disk. Otherwise, either a
different dirty page must be selected, or a message must
be sent to the log manager to flush the corresponding log
record(s) of the dirty page. Only after the log manager
acknowledges that the log record has been written to the
log disk will the dirty data page be written back to disk.
In order to reduce the time spent waiting for a reply from
the log manager, the buffer manager always keeps T (a
preselected threshold) clean and unfixed buffer pages
available. When buffer manager notices that the number

DeWlTT et d. : THE GAMMA DATABASE MACHINE PROJECT 53

of clean, unfixed buffer pages has fallen below T , a pro-
cess, termed local log manager, is activated. This process
sends a message to the log manager to flush one or more
log records so that the number of clean and unfixed pages
plus the number of dirty pages that can be safely written
to disk is greater than T.

The scheduler process for a query is responsible for
sending commit or abort records to the appropriate log
managers. If a transaction completes successfully, a com-
mit record for the transaction is generated by its scheduler
and sent to each relevant log manager which employs a
group commit protocol. On the other hand, if a transac-
tion is aborted by either the system or the user, its sched-
uler will send an abort message to all query processors
that participated in its execution. The recovery process at
each of the participating nodes responds by requesting the
log records generated by the node from its log manager
(the LSN of each log record contains the originating node
number). As the log records are received, the recovery
process undoes the log records in reverse chronological
order using the ARIES undo algorithm [30]. The ARIES
algorithms are also used as the basis for checkpointing
and restart recovery.

C. Failure Management

To help ensure availability of the system in the event
of processor and/or disk failures, Gamma employs a new
availability technique termed chained declustering [25].
Like Tandem’s mirrored disk mechanism [5] and Tera-
data’s interleaved declustering mechanism [40], [9] ,
chained declustering employs both a primary and backup
copy of each relation. All three systems can sustain the
failure of a single processor or disk without suffering any
loss in data availability. In [25], we show that chained
declustering provides a higher degree of availability than
interleaved declustering and, in the event of a processor
or disk failure, does a better job of distributing the work-
load of the broken node. The mirrored disk mechanism,
while providing the highest level of availability, does a
very poor job of distributing the load of a failed proces-
sor.

Data Placement with Chained Declustering: With
chained declustering, nodes (a processor with one or more
disks) are divided into disjoint groups called relation
clusters and tuples of each relation are declustered among
the drives that form one of the relation clusters. Two
physical copies of each relation, termed the primary copy
and the backup copy, are maintained. As an example,
consider Fig. 9 where M , the number of disks in the re-
lation cluster, is equal to 8. The tuples in the primary
copy of relation R are declustered using one of Gamma’s
three partitioning strategies with tuples in the ith primary
fragment (designated Ri) stored on the { i mod M}th disk
drive. The backup copy is declustered using the same par-
titioning strategy but the ith backup fragment (designated
ri) is stored on { (i + 1) mod M}th disk. We term this data
replication method chained declustering because the disks

are linked together, by the fragments of a relation, like a
chain.

The difference between the chained and interleaved de-
clustering mechanisms [40], [9] is illustrated by Fig. 10.
In Fig. 10, the fragments from the primary copy of R are
declustered across all eight disk drives by hashing on a
“key” attribute. With the interleaved declustering mech-
anism the set of disks is divided into units of size N called
clusters. As illustrated by Fig. 10, where N = 4 , each
backup fragment is subdivided into N - 1 subfragments
and each subfragment is placed on a different disk within
the same cluster other than the disk containing the pri-
mary fragment.

Since interleaved and chained declustering can both
sustain the failure of a single disk or processor, what then
is the difference between the two mechanisms? In the case
of a single node (processor or disk) failure, both the
chained and interleaved declustering strategies are able to
uniformly distribute the workload of the cluster among
the remaining operational nodes. For example, with a
cluster size of 8, when a processor or disk fails, the load
on each remaining node will increase by 1 /7th. One might
conclude then that the cluster size should be made as large
as possible; until, of course, the overhead of the parallel-
ism starts to overshadow the benefits obtained. While this
is true for chained declustering, the availability of the in-
terleaved strategy is inversely proportional to the cluster
size since the failure of any two processors or disk will
render data unavailable. Thus, doubling the cluster size
in order to halve (approximately) the increase in the load
on the remaining nodes when a failure occurs has the
(quite negative) side effect of doubling the probability that
data will actually be unavailable. For this reason, Tera-
data recommends a cluster size of 4-8 processors.

Fig. 11 illustrates how the workload is balanced in the
event of a node failure (node 1 in this example) with the
chained declustering mechanism. During the normal mode
of operation, read requests are directed to the fragments
of the primary copy and write operations update both cop-
ies. When a failure occurs, pieces of both the primary and
backup fragments are used for read operations. For ex-
ample, with the failure of node 1 , primary fragment R1
can no longer be accessed and thus its backup fragment
rl on node 2 must be used for processing queries that
would normally have been directed to R1. However, in-
stead of requiring node 2 to process all accesses to both
R2 and r l , chained declustering offloads 6/7ths of the
accesses to R2 by redirecting them to r2 at node 3 . In turn,
5/7ths of access to r3 at node 3 are sent to R4 instead.
This dynamic reassignment of the workload results in an
increase of 1 /7th in the workload of each remaining node
in the cluster. Since the cluster size can be increased with-
out penalty, it is possible to make this load increase as
small as is desired.

