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Abstract-This paper describes the design of the Gamma database 
machine and  the techniques employed in its implementation. Gamma 
is a relational database machine currently operating on an  Intel 
iPSC/2 hypercube with 32 processors and  32 disk drives. Gamma em- 
ploys three key technical ideas which enable the architecture to be 
scaled to hundreds of processors. First, all relations a re  horizontally 
partitioned across multiple disk drives enabling relations to be scanned 
in parallel. Second, novel parallel algorithms based on hashing are  used 
to implement the complex relational operators such as  join and  aggre- 
gate functions. Third,  dataflow scheduling techniques are  used to co- 
ordinate multioperator queries. By using these techniques it is possible 
to control the execution of very complex queries with minimal coordi- 
nation-a necessity for configurations involving a very large number 
of processors. 

In  addition to describing the design of the Gamma software, a thor- 
ough performance evaluation of the iPSC/2 hypercube version of 
Gamma is also presented. In  addition to measuring the effect of rela- 
tion size and  indexes on the response time for selection, join, aggre- 
gation, and update queries, we also analyze the performance of Gamma 
relative to the number of processors employed when the sizes of the 
input relations a re  kept constant (speedup) and  when the sizes of the 
input relations a re  increased proportionally to the number of proces- 
sors (scaleup). The speedup results obtained for both selection and join 
queries a re  linear; thus, doubling the number of processors halves the 
response time for a query. The  scaleup results obtained a re  also quite 
encouraging. They reveal that a nearly constant response time can be 
maintained for both selection and  join queries as the workload is in- 
creased by adding a proportional number of processors and  disks. 

Index Terms-Database machines, dataflow query processing, dis- 
tributed database systems, parallel algorithms, relational database 
systems. 

I. INTRODUCTION 
OR the last 5 years, the Gamma database machine F project has focused on issues associated with the de- 

sign and implementation of highly parallel database ma- 
chines. In a number of ways, the design of Gamma is 
based on what we learned from our earlier database ma- 
chine DIRECT [ IO]. While DIRECT demonstrated that 
parallelism could be successfully applied to processing 
database operations, it had a number of serious design 
deficiencies that made scaling of the architecture to 
hundreds of processors impossible, primarily the use of 
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shared memory and centralized control for the execution 
of its parallel algorithms [3]. 

As a solution to the problems encountered with DI- 
RECT, Gamma employs what appear today to be rela- 
tively straightforward solutions. Architecturally, Gamma 
is based on a shared-nothing [37] architecture consisting 
of a number of processors interconnected by a communi- 
cations network such as a hypercube or a ring, with disks 
directly connected to the individual processors. It is gen- 
erally accepted that such architectures can be scaled to 
incorporate thousands of processors. In fact, Teradata da- 
tabase machines [40] incorporating a shared-nothing ar- 
chitecture with over 200 processors are already in use. 
The second key idea employed by Gamma is the use of 
hash-based parallel algorithms. Unlike the algorithms em- 
ployed by DIRECT, these algorithms require no central- 
ized control and can thus, like the hardware architecture, 
be scaled almost indefinitely. Finally, to make the best of 
the limited I/O bandwidth provided by the current gen- 
eration of disk drives, Gamma employs the concept of 
horizontal partitioning [33] (also termed declustering 
[29]) to distribute the tuples of a relation among multiple 
disk drives. This design enables large relations to be pro- 
cessed by multiple processors concurrently without incur- 
ring any communications overhead. 

After the design of the Gamma software was completed 
in the fall of 1984, work began on the first prototype which 
was operational by the fall of 1985. This version of 
Gamma was implemented on top of an existing multicom- 
puter consisting of 20 VAX 1 1 /750 processors [ 121. In 
the period of 1986-1988, the prototype was enhanced 
through the addition of a number of new operators (e.g., 
aggregate and update operators), new parallel join meth- 
ods (Hybrid, Grace, and Sort-Merge [34]), and a complete 
concurrency control mechanism. In addition, we also 
conducted a number of performance studies of the system 
during this period [14], [15], [19], [20]. In the spring of 
1989, Gamma was ported to a 32 processor Intel iPSC/2 
hypercube and the VAX-based prototype was retired. 

Gamma is similar to a number of other active parallel 
database machine efforts. In addition to Teradata [401, 
Bubba [8] and Tandem [39] also utilize a shared-nothing 
architecture and employ the concept of horizontal parti- 
tioning. While Teradata and Tandem also rely on hashing 
to decentralize the execution of their parallel algorithms, 
both systems tend to rely on relatively conventional join 
algorithms such as sort-merge for processing the frag- 
ments of the relation at each site. Gamma, XPRS [38], 
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and Volcano 1221 each utilize parallel versions of the Hy- 
brid join algorithm [ 1 11. 

The remainder of this paper is organized as follows. In 
Section 11, we describe the hardware used by each of the 
Gamma prototypes and our experiences with each. Sec- 
tion I11 discusses the organization of the Gamma software 
and describes how multioperator queries are controlled. 
The parallel algorithms employed by Gamma are de- 
scribed in Section IV and the techniques we employ for 
transaction and failure management are contained in Sec- 
tion V. Section VI contains a performance study of the 32 
processor Intel hypercube prototype. Our conclusions and 
future research directions are described in Section VII. 

11. HARDWARE ARCHITECTURE OF GAMMA 
A .  Overview 

Gamma is based on the concept of a shared-nothing ar- 
chitecture [37] in which processors do not share disk 
drives or random access memory and can only commu- 
nicate with one another by sending messages through an 
interconnection network. Mass storage in such an archi- 
tecture is generally distributed among the processors by 
connecting one or more disk drives to each processor as 
shown in Fig. 1. There are a number of reasons why the 
shared-nothing approach has become the architecture of 
choice. First, there is nothing to prevent the architecture 
from scaling to thousands of processors unlike shared- 
memory machines for which scaling beyond 30-40 pro- 
cessors may be impossible. Second, as demonstrated in 
[15], [8], and [39], by associating a small number of disks 
with each processor and distributing the tuples of each 
relation across the disk drives, it is possible to achieve 
very high aggregate 1 /0  bandwidths without using cus- 
tom disk controllers [27], 13 11. Furthermore, by employ- 
ing off-the-shelf mass storage technology one can employ 
the latest technology in small 3 1 /2  in. disk drives with 
embedded disk controllers. Another advantage of the 
shared nothing approach is that there is no longer any need 
to “roll your own” hardware. Recently, both Intel and 
Ncube have added mass storage to their hypercube-based 
multiprocessor products. 

B. Gamma Version 1.0 
The initial version of Gamma consisted of 17 VAX 

11/750 processors, each with 2 megabytes of memory. 
An 80 Mb/s  token ring [32] was used to connect the pro- 
cessors to each other and to another VAX running UNIX. 
This processor acted as the host machine for Gamma. At- 
tached to eight of the processors were 333 megabyte Fu- 
jitsu disk drives that were used for storing the database. 
The diskless processors were used along with the proces- 
sors with disks to execute join and aggregate function op- 
erators in order to explore whether diskless processors 
could be exploited effectively. 

We encountered a number of problems with this pro- 
totype. First, the token ring has a maximum network 
packet size of 2K bytes. In the first version of the proto- 
type, the size of a disk page was set to 2K bytes in order 

INTERCONNECTION NETWORK 

Fig. I 

to be able to transfer an “intact” disk page from one pro- 
cessor to another without a copy. This required, for ex- 
ample, that each disk page also contain space for the pro- 
tocol header used by the interprocessor communication 
software. While this initially appeared to be a good idea, 
we quickly realized that the benefits of a larger disk page 
size more than offset the cost of having to copy tuples 
from a disk page into a network packet. 