What makes this scheme even more attractive is that the
reassignment of active fragments incurs neither disk I /O
nor data movement. Only some of the bound values and
pointers/indexes in a memory resident control table must

54

PrimaryCopy

Backupcopy

IEEE TRANSACTlONS ON KNOWLEDGE AND DATA ENGINEERING.

RO R1 R2 R 3 R 4 R5 R 6 R7

r7 10 r l r2 r3 r4 r5 r6

VOL. 2. NO. I . MARCH 1990

Node

PrimaryCopy

Backup Copy

l l I Node I O 1 2 3 4 5 6

Cluster 0 Cluster 1

0 1 2 3 4 5 6 7

RO R1 R2 R 3 R 4 R5 R 6 R7

10.0 10.1 10.2 r4.0 r4.1 r4.2

r1.2 rl.O r l . 1 r5.2 r5.0 r5.1

r2.1 r2.2 r2.0 r6.1 r6.2 r6 0

r3.0 r3.1 r3.2 r7.0 r7.1 r7.2

Fig. 9. Chained declustering (relation cluster size = 8)

Fig. I O . Interleaved declustering (cluster size = 4)

I Node I 0 1 2 3 4 5 6 7 1

Primary Copy RO ---

I I I

Fig. 1 1 . Fragment utilization with chained declustering after the failure of
node 1 (relation cluster size = 8).

be changed and these modifications can be done very
quickly and efficiently.

The example shown in Fig. 11 provides a very simpli-
fied view of how the chained declustering mechanism ac-
tually balances the workload in the event of a node fail-
ure. In reality, queries cannot simply access an arbitrary
fraction of a data fragment, especially given the variety
of partitioning and index mechanisms provided by the
Gamma software. In [25], we describe how all combina-
tions of query types, access methods, and partitioning
mechanisms can be handled.

VI. PERFORMANCE STUDIES

A . Introduction and Experiment Overview
To evaluate the performance of the hypercube version

of Gamma, three different metrics were used. First, the
set of Wisconsin [3] benchmark queries were run on a 30
processor configuration using three different sizes of re-
lations: 100 000, 1 million, and 10 million tuples. While
absolute performance is one measure of a database sys-
tem, speedup and scaleup are also useful metrics for mul-
tiprocessor database machines [161. Speedup is an inter-
esting metric because it indicates whether additional
processors and disks result in a corresponding decrease in
the response time for a query. For a subset of the Wis-
consin benchmark queries, we conducted speedup exper-

iments by varying the number of processors from 1 to 30
while the size of the test relations was fixed at 1 million
tuples. For the same set of queries, we also conducted
scaleup experiments by varying the number of processors
from 5 to 30 while the size of the test relations was in-
creased from 1 to 6 million tuples, respectively. Scaleup
is a valuable metric as it indicates whether a constant re-
sponse time can be maintained as the workload is in-
creased by adding a proportional number of processors
and disks. [16] describes a similar set of tests on Release
2 of Tandem’s Nonstop SQL system.

The benchmark relations used for the experiments were
based on the standard Wisconsin Benchmark relations [3].
Each relation consists of tuples that are 208 bytes wide.
We constructed 100 000, 1 million, and 10 million tuple
versions of the benchmark relations. Two copies of each
relation were created and loaded. Except where noted oth-
erwise, tuples were declustered by hash partitioning on
the Unique1 attribute. In all cases, the results presented
represent the average response time of a number of equiv-
alent queries. Gamma was configured to use a disk page
size of 8K bytes and a buffer pool of 2 megabytes.

The results of all queries were stored in the database.
We avoided retuming data to the host in order to avoid
having the speed of the communications link between the
host and the database machine or the host processor itself
affect the results. By storing the result relations in the da-

DcWITT c f a/ : THE GAMMA DATABASE MACHINE PROJECT 55

tabase, the impact of these factors was minimized-at the
expense of incurring the cost of declustering and storing
the result relations.

B. Selection Queries
Performance Relative to Relation Size: The first set of

selection tests was designed to determine how Gamma
would respond as the size of the source relations was in-
creased while the machine configuration was kept at 30
processors with disks. Ideally, the response time of a
query should grow as a linear function of the size of input
and result relations. For these tests six different selection
queries were run on three sets of relations containing, re-
spectively, 100 000, 1 million, and 10 million tuples. The
first two queries have a selectivity factor of 1 % and 10%
and do not employ any indexes. The third and fourth quer-
ies have the same selectivity factors but use a clustered
index to locate the qualifying tuples. The fifth query has
a selectivity factor of 1 % and employs a nonclustered in-
dex to locate the desired tuples. There is no 10% selection
through a nonclustered index query as the Gamma query
optimizer chooses to use a sequential scan for this query.
The last query uses a clustered index to retrieve a single
tuple. Except for the last query, the predicate of each
query specifies a range of values and, thus, since the input
relations were declustered by hashing, the query must be
sent to all the nodes.

The results from these tests are tabulated in Table 111.
For the most part, the execution time for each query
scales as a fairly linear function of the size of the input
and output relations. There are, however, several cases
where the scaling is not perfectly linear. Consider, first
the 1 % nonindexed selection. While the increase in re-
sponse time as the size of the input relation is increased
from 1 to 10 million tuples is almost perfectly linear
(8.16-81.15 s), the increase from 100 000 tuples to 1 mil-
lion tuples (0.45-8.16 s) is actually sublinear. The 10%
selection using a clustered index is another example where
increasing the size of the input relation by a factor of ten
results in more than a tenfold increase in the response time
for the query. This query takes 5.02 s on the 1 million
tuple relation and 6 1.86 s on the 10 million tuple relation.
To understand why this happens one must consider the
impact of seek time on the execution time of the query.
Since two copies of each relation were loaded, when two
one million tuple relations are declustered over 30 disk
drives, the fragments occupy approximately 53 cylinders
(out of 1224) on each disk drive. Two ten million tuple
relations fill about 530 cylinders on each drive. As each
page of the result relation is written to disk, the disk heads
must be moved from their current position over the input
relation to a free block on the disk. Thus, with the 10
million tuple relation, the cost of writing each output page
is much higher.

As expected, the use of a cluster B-tree index always
provides a significant improvement in performance. One
observation to be made from Table I11 is the relative con-
sistency of the execution time of the selection queries

TABLE 111
SELECTION QUERIES. 30 PROCESSORS W I T H DISKS (A L L EXECUTION TIMES I N

SECONDS)

Number of Tuples in Source Relation
Query Description 100,000 1,000,000 10,000,000

1% nonindexed selection 0.45 R.16 81.15

10% nonindexed selecuon 0.82 10.82 135.61

1% selection using clustered index 0.35 0.82 5.12

10% selection using clustered index 0.77 5.02 61.86

1% selection using non-clustered index 0.60 8.77 113.37

single tuple select using clustered index 0.08 0.08 0.14

through a clustered index. Notice that the execution time
for a 10% selection on the 1 million tuple relation is al-
most identical to the execution time of the 1% selection
on the 10 million tuple relation. In both cases, 100 000
tuples are retrieved and stored, resulting in identical 1 /0
and CPU cost.

The final row of Table 111 presents the time required to
select a single tuple using a clustered index and return it
to the host. Since the selection predicate is on the parti-
tioning attribute, the query is directed to a single node,
avoiding the overhead of starting the query on all 30 pro-
cessors. The response time for this query increases sig-
nificantly as the relation size is increased from 1 million
to 10 million tuples because the height of the B-tree in-
creases from two to three levels.

Speedup Experiments: In this section we examine how
the response time for both the nonindexed and indexed
selection queries on the 1 million tuple relation7 is af-
fected by the number of processors used to execute the
query. Ideally, one would like to see a linear improve-
ment in performance as the number of processors is in-
creased from 1 to 30. Increasing the number of processors
increases both the aggregate CPU power and 1/0 band-
width available, while reducing the number of tuples that
must be processed by each processor.

In Fig. 12, the average response times for the nonin-
dexed 1% and 10% selection queries on the one million
tuple relation are presented. As expected, the response
time for each query decreases as the number of nodes is
increased. The response time is higher for the 10% selec-
tion due to the cost of declustering and storing the result
relation. While one could always store result tuples lo-
cally, by partitioning all result relations in a round-robin
(or hashed) fashion one can ensure that the fragments of
every result relation each contain approximately the same
number of tuples. The speedup curves corresponding to
Fig. 12 are presented in Fig. 13.

In Fig. 14, the average response time is presented as a
function of the number of processors for the following
three queries: a 1 % selection through a clustered index, a

'The 1 million tuple relation was used for these experiments because the
10 million tuple relation would not fit on 1 disk drive.

56 lEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2 , NO. I . MARCH 1990

::
250 -

RESPONSE TIME (SECONDS)
450

1% nonindexed selection
0 10% nonindexed selection

\
0 5 10 15 20 25 30

PROCESSORS WITH DISKS

Fig. 12.

SPEEDUP

40

35

30

25

20

15

10

5

0

0 1% nonindexed selection
0 10% nonindexed selection

0 5 10 15 20 25 30
PROCESSORS WITH DISKS

Fig. 13.

10% selection through a clustered index, and a 1 % selec-
tion through a nonclustered index, all accessing the 1 mil-
lion tuple relation. The corresponding speedup curves are
presented in Fig. 15.

Of the speedup curves presented in Fig. 13 and 15, three
queries are superlinear, one is slightly sublinear, and one
is significantly sublinear. Consider first the 10 % selection
via a relation scan, the 1% selection through a nonclus-
tered index, and the 10% selection through a clustered
index. As discussed above, the source of the superlinear
speedups exhibited by these queries is due to significant

RESPONSE TIME (SECONDS)

400

350

300

250

200

150

100

50

0

4 A 1% non-clustered index selection

1% clustered index selection

0 10% clustered index selection

I

0 5 10 15 20 25 30
PROCESSORS WITH DISKS

Fig. 14.

SPEEDUP

A 1% non-clustered index selection

40 0 1% clustered index selection
451

30 -

25 -

20 -

15 -

10 -

5 -

0 5 10 15 20 25 30
PROCESSORS WITH DISKS

Fig. 15

differences in the time the various configurations spend
seeking. With one processor, the 1 million tuple relation
occupies approximately 66% of the disk. When the same
relation is declustered over 30 disk drives, it occupies
about 2% of each disk. In the case of the 1 % nonclustered
index selection, each tuple selected requires a random
seek. With one processor, the range of each random seek
is approximately 800 cylinders while with 30 processors
the range of the seek is limited to about 27 cylinders. Since
the seek time is proportional to the square root of the dis-
tance traveled by the disk head [24], reducing the size of

DeWlTT et d.: THE GAMMA DATABASE MACHINE PROJECT

80 7

70 -

60 -

50 -

40 -

30 -

20 -

10 -

the relation fragment on each disk significantly reduces
the amount of time that the query spends seeking.