The second problem we encountered was that the net- 
work interface and the Unibus on the 11/750 were both 
bottlenecks [ 181, [ 151. While the bandwidth of the token 
ring itself was 80 Mb/s ,  the Unibus on the 11/750 (to 
which the network interface was attached) has a band- 
width of only 4 Mb/s.  When processing a join query 
without a selection predicate on either of the input rela- 
tions, the Unibus became a bottleneck because the trans- 
fer rate of pages from the disk was higher than the speed 
of the Unibus [15]. The network interface was a bottle- 
neck because it could only buffer two incoming packets 
at a time. Until one packet was transferred into the VAX’s 
memory, other incoming packets were rejected and had to 
be retransmitted by the communications protocol. While 
we eventually constructed an interface to the token ring 
that plugged directly into the backplane of the VAX, by 
the time the board was operational the VAX’s were ob- 
solete and we elected not to spend additional funds to up- 
grade the entire system. 

The other serious problem we encountered with this 
prototype was having only 2 megabytes of memory on 
each processor. This was especially a problem since the 
operating system used by Gamma does not provide virtual 
memory. The problem was exacerbated by the fact that 
space for join hash tables, stack space for processes, and 
the buffer pool were managed separately in order to avoid 
flushing hot pages from the buffer pool. While there are 
advantages to having these spaces managed separately by 
the software, in a configuration where memory is already 
tight, balancing the sizes of these three pools of memory 
proved difficult. 

C. Gamma Version 2.0  
In the fall of 1988, we replaced the VAX-based proto- 

type with a 32 processor iPSC/2 hypercube from Intel. 



Each processor is configured with a 386 CPU, 8 mega- 
bytes of memory, and a 330 megabyte MAXTOR 4380 
( 5 1 / 4  in. ) disk drive. Each disk drive has an embedded 
SCSI controller which provides a 45 Kbyte RAM buffer 
that acts as a disk cache on read operations. 

The nodes in the hypercube are interconnected to form 
a hypercube using custom VLSI routing modules. Each 
module supports eight’ full-duplex, serial, reliable com- 
munication channels operating at 2 . 8  megabytes/s. Small 
messages (I 100 bytes) are sent as datagrams. For large 
messages, the hardware builds a communications circuit 
between the two nodes over which the entire message is 
transmitted without any software overhead or copying. 
After the message has been completely transmitted, the 
circuit is released. The length of a message is limited only 
by the size of the physical memory on each processor. 
Table I summarizes the transmission times from one 
Gamma process to another (on two different hypercube 
nodes) for a variety of message sizes. 

The conversion of the Gamma software to the hyper- 
cube began in early December 1988. Because most users 
of the Intel hypercube tend to run a single process at a 
time while crunching numerical data, the operating sys- 
tem provided by Intel supports only a limited number of 
heavyweight processes. Thus, we began the conversion 
process by porting Gamma’s operating system, NOSE (see 
Section 111-E). In order to simplify the conversion, we 
elected to run NOSE as a thread package inside a single 
NX/2 process in order to avoid having to port NOSE to 
run on the bare hardware directly. 

Once NOSE was running, we began converting the 
Gamma software. This process took 4-6 man months but 
lasted about 6 months as, in the process of the conversion, 
we discovered that the interface between the SCSI disk 
controller and memory was not able to transfer disk blocks 
larger than 1024 bytes (the pitfall of being a beta test site). 
For the most part, the conversion of the Gamma software 
was almost trivial as, by porting NOSE first, the differ- 
ences between the two systems in initiating disk and mes- 
sage transfers were completely hidden from the Gamma 
software. In porting the code to the 386, we did discover 
a number of hidden bugs in the VAX version of the code 
as the VAX does not trap when a null pointer is derefer- 
enced. The biggest problem we encountered was that 
nodes on the VAX multicomputer were numbered begin- 
ning with 1 while the hypercube uses 0 as the logical ad- 
dress of the first node. While we thought that making the 
necessary changes would be tedious but straightforward, 
we were about half way through the port before we real- 
ized that we would have to find and change every “for” 
loop in the system in which the loop index was also used 
as the address of the machine to which a message was to 
be sent. While this sounds silly now, it took us several 
weeks to find all the places that had to be changed. In 
retrospect, we should have made NOSE mask the differ- 
ences between the two addressing schemes. 

‘On configurations *ith a mix of compute and I/O nodes, one of the 
eight channels is dedicated for communication to the I/O subsystem. 

TABLE I 

Packet Size (in bytes) Transmission Time 
50 0.74 ms. 
500 1.46 ms. 

loo0 1.57 ms. 
4Ooo 2.69 ms. 
8000 4.64 ms. 

From a database system perspective, however, there are 
a number of areas in which Intel could improve the design 
of the iPSC/2. First, a lightweight process mechanism 
should be provided as an alternative to NX/2 .  While this 
would have almost certainly increased the time required 
to do the port, in the long run we could have avoided 
maintaining NOSE. A much more serious problem with 
the current version of the system is that the disk controller 
does not perform DMA transfers directly into memory. 
Rather, as a block is read from the disk, the disk control- 
ler does a DMA transfer into a 4K byte FIFO. When the 
FIFO is half full, the CPU is interrupted and the contents 
of the FIFO are copied into the appropriate location in 
memory.2 While a block instruction is used for the copy 
operation, we have measured that about 10% of the avail- 
able CPU cycles are being wasted doing the copy opera- 
tion. In addition, the CPU is interrupted 13 times during 
the transfer of one 8 Kbyte block partially because a SCSI 
disk controller is used and partially because of the FIFO 
between the disk controller and memory. 

111. SOFTWARE ARCHITECTURE OF GAMMA 
In this section, we present an overview of Gamma’s 

software architecture and describe the techniques that 
Gamma employs for executing queries in a dataflow fash- 
ion. We begin by describing the alternative storage struc- 
tures provided by the Gamma software. Next, the overall 
system architecture is described from the top down. After 
describing the overall process structure, we illustrate the 
operation of the system by describing the interaction of 
the processes during the execution of several different 
queries. A detailed presentation of the techniques used to 
control the execution of complex queries is presented in 
Section 111-D. This is followed by an example which il- 
lustrates the execution of a multioperator query. Finally, 
we briefly describe WiSS, the storage system used to pro- 
vide low-level database services, and NOSE, the under- 
lying operating system. 

A .  Gamma Storage Organizations 
Relations in Gamma are horizontally partitioned [33] 

across all disk drives in the system. The key idea behind 
horizontally partitioning each relation is to enable the da- 
tabase software to exploit all the I /O bandwidth provided 
by the hardware. By declustering3 the tuples of a relation, 

’Intel was forced to use such a design because the I/O system was added 
after the system had been completed and the only way of doing I/O was by 
using a empty socket on the board which did not have DMA access to 
memory. 

’Declustering is another term for horizontal partitioning that was coined 
by the Bubba project [29]. 
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the task of uarallelizinr! a selection/scan oDerator be- 
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TABLE 11 
AN EXAMPLE RANGE T A B L E  comes triviai as all thacis required is to star; a copy of 

the operator on each processor. Distribution Condition Processo~# 

The query language of Gamma provides the user with 

hashed, and range partitioned. With the first strategy, tu- 

emp-id S 100 1 
100 < emp-id I 300 2 
300 < emp-id S lo00 3 
emp-id > lo00 4 

three alternative declustering strategies: round robin, 

ples are distributed in a round-robin fashion among the 
disk drives. This is the default strategy and is used for all 
relations created as the result of a query. If the hashed 
partitioning strategy is selected, a randomizing function 
is applied to the key attribute of each tuple (as specified 
in the partition command for the relation) to select a stor- 
age unit. In the third strategy, the user specifies a range 
of key values for each site. For example, with a four disk 
system, the command partition employee on emp-id ( 100, 
300, ZOOO) would result in the distribution of tuples shown 
in Table 11. The partitioning information for each relation 
is stored in the database catalog. For range and hash-par- 
titioned relations, the name of the partitioning attribute is 
also kept and, in the case of range-partitioned relations, 
the range of values of the partitioning attribute for each 
site (termed a range table). 

Once a relation has been partitioned, Gamma provides 
the normal collection of relational database system access 
methods including both clustered and nonclustered in- 
dexes. When the user requests that an index be created on 
a relation, the system automatically creates an index on 
each fragment of the relation. Unlike VSAM [41] and the 
Tandem file system [17], Gamma does not require the 
clustered index for a relation to be constructed on the par- 
titioning attribute. 