A similar effect also happens with the 10% clustered
index selection. In this case, once the index has been used
to locate the tuples satisfying the query, each input page
will produce one output page and at some point the buffer
pool will be filled with dirty output pages. In order to
write an output page, the disk head must be moved from
its position over the input relation to the position on the
disk where the output pages are to be placed. The relative
cost of this seek decreases proportionally as the number
of processors increases, resulting in a superlinear speedup
for the query. The 10% nonindexed selection shown in
Fig. 13 is also superlinear for similar reasons. The reason
that this query is not affected to the same degree is that,
without an index, the seek time is a smaller fraction of
the overall execution time of the query.

The 1% selection through a clustered index exhibits
sublinear speedups because the cost of initiating a select
and store operator on each processor (a total of 0.24 s for
30 processors) becomes a significant fraction of the total
execution as the number of processors is increased.

Scaleup Experiments: In the final set of selection ex-
periments, the number of processors was varied from 5 to
30 while the size of the input relations was increased from
1 million to 6 million tuples, respectively. As shown in
Fig. 16, the response time for each of the five selection
queries remains almost constant. The slight increase in
response time is due to the overhead of initiating a selec-
tion and store operator at each site. Since a single process
is used to initiate the execution of a query, as the number
of processors employed is increased, the load on this pro-
cess is increased proportionally. Switching to a tree-based
query initiation scheme [181 would distribute this over-
head among all the processors.

C. Join Queries
Like the selection queries in the previous section, we

conducted three sets of join experiments. First, for two
different join queries, we varied the size of the input re-
lations while the configuration of processors was kept
constant. Next, for one join query a series of speedup and
scaleup experiments were conducted. For each of these
tests, two different partitionings of the input relations were
used. In the first case, the input relations were declustered
by hashing on the join attribute. In the second case, the
input relations were declustered using a different attri-
bute. The hybrid join algorithm was used for all queries.

Performance Relative to Relation Size: The first join
query [3], joinABprime, is a simple join of two relations:
A and Bprime. The A relation contains either 100 000, 1
million, or 10 million tuples. The Bprime relation con-
tains, respectively, 10 000, 100 000, or 1 million tuples.
The result relation has the same number of tuples as the
Bprime relation.* The second query, joinAselB, is com-

'For each join operation, the result relation contains all the fields of both
input relations and thus the result tuples are 416 bytes wide.

57

RESPONSE TIME (SECONDS)

10% nonindexed selection
f3 D4Aw-------

a-++-+---"
1 % non-clustered index selection

1% nonindexed selection
A F 3 " 0

10% clustered index selection

--*-@- __ -0

1% clustered index selection
X Y v "

~~ 4
0 4

0 5 10 15 20 25 30
PROCESSORS WITH DISKS

Fig. 16.

posed of one join and one selection. A and B have the
same number of tuples and the selection on B reduces the
size of B to the size of the Bprime relation in the corre-
sponding joinABprime query. The result relation for this
query has the same number of tuples as in the correspond-
ing joinABprime query. As an example, if A has 10 mil-
lion tuples, then joinABprime joins A with a Bprime re-
lation that contains 1 million tuples, while in joinAselB
the selection on B restricts B from 10 million tuples to 1
million tuples and then joins the result with A .

The first variation of the join queries tested involved no
indexes and used a nonpartitioning attribute for both the
join and selection attributes. Thus, before the join can be
performed, the two input relations must be redistributed
by hashing on the join attribute value of each tuple. The
results from these tests are contained in the first 2 rows of
Table IV. The second variation of the join queries also
did not employ any indexes but, in this case, the relations
were hash partitioned on the joining attribute; enabling
the redistribution phase of the join to be skipped. The re-
sults for these tests are contained in the last 2 rows of
Table IV.

The results in Table IV indicate that the execution time
of each join query increases in a fairly linear fashion as
the size of the input relations are increased. Gamma does
not exhibit linearity for the 10 million tuple queries be-
cause the size of the inner relation (208 megabytes) is
twice as large as the total available space for hash tables.
Hence, the Hybrid join algorithm needs two buckets to
process these queries. While the tuples in the first bucket
can be placed directly into memory-resident hash tables,
the second bucket must be written to disk (see Section

As expected, the version of each query in which the
partitioning attribute was used as the join attribute ran

IV-B).

58 IEEE TRANSACTlONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. I . MARCH 1990

180 -

160 -

140 -

120 -

100 -

80 -

60 -

40 -

20 -

TABLE IV

SECONDS)
J O I N QUERIES. 30 PROCESSORS WITH DISKS (ALL EYFCUTION TIMES IN

Number of Tuples in Relation A
Query Description 1U0,UUU 1,000,uuu 1u,ooo,uuo

JoinABprime with non-partitioning attributes 3.52 28.69 438.90
of A and B used as join attributes

JoinAselB with non-partitioning attributes 2.69 25.13 373.98
of A and B used as join attributes

JoinABprime with partitioning attributes 3.34 25.95 126.25
of A and B used as join attributes

JoinAselB with partitioning attributes 2.14 23.71 362.89
of A and B used as join attributes

faster. From these results one can estimate a lower bound
on the aggregate rate at which data can be redistributed
by the Intel iPSC/2 hypercube. Consider the version of
the joinABprime query in which a million tuple relation is
joined with a 100 000 tuple relation. This query requires
28.69 s when the join is not on the partitioning attribute.
During the execution of this query, 1.1 million 208 byte
tuples must be redistributed by hashing on the join attrib-
ute, yielding an aggregate total transfer rate of 7.9 me-
gabytes/s during the processing of this query. This should
not be construed, however, as an accurate estimate of the
maximum obtainable interprocessor communications
bandwidth as the CPU’s may be the limiting factor (the
disks are not likely to be the limiting factor as from Table
I11 one can estimate that the aggregate bandwidth of the
30 disks to be about 25 megabytes /s).