As a query is being optimized, the partitioning infor- 
mation for each source relation in the query is incorpo- 
rated into the query plan produced by the query optimizer. 
In the case of hash and range-partitioned relations, this 
partitioning information is used by the query scheduler 
(discussed below) to restrict the number of processors in- 
volved in the execution of selection queries on the parti- 
tioning attribute. For example, if relation X is hash par- 
titioned on attribute y ,  it is possible to direct selection 
operations with predicates of the form “ X . y  = Constant” 
to a single site; avoiding the participation of any other 
sites in the execution of the query. In the case of range- 
partitioned relations, the query scheduler can restrict the 
execution of the query to only those processors whose 
ranges overlap the range of the selection predicate (which 
may be either an equality or range predicate). 

In retrospect, we made a serious mistake in choosing to 
decluster all relations across all nodes with disks. A much 
better approach, as proposed in 181, is to use the “heat” 
of a relation to determine the degree to which the relation 
is declustered. Unfortunately, to add such a capability to 
the Gamma software at this point in time would require a 
fairly major effort-one we are not likely to undertake. 

B. Gamma Process Structure 

The overall structure of the various processes that form 
the Gamma software is shown in Fig. 2. The role of each 

process is described briefly below. The operation of the 
distributed deadlock detection and recovery mechanism 
are presented in Sections V - A  and V-B. At system initial- 
ization time, a UNIX daemon process for the catalog 
manager (CM) is initiated along with a set of scheduler 
processes, a set of operator processes, the deadlock de- 
tection process, and the recovery process. 

Catalog Manager: The function of the catalog man- 
ager is to act as a central repository of all conceptual and 
internal schema information for each database. The 
schema information is loaded into memory when a data- 
base is first opened. Since multiple users may have the 
same database open at once and since each user may re- 
side on a machine other than the one on which the catalog 
manager is executing, the catalog manager is responsible 
for ensuring consistency among the copies cached by each 
user. 

Query Manager: One query manager process is asso- 
ciated with each active Gamma user. The query manager 
is responsible for caching schema information locally, 
providing an interface for ad-hoc queries using gdl (our 
variant of Que1 [ 3 7 ] ) ,  query parsing, optimization, and 
compilation. 

Scheduler Processes: While executing, each multisite 
query is controlled by a scheduler process. This process 
is responsible for activating the operator processes used 
to execute the nodes of a compiled query tree. Scheduler 
processes can be run on any processor, ensuring that no 
processor becomes a bottleneck. In practice, however, 
scheduler processes consume almost no resources and it 
is possible to run a large number of them on a single pro- 
cessor. A centralized dispatching process is used to assign 
scheduler processes to queries. Those queries that the op- 
timizer can detect to be single-site queries are sent di- 
rectly to the appropriate node for execution, bypassing the 
scheduling process. 

Operator Process: For each operator in a query tree, 
at least one operator process is employed at each proces- 
sor participating in the execution of the operator. These 
operators are primed at system initialization time in order 
to avoid the overhead of starting processes at query exe- 
cution time (additional processes can be forked as 
needed). The structure of an operator process and the 
mapping of relational operators to operator processes is 
discussed in more detail below. When a scheduler wishes 
to start a new operator on a node, it sends a request to a 
special communications port known as the “new task” 
port. When a request is received on this port, an idle op- 
erator process is assigned to the request and the commu- 
nications port of this operator process is returned to the 
requesting scheduler process. 
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Fig. 2. Gamma process structure. 

C. An Overview of Query Execution 
Ad-hoc and Embedded Query Interfaces: Two inter- 

faces to Gamma are available: an ad-hoc query language 
and an embedded query language interface in which quer- 
ies can be embedded in a C program. When a user invokes 
the ad-hoc query interface, a query manager (QM) pro- 
cess is started which immediately connects itself to the 
CM process through the UNIX Internet socket mecha- 
nism. When the compiled query interface is used, the pre- 
processor translates each embedded query into a compiled 
query plan which is invoked at run-time by the program. 
A mechanism for passing parameters from the C program 
to the compiled query plans at run time is also provided. 

Query Execution: Gamma uses traditional relational 
techniques for query parsing, optimization [ 3 6 ] ,  [ 2 6 ] ,  and 
code generation. The optimization process is somewhat 
simplified as Gamma only employs hash-based algorithms 
for joins and other complex operations. Queries are com- 
piled into a left-deep tree of operators. At execution time, 
each operator is executed by one or more operator pro- 
cesses at each participating site. 

In designing the optimizer for the VAX version of 
Gamma, the set of possible query plans considered by the 
optimizer was restricted to only left-deep trees because 
we felt that there was not enough memory to support right- 
deep or bushy plans. By using a combination of left-deep 
query trees and hash-based join algorithms, we were able 
to ensure that no more than two join operations were ever 
active simultaneously and hence were able to maximize 
the amount of physical memory which could be allocated 

to each join operator. Since this memory limitation was 
really only an artifact of the VAX prototype, we have re- 
cently begun to examine the performance implications of 
right-deep and bushy query plans [ 3 5 ] .  

As discussed in Section 111-A, in the process of opti- 
mizing a query, the query optimizer recognizes that cer- 
tain queries can be directed to only a subset of the nodes 
in the system. In the case of a single site query, the query 
is sent directly by the QM to the appropriate processor for 
execution. In the case of a multiple site query, the opti- 
mizer establishes a connection to an idle scheduler pro- 
cess through a centralized dispatcher process. The dis- 
patcher process, by controlling the number of active 
schedulers, implements a simple load control mechanism. 
Once it has established a connection with a scheduler pro- 
cess, the QM sends the compiled query to the scheduler 
process and waits for the query to complete execution. 
The scheduler process, in turn, activates operator pro- 
cesses at each query processor selected to execute the op- 
erator. Finally, the QM reads the results of the query and 
returns them through the ad-hoc query interface to the user 
or through the embedded query interface to the program 
from which the query was initiated. 

D. Operator and Process Structure 
The algorithms for all the relational operators are writ- 

ten as if they were to be run on a single processor. As 
shown in Fig. 3 ,  the input to an operator process is a 
stream of tuples and the output is a stream of tuples that 
is demultiplexed through a structure we term a split table. 
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Fig. 3.  

Once the process begins execution, it continuously reads 
tuples from its input stream, operates on each tuple, and 
uses a split table to route the resulting tuple to the process 
indicated in the split table.4 When the process detects the 
end of its input stream, it first closes the output streams 
and then sends a control message to its scheduler process 
indicating that it has completed execution. Closing the 
output streams has the side effect of sending “end of 
stream” messages to each of the destination processes. 

The split table defines a mapping of values to a set of 
destination processes. Gamma uses three different types 
of split tables depending on the type of operation being 
performed [ 141. As an example of one form of split table, 
consider the use of the split table shown in Fig. 4 in con- 
junction with the execution of a join operation using four 
processors. Each process producing tuples for the join will 
apply a hash function to the join attribute of each output 
tuple to produce a value between 0 and 3. This value is 
then used as an index into the split table to obtain the 
address of the destination process that should receive the 
tuple. 

An Example: As an example of how queries are exe- 
cuted, consider the query shown in Fig. 5 .  In Fig. 6, the 
processes used to execute the query are shown along with 
the flow of data between the various processes for a 
Gamma configuration consisting of two processors with 
disks and two processors without disks. Since the two in- 
put relations A and B are partitioned across the disks at- 
tached to processors P1 and P2, selection and scan oper- 
ators are initiated on both processors P1 and P2. The split 
tables for both the select and scan operators each contain 
two entries since two processors are being used for the 
join operation. The split tables for each selection and scan 
are identical-routing tuples whose join attribute values 
hash to 0 (dashed lines) to P3 and those which hash to 1 
(solid lines) to P4. The join operator executes in two 
phases. During the first phase, termed the building phase, 
tuples from the inner relation ( A  in this example) are in- 
serted into a memory-resident hash table by hashing on 
the join attribute value. After the first phase has com- 
pleted, the probing phase of the join is initiated in which 

‘Tuples are actually sent as 8K byte batches, except for the last batch. 
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tuples from the outer relation are used to probe the hash 
table for matching  tuple^.^ Since the result relation is par- 
titioned across two disks, the split table for each join op- 
erator contains two entries and tuples of C are distributed 
in a round-robin fashion among P1 and P2. 