Speedup Experiments: For the join speedup experi-
ments, we used the joinABprime query with a 1 million
tuple A relation and a 100 000 tuple Bprime relation. The
number of processors was varied from 5 to 30. Since with
fewer than five processors two or more buckets are
needed, including the execution time for one processor
(which needs five buckets) would have made the response
times for five or more processors appear artificially fast;
resulting in superlinear speedup curves.

The resulting response times are plotted in Fig. 17 and
the corresponding speedup curves are presented in Fig.
18. From the shape of these graphs it is obvious that the
execution time for the query is significantly reduced as
additional processors are employed. Several factors pre-
vent the system from achieving perfectly linear speedups.
First, the cost of starting four operator tasks (two scans,
one join, and one store) on each processor increases as a
function of the number of processors used. Second, the
effect of short-circuiting local messages diminishes as the
number of processors is increased. For example, consider
a five-processor configuration and the nonpartitioning at-
tribute version of the joinABprime query. As each pro-
cessor repartitions tuples by hashing on the join attribute,
1/5th of the input tuples it processes are destined for it-
self and will be short-circuited by the communications
software. In addition, as the query produces tuples of the
result relation (which is partitioned in a round-robin man-

RESPONSE TIME (SECONDS)

0 hash partitioned on
non-join attribute

0 hash partitioned on
join atmbute \\

04
0 5 10 15 20 25 3 0

PROCESSORS WITH DISKS

Fig. 17.

SPEEDUP

35 1
3o 1 1 hash partitioned on

non-join attribute

hash partitioned on

04
0 5 10 15 20 25 30

PROCESSORS WITH DISKS
Fig. 18.

ner), they too will be short-circuited. As the number of
processors is increased, the number of short-circuited
packets decreases to the point where, with 30 processors,
only 1/30th of the packets will be short-circuited. Be-
cause these intranode packets are less expensive than their
corresponding internode packets, smaller configurations
will benefit more from short-circuiting. In the case of a
partitioning-attribute join, all input tuples will short-cir-
cuit the network along with a fraction of the output tuples.

Scaleup Experiments: The joinABprime query was also
used for the join scaleup experiments. For these tests, the

DeWlTT er a l . : THE GAMMA DATABASE MACHINE PROJECT

~

59

number of processors was varied from 5 to 30 while the
size of the A relation was varied from 1 million to 6 mil-
lion tuples in increments of l million tuples and the size
of Bprime relation was varied from 100 000 to 600 000
tuples in increments of 100 000. For each configuration,
only one join bucket was needed. The results of these tests
are presented in Fig. 19. Three factors contribute to the
slight increase in response times. First, the task of initi-
ating four processes at each site is performed by a single
processor. Second, as the number of processors increases,
the effects of short-circuiting messages during the exe-
cution of these queries diminishes-especially in the case
when the join attribute is not the partitioning attribute.
Finally, the response time may be being limited by the
speed of the communications network.

D. Aggregate Queries
Our aggregate tests included a mix of scalar aggregate

and aggregate function queries run on the 30 processor
configuration. The first query computes the minimum of
a nonindexed attribute. The next two queries compute,
respectively, the sum and minimum of an attribute after
partitioning the relation into 20 subsets. Three sizes of
input relations were used: 100 000, 1 million, and I O mil-
lion tuples. The results from these tests are contained in
Table V. Since the scalar aggregates and aggregate func-
tion operators are executed using algorithms that are sim-
ilar to those used by the selection and join operators, re-
spectively, no speedup or scaleup experiments were
conducted.

E. Update Queries
The next set of tests included a mix of append, delete,

and modify queries on three different sizes of relations:
100 000, 1 million, and 10 million tuples. The results of
these tests are presented in Table VI. Since Gamma’s re-
covery mechanism is not yet operational, these results
should be viewed accordingly.

The first query appends a single tuple to a relation on
which no indexes exist. The second appends a tuple to a
relation on which one index exists. The third query de-
letes a single tuple from a relation, using a clustered
B-tree index to locate the tuple to be deleted. In the first
query, no indexes exist and hence no indexes need to be
updated, whereas in the second and third queries, one in-
dex needs to be updated.

The fourth through sixth queries test the cost of modi-
fying a tuple in three different ways. In all three tests, a
nonclustered index exists on the unique2 attribute, and,
in addition, a clustered index exists on the Unique1 at-
tribute. In the first case, the modified attribute is the par-
titioning attribute, thus requiring that the modified tuple
be relocated. Furthermore, since the tuple is relocated,
the secondary index must also be updated. The second
modify query modifies a nonpartitioning, nonindexed at-
tribute. The third modify query modifies an attribute on
which a nonclustered index has been constructed, using
the index to locate the tuple to be modified.

RESPONSE TIME (SECONDS)

180

170

160

150

140

130

120

110

100

90

hash partitioned on non-join attribute

hash partitioned on join attribute

0 5 10 15 20 25 30
PROCESSORS WITH DISKS

Fig. 19.

TABLE V

I N SECONDS)
AGGREGATE QUERIES. 30 PROCESSORS WITH DISKS (ALL EXECUTION TIMES

Number of Tuples in Source Relation
Query Description 100,000 1,000,000 10,000,000

Scalar aggregate 1.10 10.36 106.42

Min aggregate function (20 Partitions) 2.03 12.48 120.03

Sum aggregate function (20 Partitions) 2.03 12.39 120.22

TABLE VI
UPDATE QUERIES. 30 PROCESSORS WITH DISKS (ALL EXECUTION T I M E S I N

SECONDS)

Number of Tuples in Source Relation
Ouerv Descriotion 100.000 1.000.000 10.000.u00

Append 1 Tuple (No indices exist) 0.07 0.08 0.10

Append 1 Tuple (One index exisls) 0.18 0.21 0.22

Delete 1 tuple 0.34 0.28 0.49

Modiry 1 tuple (#1) 0.72 0.73 0.93

Modiry 1 tuple (#2) 0.18 0.20 0.23

Modify 1 tuple (#3) 0.33 0.3x 0.52

VII. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
In this paper, we have described the design and imple-

mentation of the Gamma database machine. Gamma em-
ploys a shared-nothing architecture in which each proces-
sor has one or more disks and the processors can
communicate with each other only by sending messages
via an interconnection network. While a previous version
of the Gamma software ran on a collection of VAX 11/
750’s interconnected via a 80 Mbit/s token ring, cur-

60 IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING, VOL. 2 . NO. I , MARCH 1990

rently the system runs on an Intel iPSC/2 hypercube with
32 processors and 32 disk drives.

Gamma employs three key ideas which enable the ar-
chitecture to be scaled to hundreds of processors. First,
all relations are horizontally partitioned across multiple
disk drives which are attached to separate processors; en-
abling relations to be scanned in parallel without any spe-
cialized hardware. In addition, in order to enable the da-
tabase design to be tuned to the needs of the application,
three alternative partitioning strategies are provided. The
second major contribution of the Gamma software is its
extensive use of hash-based parallel algorithms for pro-
cessing complex relational operators such as joins and ag-
gregate functions. Finally, the system employs unique da-
taflow scheduling techniques to coordinate the execution
of multioperator queries. These techniques make it pos-
sible to control the execution of very complex queries with
minimal coordination-a necessity for configurations in-
volving a large number of processors.

In addition to describing the design of the Gamma soft-
ware, we have also presented a thorough performance
evaluation of the iPSC/2 hypercube version of Gamma.
Three sets of experiments were performed. First, with a
constant machine configuration of 30 processors, the re-
sponse time for the set of Wisconsin benchmark queries
was measured for three different sizes of relations. For a
subset of these queries we also measured the performance
of the system relative to the number of processors em-
ployed when the sizes of the input relations are kept con-
stant (speedup) and when the sizes of the input relations
are increased proportionally to the number of processors
(scaleup). The speedup results obtained for both selection
and join queries are almost perfectly linear; thus doubling
the number of processors halves the response time for a
query. The scaleup results obtained are also quite en-
couraging. They reveal that a constant response time can
be maintained for both selection and join queries as the
workload is increased by adding a proportional number of
processors and disks.

We currently have a number of new projects underway.
First, we plan on implementing the chained declustering
mechanism and evaluating its effectiveness. With respect
to processing queries, we have designed [35] and are cur-
rently evaluating alternative strategies for processing
queries involving multiple join operations. For example,
consider a query involving ten joins on a machine with
100 processors. Is it better to use all 100 processors for
each join (allocating 1 / 10 of the memory on each pro-
cessor to each join), or to use ten processors for each join
(in which case each join operator will have full use of the
memory at each processor)? Finally, we are studying sev-
eral new partitioning mechanisms that combine the best
features of the hash and range partitioning strategies.

ACKNOWLEDGMENT
Like all large systems projects, a large number of peo-

ple beyond those listed as authors made this paper possi-
ble. R. Gerber deserves special recognition for his work

on the design of Gamma plus his leadership on the imple-
mentation of the first prototype. The query optimizer was
implemented by M. Muralikrishna. R. Jauhari imple-
mented the read-ahead mechanism to improve the perfor-
mance of sequential scans. A. Sharma implemented both
the aggregate algorithms and the embedded query inter-
face. G. Graefe and J . Chen implemented a predicate
compiler. They deserve special credit for being willing to
debug the machine code produced by the compiler.

We would also like to thank J. Gray and S . Englert of
Tandem Computers for the use of their Wisconsin bench-
mark relation generator. Without this generator, the tests
we conducted would simply not have been possible as
previously we had no way of generating relations larger
than 1 million tuples.

REFERENCES

[I] R. Agrawal and D. J. DeWitt, “Recovery architectures for multipro-
cessor database machines,” in Proc. 1985 S1GMOD Con$, Austin,
TX, May 1985.

121 M. M. Astrahan et a / . , “System R: A relational approach to database
management,” ACM Trans. Database Sysr., vol. I , no. 2 , June 1976.

131 D. Bitton, D. J . DeWitt, and C. Turbyfill, “Benchmarking database
systems-A systematic approach,” in Proc. 1983 Very Large Data-
base Con$, Oct. 1983.

[4] M. W. Blasgen. J . Gray, M. Mitoma, and T. Price. “The convoy
phenomenon,” Oper. Syst. Rev., vol. 13, no. 2, Apr. 1979.