One of the main problems with the DIRECT prototype 
was that every data page processed required at least one 
control message to a centralized scheduler. In Gamma, 
this bottleneck is completely avoided. In fact, the number 
of control messages required to execute a query is ap- 
proximately equal to three times the number of operators 
in the query times the number of processors used to exe- 
cute each operator. As an example, consider Fig. 7 which 
depicts the flow of control messages6 from a scheduler 
process to the processes on processors PI and P3 in Fig. 
6 (an identical set of messages would flow from the sched- 

‘This is actually a description of the simple hash join algorithm. The 
operation of the hybrid hash join algorithm is contained in Section 1V. 

‘The “Initiate” message is sent to a “new operator” port on each pro- 
cessor. A dispatching process accepts incoming messages on this port and 
assigns the operator to a process. The process, which is assigned, replies 
to the scheduler with an “ID” message which indicates the private port 
number of the operator process. Future communications to the operator by 
the scheduler use thi’s private port number. 
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uler to P2 and P4). The scheduler begins by initiating the 
building phase of the join and the selection operator on 
relation A .  When both these operators have completed, 
the scheduler next initiates the store operator, the probing 
phase of the join, and the scan of relation B .  When each 
of these operators has completed, a result message is re- 
turned to the user. 

W N E ( # 1 2 )  

E. Operating and Storage System 
Gamma is built on top of an operating system designed 

specifically for supporting database management systems. 
NOSE provides multiple, lightweight processes with 
shared memory. A nonpreemptive scheduling policy is 
used to prevent convoys [4] from occurring. NOSE pro- 
vides communications between NOSE processes using the 
reliable message passing hardware of the Intel iPSC /2  
hybercube. File services in NOSE are based on the Wis- 

consin Storage System (WiSS) [7]. Critical sections of 
WiSS are protected using the semaphore mechanism pro- 
vided by NOSE. 

The file services provided by WiSS include structured 
sequential files, byte-stream files as in UNIX, B+ in- 
dexes, long data items, a sort utility, and a scan mecha- 
nism. A sequential file is a sequence of records. Records 
may vary in length (up to one page in length), and may 
be inserted and deleted at arbitrary locations within a se- 
quential file. Optionally, each file may have one or more 
associated indexes which map key values to the record 
identifiers of the records in the file that contain a matching 
value. One indexed attribute may be designated as a clus- 
tering attribute for the file. The scan mechanism is similar 
to that provided by System R's RSS [2] except that the 
predicates are compiled by the query optimizer into 386 
machine language to maximize performance. 
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IV. QUERY PROCESSING ALGORITHMS 

A .  Selection Operator 
Since all relations are declustered over multiple disk 

drives parallelizing the selection operation involves sim- 
ply initiating a selection operator on the set of relevant 
nodes with disks. When the predicate in the selection 
clause is on the partitioning attribute of the relation and 
the relation is hash or range partitioned, the scheduler can 
direct the selection operator to a subset of the nodes. If 
either the relation is round-robin partitioned or  the selec- 
tion predicate is not on the partitioning attribute, a selec- 
tion operator must be initiated on all nodes over which the 
relation is declustered. To enhance performance, Gamma 
employs a one page read-ahead mechanism when scan- 
ning the pages of a file sequentially or through a clustered 
index. This mechanism enables the processing of one page 
to be overlapped with the 1/0 for the subsequent page. 

B. Join Operator 
The multiprocessor join algorithms provided by Gamma 

are based on the concept of partitioning the two relations 
to be joined into disjoint subsets called buckets [21], [28], 
[6] by applying a hash function to the join attribute of 
each tuple. The partitioned buckets represent disjoint sub- 
sets of the original relations and have the important char- 
acteristic that all tuples with the same join attribute value 
are in the same bucket. We have implemented parallel 
versions of four join algorithms on the Gamma prototype: 
sort-merge, Grace [28], Simple [ 1 I],  and Hybrid [ I  I ] .  
While all four algorithms employ this concept of hash- 
based partitioning, the actual join computation depends 
on the algorithm. The parallel hybrid join algorithm is 
described in the following section. Additional informa- 
tion on all four parallel algorithms and their relative per- 
formance can be found in [34]. Since this study found that 
the Hybrid hash join almost always provides the best per- 
formance, it is now the default algorithm in Gamma and 
is described in more detail in the following section. Since 
these hash-based join algorithms cannot be used to exe- 
cute nonequijoin operations, such operations are not cur- 
rently supported. To remedy this situation, we are in the 
process of designing a parallel nonequijoin algorithm for 
Gamma. 

Hybrid Hash-Join: A centralized Hybrid hash-join al- 
gorithm [ l l ]  operates in three phases. In the first phase, 
the algorithm uses a hash function to partition the inner 
(smaller) relation R into N buckets. The tuples of the first 
bucket are used to build an in-memory hash table while 
the remaining N - 1 buckets are stored in temporary files. 
A good hash function produces just enough buckets to en- 
sure that each bucket of tuples will be small enough to fit 
entirely in main memory. During the second phase, rela- 
tion S is partitioned using the hash function from step 1. 
Again, the last N - 1 buckets are stored in temporary files 
while the tuples in the first bucket are used to immediately 
probe the in-memory hash table built during the first 

phase. During the third phase, the algorithm joins the re- 
maining N - 1 buckets from relation R with their respec- 
tive buckets from relation S .  The join is thus broken up 
into a series of smaller joins; each of which hopefully can 
be computed without experiencing join overflow. The size 
of the smaller relation determines the number of buckets; 
this calculation is independent of the size of the larger 
relation. 

Our parallel version of the Hybrid hash-join algorithm 
is similar to the centralized algorithm described above. A 
partitioning split table first separates the joining relations 
into N logical buckets. The number of buckets is chosen 
such that the tuples corresponding to each logical bucket 
will fit in the aggregate memory of the joining processors. 
The N - 1 buckets intended for temporary storage on disk 
are each partitioned across all available disk sites. Like- 
wise, ajoining split table will be used to route tuples to 
their respective joining processor (these processors do not 
necessarily have attached disks), thus parallelizing the 
joining phase. Furthermore, the partitioning of the inner 
relation R into buckets is overlapped with the insertion of 
tuples from the first bucket of R into memory-resident hash 
tables at each of the join nodes. In addition, the partition- 
ing of the outer relation S into buckets is overlapped with 
the joining of the first bucket of S with the first bucket of 
R. This requires that the partitioning split table for R and 
S be enhanced with the joining split table as tuples in the 
first bucket must be sent to those processors being used 
to effect the join. Of course, when the remaining N - 1 
buckets are joined, only the joining split table will be 
needed. Fig. 8 depicts relation R being partitioned into N 
buckets across k disk sites where the first bucket is to be 
joined on m processors ( m may be less than, equal to, or 
greater than k ). 

C. Aggregate Operations 
Gamma implements scalar aggregates by having each 

processor compute its piece of the result in parallel. The 
partial results are then sent to a single process which com- 
bines these partial results into the final answer. Aggregate 
functions are computed in two steps. First, each processor 
computes a piece of the result by calculating a value for 
each of the partitions. Next, the processors redistribute 
the partial results by hashing on the “group by” attribute. 
The result of this step is to collect the partial results for 
each partition at a single site so that the final result for 
each partition can be computed. 