[5] A. Borr, “Transaction monitoring in encompass [TM]: Reliable dis-
tributed transaction processing,” in Proc. VLDB, 1981,

161 K. Bratbergsengen, “Hashing methods and relational algebra opera-
tions,” in Proc. 1984 Very Large Database Con$, Aug. 1984.

[7] H-T. Chou, D. J. DeWitt, R. Katz. and T. Klug, “Design and im-
plementation of the Wisconsin storage system (WiSS),” Sofrware
Practices and Exper.. vol. 15, no. 10, Oct. 1985.

[8] G. Copeland, W. Alexander, E. Boughter, and T. Keller, “Data
placement in Bubba,” in Proc. ACM-SICMOD INT. Con& Manage-
ment Datu, Chicago, IL, May 1988.

[9] G. Copeland and T. Keller, “A comparison of high-availability me-
dia recovery techniques,” in Proc. ACM-SICMOD 1nt. Cor7f. Man-
agement Data, Portland, OR, June 1989.

IO] D. J . DeWitt, “DIRECT-A multiprocessor organization for sup-
porting relational database management systems,” IEEE Trans.
Cotnput., June 1979.

I I] D. J . DeWitt, R. Katz, F. Olken, D. Shapiro, M. Stonebraker, and
D. Wood, “Implementation techniques for main memory database
systems.” in Proc. 1984 SIGMOD Con&. Boston, MA, June 1984.

121 D. J. DeWitt, R. Finkel, and M. Solomon, “The Crystal multicom-
puter: Design and implementation experience,” lEEE Trans. So@-
ware G i g . , vol. SE-13, no. 8, Aug. 1987.

1131 D. DeWitt and R. Gerber, “Multiprocessor hash-based join algo-
rithms.” in Proc. 1985 VLDB Cor$, Stockholm, Sweden, Aug. 1985.

[I41 D. DeWitt. R. Gerber, G . Graefe, M. Heytens. K. Kuniar, and M.
Muralikrishna, “GAMMA-A high performance dataflow database
machine.” in Proc. 1986 VLDB Con&. Japan, Aug. 1986.

1151 D. DeWitt, S. Ghandeharizadeh, and D. Schneider, “A performance
analysis of the gamma database machine,’’ in Proc. ACM-SICMOD
1nt. ConJ Manugement Datu, Chicago. IL. May 1988.

[I61 S . Englert. J . Gray, T . Kocher. and P. Shah. ‘ ’ A benchmark of
Nonstop SQL Release 2 demonstrating near-linear speedup and
scaleup on large databases.” Tandem Computers, Tech. Rep. 89.4,
Tandem Part no. 27469, May 1989.

171 “Enscribe programming manual,” Tandem Part 82583-A00, Tan-
dem Computers Inc., Mar. 1985.

181 R. Gerber and D. DeWitt. “The impact of hardware and software
alternatives on thc performance of the Gamma database machine.”
Comput. Sci. Tech. Rep. 708, Univ. of Wisconsin-Madison, July
1987.

191 S. Ghandeharizadeh and D. J. DeWitt, “A multiuser performance
evaluation of selection queries in a single processor database ma-
chine,” July 1989, submitted for publication.

DeWlTT (’ I o: THE G A M M A DATABASE MACHINE PROJECT 61

1201 - “Performance analysis of alternative declustering strategies.”
in Pro(,. 6th / ! i t . Conf Dotu En,?. , Los Angeles. CA. Feb. 1990.

12 I] J . R. Goodman. ”An investigation of multiprocessor structures and
algorithms for database management.” Univ. California at Berkeley,
Tech. Rep. UCBIERL. M81/33. May 1981.

1221 G. Graefe. “Volcano: A compact. extensible. dynamic. and parallel
dataflow query evaluation system,’’ Working Paper, Oregon Gradu-
ate Center, Portland. OR, Feb. 1989.

[23] J . Gray, “Notes on database operating systems.” RJ 2188. IBM Res.
Lab.. San Jose, CA. Feb. 1978.

1241 J. Gray, H. Sammer, and S . Whitford. “Shortest seek vs shortest
service time scheduling of mirrored disks.” Tandem Computers, Dec.
1988.

1251 H. I . Hsiao and D. J . DeWitt, “Chained declustering: A new avail-
ability strategy for multiprocessor database machines,” in Proc. 6th
In/ . Conf. Dntci Eng., Los Angeles, CA, Feb. 1990.

[26] M. Jarke and J. Koch. “Query optimization in database system,”
. vol. 16, no. 2. June 1984.

1271 M. Kim, “Synchronized disk interleaving,” IEEE Trans. Comput.,
vol. C-35, no. 1 1 , Nov. 1986.

1281 M. Kitsuregawa, H. Tanaka. and T. Moto-oka. “Application of hash
to data base machine and its architecture,” New Generution Comnput..
vol. I , no. I . 1983.

1291 M. Livny, S. Khoshafian, and H. Boral, “Multi-disk management
algorithms,” in Proc. 1987 SlCMETRlCS Conf., Banff, Alta., Can-
ada, May 1987.

[30] C. Mohan, D. Haderle, B. Linsay, H. Pirahesh, and P. Schwarz,
“ARIES: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging,” RJ 6649,
IBM Almaden Research Center, San Jose. CA, Jan. 1989.

[31] D. A. Patterson. G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID).” in Proc. ACM-SIGMOD Int.
Con$ Management Datu, Chicago, May 1988.

[32] Proteon Associates, Operation and Maintenance Manual for the
ProNet Model p8000. Waltham, MA, 1985.

1331 D. Ries and R. Epstein, “Evaluation of distribution criteria for dis-
tributed database systems,” UCBIERL Tech. Rep. M78/22, UC
Berkeley, May 1978.

[34] D. Schneider and D. DeWitt, “A performance evaluation of fourpar-
allel join algorithms in a shared-nothing multiprocessor environ-
ment,” in Proc. 1989 SlCMOD Conf , Portland, OR. June 1989.

[35] -, “Design tradeoffs of alternative query tree representations for
multiprocessor database machines,” Comput. Sci. Tech. Rep. 869,
Univ. of Wisconsin-Madison, Aug. 1989, submitted for publication.

[36] P. G. Selinger er al . , “Access path selection in a relational database
management system,” in Proc. 1979 SIGMOD Conf., Boston, MA,
May 1979.

[37] M. Stonebraker, “The case for shared nothing,” Database Eng. , vol.
9 , no. 1. 1986.

[38] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout, “The de-
sign of XPRS.” in Proc. Fourteenth In t . Conf. Ver! Large Datu
Eases, Los Angeles, CA, Aug. 1988.

1391 Tandem Performance Group, “A benchmark of Non-Stop SQL on the
debit credit transaction,” in Proc. 1988 SICMOD Conf., Chicago,
IL, June 1988.

[40] Teradata, “DBC/1012 database computer system manual release
2.0,” Document CIO-0001-02, Teradata Corp., Nov. 1985.

1411 R. E. Wagner, “Indexing design considerations,” /EM Sys. J . , vol.
12, no. 4 , pp. 351-367, Dec. 1973.

David J . DeWitt received the Ph.D. degree from
the University of Michigan, Ann Arbor, in 1976.

He joined the faculty at the University of Wis-
consin in 1976 where he presently holds the rank
of Professor and Romnes Fellow in the Computer
Sciences Department. One of his current research
program involves the design and implementation
of highly parallel database machines. This re-
search project is studying such issues as the effec-
tiveness of alternative parallel join algorithms. the
impact of different declustering algorithms on

multiuser transaction rates, and the evaluation of dataflow query processing
strategies. To support this research, the project has implemented the Gamma
database machine on a 32 node iPSCI2 hypercube with 32 disk drives. The
other thrust of his current research program is attempting to address the
problems posed by emerging applications of database system technology
including CIS, CAD/CAM, and scientific applications. To solve the needs
of these applications, he is investigating the design and implementation of
an extensible database management system named EXODUS which is de-
signed to enable the rapid implementation of high-performance, applica-
tion-specific database systems.

Dr. DeWitt served as the Chairman of the ACM Special Interest Group
on the Management of Data (SIGMOD) from 1985-1989 and acted as pro-
gram chair for the 1983 SIGMOD Conference and the 1988 VLDB Con-
ference

Shahram Ghandeharizadeh is a graduate student
in the Department of Computer Sciences at Uni-
versity of Wisconsin-Madison. He received the
B.S. and M.S. degrees in computer sciences from
the University Wisconsin in 1985 and 1987. re-
spectively and is currently working on his Ph.D.
dissertation.

His areas of interest include design and implc-
mentation of database machines. parallel algo-
rithms for multiprocessor database machines, and
performance evaluation of database management
systems.

Donovan A. Schneider received the B.S. degree
in computer sciences from the University of Wis-
consin, Oshkosh. in 1985, and the M.S. degree in
computer sciences from the University of Wiscon-
sin, Madison, in 1987.

He is currently working towards the Ph.D. de-
gree at the University of Wisconsin-Madison. His
research interests include database machines. da-
tabase performance analysis, parallel join strate-
gies, and query size estimation.

Allan Bricker joined the research staff of the De-
partment of Computer Sciences at the University
of Wisconsin-Madison in 1983 where he received
the M.S. degree in 1986.

His research activities concerned a wide array
of distributed operating system issues including
the design and implementation of a multithreaded
operating system to provide the basis for the de-
velopment of very high-speed network protocols.
as well as the design and implementation of Con-
dor. a system for utilizing otherwise unused work-

stations in a local area network. He is currently on leave from the Univer-
sity of Wisconsin and is working for Chorus Systemes in France doing
development on the Chorus distributed operating system.

62 IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING. VOL 2. NO. I . MARCH 1990

Hui-I Hsiao is a Ph.D. candidate in computer sci-
ence at University of Wisconsin. He received the
M . S . degree in computer science from the Uni-
versity of Wisconsin in 1984.

Previously, he worked at Nicolet Instrument
Corporation where he was involved i n the design
and implementation of software for several niicro-
processor-based medical diagnosis systems. He is
the recipient of an Associate Fellowship Irom Ni-
colet Instrument Corporation. His ma,jor research
interests are in the availability and performance ot . .

multiprocessor database machines with replicated data. His other interests
include parallelism in query execution and distributed concurrency control
and recovery mechanism.

Rick Rasmussen received the Bachelor of Sci-
ence degree from the University of Wisconsin in
May 1989.

He is currently an Assistant Researcher at the
University of Wisconsin on the Computer Science
Departinent’s NSF CER grant. He primarily pro-
vides systems aupport on the Intel iPSC/2 hyper-
cube for the Gamma Database Machine Project.
His current projects include the implementation of
the GNU project C compiler as a cross-compiler
to the hypercube.