D. Update Operators 
For the most part, the update operators (replace, delete, 

and append) are implemented using standard techniques. 
The only exception occurs when a replace operator mod- 
ifies the partitioning attribute of a tuple. In this case, rather 
than writing the modified tuple back into the local frag- 
ment of the relation, the modified tuple is passed through 
a split table to determine which site should contain the 
tuple. 
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V .  TRANSACTION A N D  FAILURE MANAGEMENT 

In this section, we describe the mechanisms that Gamma 
uses for transaction and failure management. While the 
locking mechanisms are fully operational, the recovery 
system is currently being implemented. We expect to be- 
gin the implementation of the failure management mech- 
anism in early 1990. 

A. Concurrency Control in Gamma 
Concurrency control in Gamma is based on two-phase 

locking [23]. Currently, two lock granularities, file and 
page, and five lock modes, S ,  X ,  I S ,  I X ,  and SIX are pro- 
vided. Each site in Gamma has its own local lock manager 
and deadlock detector. The lock manager maintains a lock 
table and a transaction wait-for-graph. The cost of setting 
a lock varies from approximately 100 instructions, if there 
is no conflict, to 250 instructions if the lock request con- 
flicts with the granted group. In this case, the wait-for- 
graph must be checked for deadlock and the transaction 
that requested the lock must be suspended via a sema- 
phore mechanism. 

In order to detect multisite deadlocks, Gamma uses a 
centralized deadlock detection algorithm. Periodically, the 
centralized deadlock detector sends a message to each 
node in the configuration, requesting the local transaction 
wait-for-graph of that node. Initially, the period for run- 
ning the centralized deadlock detector is set at 1 s. Each 
time the deadlock detector fails to find a global deadlock, 
this interval is doubled and each time a deadlock is found 
the current value of the interval is halved. The upper 
bound of the interval is limited to 60 s and the lower bound 
is 1 s. After collecting the wait-for-graph from each site, 
the centralized deadlock detector creates a global trans- 
action wait-for-graph. Whenever a cycle is detected in the 
global wait-for-graph, the centralized deadlock manager 
chooses to abort the transaction holding the fewest num- 
ber of locks. 

B. Recovery Architecture and Log Manager 
The algorithms currently being implemented for coor- 

dinating transaction commit, abort, and rollback operate 

as follows. When an operator process updates a record, it 
also generates a log record which records the change of 
the database state. Associated with every log record is a 
log sequence number (LSN) which is composed of a node 
number and a local sequence number. The node number 
is statically determined at the system configuration time 
whereas the local sequence number, termed current LSN,  
is a monotonically increasing value. 

Log records are sent by the query processors to one or 
more log managers (each running on a separate processor) 
which merges the log records it receives to form a single 
log stream. If M is the number of log processors being 
used, query processor i will direct its log records to the (i 
mod M )  log processor [ 11. Because this algorithm selects 
the log processor statically and a query processor always 
sends its log records to the same log processor, the recov- 
ery process at a query processing node can easily deter- 
mine where to request the log records for processing a 
transaction abort. 

When a page of log records is filled, it is written to 
disk. The log manager maintains a table, called thejushed 
log table, which contains, for each node, the LSN of the 
last log record from that node that has been flushed to 
disk. These values are returned to the nodes either upon 
request or when they can be piggybacked on another mes- 
sage. Query processing nodes save this information in a 
local variable, termed the jushed LSN. 

The buffer managers at the query processing nodes ob- 
serve the WAL protocol [23]. When a dirty page needs to 
be forced to disk, the buffer manager first compares the 
page’s LSN with the local value of flushed LSN. If the 
LSN of a page is smaller or equal to the flushed LSN, that 
page can be safely written to disk. Otherwise, either a 
different dirty page must be selected, or a message must 
be sent to the log manager to flush the corresponding log 
record(s) of the dirty page. Only after the log manager 
acknowledges that the log record has been written to the 
log disk will the dirty data page be written back to disk. 
In order to reduce the time spent waiting for a reply from 
the log manager, the buffer manager always keeps T (a 
preselected threshold) clean and unfixed buffer pages 
available. When buffer manager notices that the number 
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of clean, unfixed buffer pages has fallen below T ,  a pro- 
cess, termed local log manager, is activated. This process 
sends a message to the log manager to flush one or more 
log records so that the number of clean and unfixed pages 
plus the number of dirty pages that can be safely written 
to disk is greater than T. 

The scheduler process for a query is responsible for 
sending commit or  abort records to the appropriate log 
managers. If a transaction completes successfully, a com- 
mit record for the transaction is generated by its scheduler 
and sent to each relevant log manager which employs a 
group commit protocol. On the other hand, if a transac- 
tion is aborted by either the system or the user, its sched- 
uler will send an abort message to all query processors 
that participated in its execution. The recovery process at 
each of the participating nodes responds by requesting the 
log records generated by the node from its log manager 
(the LSN of each log record contains the originating node 
number). As the log records are received, the recovery 
process undoes the log records in reverse chronological 
order using the ARIES undo algorithm [30]. The ARIES 
algorithms are also used as the basis for checkpointing 
and restart recovery. 

C. Failure Management 

To help ensure availability of the system in the event 
of processor and/or disk failures, Gamma employs a new 
availability technique termed chained declustering [25]. 
Like Tandem’s mirrored disk mechanism [5] and Tera- 
data’s interleaved declustering mechanism [40],  [9] ,  
chained declustering employs both a primary and backup 
copy of each relation. All three systems can sustain the 
failure of a single processor or disk without suffering any 
loss in data availability. In [25], we show that chained 
declustering provides a higher degree of availability than 
interleaved declustering and, in the event of a processor 
or disk failure, does a better job of distributing the work- 
load of the broken node. The mirrored disk mechanism, 
while providing the highest level of availability, does a 
very poor job of distributing the load of a failed proces- 
sor. 

Data Placement with Chained Declustering: With 
chained declustering, nodes (a processor with one or more 
disks) are divided into disjoint groups called relation 
clusters and tuples of each relation are declustered among 
the drives that form one of the relation clusters. Two 
physical copies of each relation, termed the primary copy 
and the backup copy, are maintained. As an example, 
consider Fig. 9 where M ,  the number of disks in the re- 
lation cluster, is equal to 8. The tuples in the primary 
copy of relation R are declustered using one of Gamma’s 
three partitioning strategies with tuples in the ith primary 
fragment (designated Ri) stored on the { i  mod M}th disk 
drive. The backup copy is declustered using the same par- 
titioning strategy but the ith backup fragment (designated 
ri) is stored on { ( i  + 1) mod M}th disk. We term this data 
replication method chained declustering because the disks 

are linked together, by the fragments of a relation, like a 
chain. 

The difference between the chained and interleaved de- 
clustering mechanisms [40],  [9] is illustrated by Fig. 10. 
In Fig. 10, the fragments from the primary copy of R are 
declustered across all eight disk drives by hashing on a 
“key” attribute. With the interleaved declustering mech- 
anism the set of disks is divided into units of size N called 
clusters. As illustrated by Fig. 10, where N = 4 ,  each 
backup fragment is subdivided into N - 1 subfragments 
and each subfragment is placed on a different disk within 
the same cluster other than the disk containing the pri- 
mary fragment. 

Since interleaved and chained declustering can both 
sustain the failure of a single disk or processor, what then 
is the difference between the two mechanisms? In the case 
of a single node (processor or disk) failure, both the 
chained and interleaved declustering strategies are able to 
uniformly distribute the workload of the cluster among 
the remaining operational nodes. For example, with a 
cluster size of 8, when a processor or disk fails, the load 
on each remaining node will increase by 1 /7th. One might 
conclude then that the cluster size should be made as large 
as possible; until, of course, the overhead of the parallel- 
ism starts to overshadow the benefits obtained. While this 
is true for chained declustering, the availability of the in- 
terleaved strategy is inversely proportional to the cluster 
size since the failure of any two processors or disk will 
render data unavailable. Thus, doubling the cluster size 
in order to halve (approximately) the increase in the load 
on the remaining nodes when a failure occurs has the 
(quite negative) side effect of doubling the probability that 
data will actually be unavailable. For this reason, Tera- 
data recommends a cluster size of 4-8 processors. 

Fig. 11 illustrates how the workload is balanced in the 
event of a node failure (node 1 in this example) with the 
chained declustering mechanism. During the normal mode 
of operation, read requests are directed to the fragments 
of the primary copy and write operations update both cop- 
ies. When a failure occurs, pieces of both the primary and 
backup fragments are used for read operations. For ex- 
ample, with the failure of node 1 ,  primary fragment R1 
can no longer be accessed and thus its backup fragment 
rl on node 2 must be used for processing queries that 
would normally have been directed to R1. However, in- 
stead of requiring node 2 to process all accesses to both 
R2 and r l ,  chained declustering offloads 6/7ths of the 
accesses to R2 by redirecting them to r2 at node 3 .  In turn, 
5/7ths of access to r3 at node 3 are sent to R4 instead. 
This dynamic reassignment of the workload results in an 
increase of 1 /7th in the workload of each remaining node 
in the cluster. Since the cluster size can be increased with- 
out penalty, it is possible to make this load increase as 
small as is desired. 

What makes this scheme even more attractive is that the 
reassignment of active fragments incurs neither disk I /O 
nor data movement. Only some of the bound values and 
pointers/indexes in a memory resident control table must 
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node 1 (relation cluster size = 8). 

be changed and these modifications can be done very 
quickly and efficiently. 

The example shown in Fig. 11 provides a very simpli- 
fied view of how the chained declustering mechanism ac- 
tually balances the workload in the event of a node fail- 
ure. In reality, queries cannot simply access an arbitrary 
fraction of a data fragment, especially given the variety 
of partitioning and index mechanisms provided by the 
Gamma software. In [25], we describe how all combina- 
tions of query types, access methods, and partitioning 
mechanisms can be handled. 

VI. PERFORMANCE STUDIES 

A .  Introduction and Experiment Overview 
To evaluate the performance of the hypercube version 

of Gamma, three different metrics were used. First, the 
set of Wisconsin [3] benchmark queries were run on a 30 
processor configuration using three different sizes of re- 
lations: 100 000, 1 million, and 10 million tuples. While 
absolute performance is one measure of a database sys- 
tem, speedup and scaleup are also useful metrics for mul- 
tiprocessor database machines [ 161. Speedup is an inter- 
esting metric because it indicates whether additional 
processors and disks result in a corresponding decrease in 
the response time for a query. For a subset of the Wis- 
consin benchmark queries, we conducted speedup exper- 

iments by varying the number of processors from 1 to 30 
while the size of the test relations was fixed at 1 million 
tuples. For the same set of queries, we also conducted 
scaleup experiments by varying the number of processors 
from 5 to 30 while the size of the test relations was in- 
creased from 1 to 6 million tuples, respectively. Scaleup 
is a valuable metric as it indicates whether a constant re- 
sponse time can be maintained as the workload is in- 
creased by adding a proportional number of processors 
and disks. [16] describes a similar set of tests on Release 
2 of Tandem’s Nonstop SQL system. 

The benchmark relations used for the experiments were 
based on the standard Wisconsin Benchmark relations [3]. 
Each relation consists of tuples that are 208 bytes wide. 
We constructed 100 000, 1 million, and 10 million tuple 
versions of the benchmark relations. Two copies of each 
relation were created and loaded. Except where noted oth- 
erwise, tuples were declustered by hash partitioning on 
the Unique1 attribute. In all cases, the results presented 
represent the average response time of a number of equiv- 
alent queries. Gamma was configured to use a disk page 
size of 8K bytes and a buffer pool of 2 megabytes. 

The results of all queries were stored in the database. 
We avoided retuming data to the host in order to avoid 
having the speed of the communications link between the 
host and the database machine or the host processor itself 
affect the results. By storing the result relations in the da- 
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tabase, the impact of these factors was minimized-at the 
expense of incurring the cost of declustering and storing 
the result relations. 

B. Selection Queries 
Performance Relative to Relation Size: The first set of 

selection tests was designed to determine how Gamma 
would respond as the size of the source relations was in- 
creased while the machine configuration was kept at 30 
processors with disks. Ideally, the response time of a 
query should grow as a linear function of the size of input 
and result relations. For these tests six different selection 
queries were run on three sets of relations containing, re- 
spectively, 100 000, 1 million, and 10 million tuples. The 
first two queries have a selectivity factor of 1 % and 10% 
and do not employ any indexes. The third and fourth quer- 
ies have the same selectivity factors but use a clustered 
index to locate the qualifying tuples. The fifth query has 
a selectivity factor of 1 % and employs a nonclustered in- 
dex to locate the desired tuples. There is no 10% selection 
through a nonclustered index query as the Gamma query 
optimizer chooses to use a sequential scan for this query. 
The last query uses a clustered index to retrieve a single 
tuple. Except for the last query, the predicate of each 
query specifies a range of values and, thus, since the input 
relations were declustered by hashing, the query must be 
sent to all the nodes. 

The results from these tests are tabulated in Table 111. 
For the most part, the execution time for each query 
scales as a fairly linear function of the size of the input 
and output relations. There are, however, several cases 
where the scaling is not perfectly linear. Consider, first 
the 1 %  nonindexed selection. While the increase in re- 
sponse time as the size of the input relation is increased 
from 1 to 10 million tuples is almost perfectly linear 
(8.16-81.15 s), the increase from 100 000 tuples to 1 mil- 
lion tuples (0.45-8.16 s) is actually sublinear. The 10% 
selection using a clustered index is another example where 
increasing the size of the input relation by a factor of ten 
results in more than a tenfold increase in the response time 
for the query. This query takes 5.02 s on the 1 million 
tuple relation and 6 1.86 s on the 10 million tuple relation. 
To understand why this happens one must consider the 
impact of seek time on the execution time of the query. 
Since two copies of each relation were loaded, when two 
one million tuple relations are declustered over 30 disk 
drives, the fragments occupy approximately 53 cylinders 
(out of 1224) on each disk drive. Two ten million tuple 
relations fill about 530 cylinders on each drive. As each 
page of the result relation is written to disk, the disk heads 
must be moved from their current position over the input 
relation to a free block on the disk. Thus, with the 10 
million tuple relation, the cost of writing each output page 
is much higher. 

As expected, the use of a cluster B-tree index always 
provides a significant improvement in performance. One 
observation to be made from Table I11 is the relative con- 
sistency of the execution time of the selection queries 

TABLE 111 
SELECTION QUERIES. 30 PROCESSORS W I T H  DISKS ( A L L  EXECUTION TIMES I N  

SECONDS) 

Number of Tuples in Source Relation 
Query Description 100,000 1,000,000 10,000,000 

1% nonindexed selection 0.45 R.16 81.15 

10% nonindexed selecuon 0.82 10.82 135.61 

1% selection using clustered index 0.35 0.82 5.12 

10% selection using clustered index 0.77 5.02 61.86 

1% selection using non-clustered index 0.60 8.77 113.37 

single tuple select using clustered index 0.08 0.08 0.14 

through a clustered index. Notice that the execution time 
for a 10% selection on the 1 million tuple relation is al- 
most identical to the execution time of the 1% selection 
on the 10 million tuple relation. In both cases, 100 000 
tuples are retrieved and stored, resulting in identical 1 /0  
and CPU cost. 

The final row of Table 111 presents the time required to 
select a single tuple using a clustered index and return it 
to the host. Since the selection predicate is on the parti- 
tioning attribute, the query is directed to a single node, 
avoiding the overhead of starting the query on all 30 pro- 
cessors. The response time for this query increases sig- 
nificantly as the relation size is increased from 1 million 
to 10 million tuples because the height of the B-tree in- 
creases from two to three levels. 

Speedup Experiments: In this section we examine how 
the response time for both the nonindexed and indexed 
selection queries on the 1 million tuple relation7 is af- 
fected by the number of processors used to execute the 
query. Ideally, one would like to see a linear improve- 
ment in performance as the number of processors is in- 
creased from 1 to 30. Increasing the number of processors 
increases both the aggregate CPU power and 1/0 band- 
width available, while reducing the number of tuples that 
must be processed by each processor. 

In Fig. 12, the average response times for the nonin- 
dexed 1% and 10% selection queries on the one million 
tuple relation are presented. As expected, the response 
time for each query decreases as the number of nodes is 
increased. The response time is higher for the 10% selec- 
tion due to the cost of declustering and storing the result 
relation. While one could always store result tuples lo- 
cally, by partitioning all result relations in a round-robin 
(or hashed) fashion one can ensure that the fragments of 
every result relation each contain approximately the same 
number of tuples. The speedup curves corresponding to 
Fig. 12 are presented in Fig. 13. 

In Fig. 14, the average response time is presented as a 
function of the number of processors for the following 
three queries: a 1 % selection through a clustered index, a 

'The 1 million tuple relation was used for these experiments because the 
10 million tuple relation would not fit on 1 disk drive. 
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10% selection through a clustered index, and a 1 % selec- 
tion through a nonclustered index, all accessing the 1 mil- 
lion tuple relation. The corresponding speedup curves are 
presented in Fig. 15. 

Of the speedup curves presented in Fig. 13 and 15, three 
queries are superlinear, one is slightly sublinear, and one 
is significantly sublinear. Consider first the 10 % selection 
via a relation scan, the 1% selection through a nonclus- 
tered index, and the 10% selection through a clustered 
index. As discussed above, the source of the superlinear 
speedups exhibited by these queries is due to significant 
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differences in the time the various configurations spend 
seeking. With one processor, the 1 million tuple relation 
occupies approximately 66% of the disk. When the same 
relation is declustered over 30 disk drives, it occupies 
about 2% of each disk. In the case of the 1 % nonclustered 
index selection, each tuple selected requires a random 
seek. With one processor, the range of each random seek 
is approximately 800 cylinders while with 30 processors 
the range of the seek is limited to about 27 cylinders. Since 
the seek time is proportional to the square root of the dis- 
tance traveled by the disk head [24], reducing the size of 
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the relation fragment on each disk significantly reduces 
the amount of time that the query spends seeking. 

A similar effect also happens with the 10% clustered 
index selection. In this case, once the index has been used 
to locate the tuples satisfying the query, each input page 
will produce one output page and at some point the buffer 
pool will be filled with dirty output pages. In order to 
write an output page, the disk head must be moved from 
its position over the input relation to the position on the 
disk where the output pages are to be placed. The relative 
cost of this seek decreases proportionally as the number 
of processors increases, resulting in a superlinear speedup 
for the query. The 10% nonindexed selection shown in 
Fig. 13 is also superlinear for similar reasons. The reason 
that this query is not affected to the same degree is that, 
without an index, the seek time is a smaller fraction of 
the overall execution time of the query. 

The 1% selection through a clustered index exhibits 
sublinear speedups because the cost of initiating a select 
and store operator on each processor (a total of 0.24 s for 
30 processors) becomes a significant fraction of the total 
execution as the number of processors is increased. 

Scaleup Experiments: In the final set of selection ex- 
periments, the number of processors was varied from 5 to 
30 while the size of the input relations was increased from 
1 million to 6 million tuples, respectively. As shown in 
Fig. 16, the response time for each of the five selection 
queries remains almost constant. The slight increase in 
response time is due to the overhead of initiating a selec- 
tion and store operator at each site. Since a single process 
is used to initiate the execution of a query, as the number 
of processors employed is increased, the load on this pro- 
cess is increased proportionally. Switching to a tree-based 
query initiation scheme [ 181 would distribute this over- 
head among all the processors. 

C. Join Queries 
Like the selection queries in the previous section, we 

conducted three sets of join experiments. First, for two 
different join queries, we varied the size of the input re- 
lations while the configuration of processors was kept 
constant. Next, for one join query a series of speedup and 
scaleup experiments were conducted. For each of these 
tests, two different partitionings of the input relations were 
used. In the first case, the input relations were declustered 
by hashing on the join attribute. In the second case, the 
input relations were declustered using a different attri- 
bute. The hybrid join algorithm was used for all queries. 

Performance Relative to Relation Size: The first join 
query [3], joinABprime, is a simple join of two relations: 
A and Bprime. The A relation contains either 100 000, 1 
million, or 10 million tuples. The Bprime relation con- 
tains, respectively, 10 000, 100 000, or 1 million tuples. 
The result relation has the same number of tuples as the 
Bprime relation.* The second query, joinAselB, is com- 

'For each join operation, the result relation contains all the fields of both 
input relations and thus the result tuples are 416 bytes wide. 
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posed of one join and one selection. A and B have the 
same number of tuples and the selection on B reduces the 
size of B to the size of the Bprime relation in the corre- 
sponding joinABprime query. The result relation for this 
query has the same number of tuples as in the correspond- 
ing joinABprime query. As an example, if A has 10 mil- 
lion tuples, then joinABprime joins A with a Bprime re- 
lation that contains 1 million tuples, while in joinAselB 
the selection on B restricts B from 10 million tuples to 1 
million tuples and then joins the result with A .  

The first variation of the join queries tested involved no 
indexes and used a nonpartitioning attribute for both the 
join and selection attributes. Thus, before the join can be 
performed, the two input relations must be redistributed 
by hashing on the join attribute value of each tuple. The 
results from these tests are contained in the first 2 rows of 
Table IV. The second variation of the join queries also 
did not employ any indexes but, in this case, the relations 
were hash partitioned on the joining attribute; enabling 
the redistribution phase of the join to be skipped. The re- 
sults for these tests are contained in the last 2 rows of 
Table IV. 

The results in Table IV indicate that the execution time 
of each join query increases in a fairly linear fashion as 
the size of the input relations are increased. Gamma does 
not exhibit linearity for the 10 million tuple queries be- 
cause the size of the inner relation (208 megabytes) is 
twice as large as the total available space for hash tables. 
Hence, the Hybrid join algorithm needs two buckets to 
process these queries. While the tuples in the first bucket 
can be placed directly into memory-resident hash tables, 
the second bucket must be written to disk (see Section 

As expected, the version of each query in which the 
partitioning attribute was used as the join attribute ran 

IV-B). 
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TABLE IV 

SECONDS) 
J O I N  QUERIES. 30 PROCESSORS WITH DISKS (ALL EYFCUTION TIMES IN 

Number of Tuples in Relation A 
Query  Description 1U0,UUU 1,000,uuu 1u,ooo,uuo 

JoinABprime with non-partitioning attributes 3.52 28.69 438.90 
of A and B used as join attributes 

JoinAselB with non-partitioning attributes 2.69 25.13 373.98 
of A and B used as  join attributes 

JoinABprime with partitioning attributes 3.34 25.95 126.25 
of A and B used as  join attributes 

JoinAselB with partitioning attributes 2.14 23.71 362.89 
of A and B used as join attributes 

faster. From these results one can estimate a lower bound 
on the aggregate rate at which data can be redistributed 
by the Intel iPSC/2 hypercube. Consider the version of 
the joinABprime query in which a million tuple relation is 
joined with a 100 000 tuple relation. This query requires 
28.69 s when the join is not on the partitioning attribute. 
During the execution of this query, 1.1 million 208 byte 
tuples must be redistributed by hashing on the join attrib- 
ute, yielding an aggregate total transfer rate of 7.9 me- 
gabytes/s during the processing of this query. This should 
not be construed, however, as an accurate estimate of the 
maximum obtainable interprocessor communications 
bandwidth as the CPU’s may be the limiting factor (the 
disks are not likely to be the limiting factor as from Table 
I11 one can estimate that the aggregate bandwidth of the 
30 disks to be about 25 megabytes /s). 

Speedup Experiments: For the join speedup experi- 
ments, we used the joinABprime query with a 1 million 
tuple A relation and a 100 000 tuple Bprime relation. The 
number of processors was varied from 5 to 30. Since with 
fewer than five processors two or more buckets are 
needed, including the execution time for one processor 
(which needs five buckets) would have made the response 
times for five or more processors appear artificially fast; 
resulting in superlinear speedup curves. 

The resulting response times are plotted in Fig. 17 and 
the corresponding speedup curves are presented in Fig. 
18. From the shape of these graphs it is obvious that the 
execution time for the query is significantly reduced as 
additional processors are employed. Several factors pre- 
vent the system from achieving perfectly linear speedups. 
First, the cost of starting four operator tasks (two scans, 
one join, and one store) on each processor increases as a 
function of the number of processors used. Second, the 
effect of short-circuiting local messages diminishes as the 
number of processors is increased. For example, consider 
a five-processor configuration and the nonpartitioning at- 
tribute version of the joinABprime query. As each pro- 
cessor repartitions tuples by hashing on the join attribute, 
1/5th of the input tuples it processes are destined for it- 
self and will be short-circuited by the communications 
software. In addition, as the query produces tuples of the 
result relation (which is partitioned in a round-robin man- 
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ner), they too will be short-circuited. As the number of 
processors is increased, the number of short-circuited 
packets decreases to the point where, with 30 processors, 
only 1/30th of the packets will be short-circuited. Be- 
cause these intranode packets are less expensive than their 
corresponding internode packets, smaller configurations 
will benefit more from short-circuiting. In the case of a 
partitioning-attribute join, all input tuples will short-cir- 
cuit the network along with a fraction of the output tuples. 

Scaleup Experiments: The joinABprime query was also 
used for the join scaleup experiments. For these tests, the 
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number of processors was varied from 5 to 30 while the 
size of the A relation was varied from 1 million to 6 mil- 
lion tuples in increments of l million tuples and the size 
of Bprime relation was varied from 100 000 to 600 000 
tuples in increments of 100 000. For each configuration, 
only one join bucket was needed. The results of these tests 
are presented in Fig. 19. Three factors contribute to the 
slight increase in response times. First, the task of initi- 
ating four processes at each site is performed by a single 
processor. Second, as the number of processors increases, 
the effects of short-circuiting messages during the exe- 
cution of these queries diminishes-especially in the case 
when the join attribute is not the partitioning attribute. 
Finally, the response time may be being limited by the 
speed of the communications network. 

D. Aggregate Queries 
Our aggregate tests included a mix of scalar aggregate 

and aggregate function queries run on the 30 processor 
configuration. The first query computes the minimum of 
a nonindexed attribute. The next two queries compute, 
respectively, the sum and minimum of an attribute after 
partitioning the relation into 20 subsets. Three sizes of 
input relations were used: 100 000, 1 million, and I O  mil- 
lion tuples. The results from these tests are contained in 
Table V. Since the scalar aggregates and aggregate func- 
tion operators are executed using algorithms that are sim- 
ilar to those used by the selection and join operators, re- 
spectively, no speedup or scaleup experiments were 
conducted. 

E. Update Queries 
The next set of tests included a mix of append, delete, 

and modify queries on three different sizes of relations: 
100 000, 1 million, and 10 million tuples. The results of 
these tests are presented in Table VI. Since Gamma’s re- 
covery mechanism is not yet operational, these results 
should be viewed accordingly. 

The first query appends a single tuple to a relation on 
which no indexes exist. The second appends a tuple to a 
relation on which one index exists. The third query de- 
letes a single tuple from a relation, using a clustered 
B-tree index to locate the tuple to be deleted. In the first 
query, no indexes exist and hence no indexes need to be 
updated, whereas in the second and third queries, one in- 
dex needs to be updated. 

The fourth through sixth queries test the cost of modi- 
fying a tuple in three different ways. In all three tests, a 
nonclustered index exists on the unique2 attribute, and, 
in addition, a clustered index exists on the Unique1 at- 
tribute. In the first case, the modified attribute is the par- 
titioning attribute, thus requiring that the modified tuple 
be relocated. Furthermore, since the tuple is relocated, 
the secondary index must also be updated. The second 
modify query modifies a nonpartitioning, nonindexed at- 
tribute. The third modify query modifies an attribute on 
which a nonclustered index has been constructed, using 
the index to locate the tuple to be modified. 
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TABLE V 

I N  SECONDS) 
AGGREGATE QUERIES.  30  PROCESSORS WITH DISKS (ALL EXECUTION TIMES 

Number of Tuples in Source Relation 
Query Description 100,000 1,000,000 10,000,000 

Scalar aggregate 1.10 10.36 106.42 

Min aggregate function (20 Partitions) 2.03 12.48 120.03 

Sum aggregate function (20 Partitions) 2.03 12.39 120.22 

TABLE VI 
UPDATE QUERIES.  30  PROCESSORS WITH DISKS (ALL EXECUTION T I M E S  I N  

SECONDS) 

Number of Tuples in Source Relation 
Ouerv Descriotion 100.000 1.000.000 10.000.u00 

Append 1 Tuple (No indices exist) 0.07 0.08 0.10 

Append 1 Tuple (One index exisls) 0.18 0.21 0.22 

Delete 1 tuple 0.34 0.28 0.49 

Modiry 1 tuple (#1) 0.72 0.73 0.93 

Modiry 1 tuple (#2) 0.18 0.20 0.23 

Modify 1 tuple (#3) 0.33 0.3x 0.52 

VII. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
In this paper, we have described the design and imple- 

mentation of the Gamma database machine. Gamma em- 
ploys a shared-nothing architecture in which each proces- 
sor has one or more disks and the processors can 
communicate with each other only by sending messages 
via an interconnection network. While a previous version 
of the Gamma software ran on a collection of VAX 11/ 
750’s interconnected via a 80 Mbit/s token ring, cur- 
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rently the system runs on an Intel iPSC/2 hypercube with 
32 processors and 32 disk drives. 

Gamma employs three key ideas which enable the ar- 
chitecture to be scaled to hundreds of processors. First, 
all relations are horizontally partitioned across multiple 
disk drives which are attached to separate processors; en- 
abling relations to be scanned in parallel without any spe- 
cialized hardware. In addition, in order to enable the da- 
tabase design to be tuned to the needs of the application, 
three alternative partitioning strategies are provided. The 
second major contribution of the Gamma software is its 
extensive use of hash-based parallel algorithms for pro- 
cessing complex relational operators such as joins and ag- 
gregate functions. Finally, the system employs unique da- 
taflow scheduling techniques to coordinate the execution 
of multioperator queries. These techniques make it pos- 
sible to control the execution of very complex queries with 
minimal coordination-a necessity for configurations in- 
volving a large number of processors. 

In addition to describing the design of the Gamma soft- 
ware, we have also presented a thorough performance 
evaluation of the iPSC/2 hypercube version of Gamma. 
Three sets of experiments were performed. First, with a 
constant machine configuration of 30 processors, the re- 
sponse time for the set of Wisconsin benchmark queries 
was measured for three different sizes of relations. For a 
subset of these queries we also measured the performance 
of the system relative to the number of processors em- 
ployed when the sizes of the input relations are kept con- 
stant (speedup) and when the sizes of the input relations 
are increased proportionally to the number of processors 
(scaleup). The speedup results obtained for both selection 
and join queries are almost perfectly linear; thus doubling 
the number of processors halves the response time for a 
query. The scaleup results obtained are also quite en- 
couraging. They reveal that a constant response time can 
be maintained for both selection and join queries as the 
workload is increased by adding a proportional number of 
processors and disks. 

We currently have a number of new projects underway. 
First, we plan on implementing the chained declustering 
mechanism and evaluating its effectiveness. With respect 
to processing queries, we have designed [35] and are cur- 
rently evaluating alternative strategies for processing 
queries involving multiple join operations. For example, 
consider a query involving ten joins on a machine with 
100 processors. Is it better to use all 100 processors for 
each join (allocating 1 / 10 of the memory on each pro- 
cessor to each join), or to use ten processors for each join 
(in which case each join operator will have full use of the 
memory at each processor)? Finally, we are studying sev- 
eral new partitioning mechanisms that combine the best 
features of the hash and range partitioning strategies. 
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