BU CS 332 – Theory of Computation

Link to polls: <u>https://forms.gle/2hWWjEjNge1P1V9J9</u>

Lecture 2:

 Parts of a Theory of Computation Reading: Sipser Ch 0

• Sets, Strings, and Languages

Mark Bun

September 7, 2021

What makes a good theory?

- General ideas that apply to many different systems
- Expressed simply, abstractly, and precisely

Parts of a Theory of Computation

- Models for machines (computational devices)
- Models for the problems machines can be used to solve
- Theorems about what kinds of machines can solve what kinds of problems, and at what cost

What is a (Computational) Problem?

For us: A problem will be the task of recognizing whether a *string* is in a *language*

- Alphabet: A finite set Σ Ex. $\Sigma = \{a, b\}$
- String: A finite concatenation of alphabet symbols Ex. bba, ababb

 ε denotes empty string, length 0

 Σ^* = set of all strings using symbols from Σ Ex. {a, b}* = { ε , a, b, aa, ab, ba, bb, ... }

• Language: A set $L \subseteq \Sigma^*$ of strings

Examples of Languages

Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

$$\Sigma = L =$$

Primality: Given a natural number x (represented in binary), is x prime?

$$\Sigma = L =$$

Halting Problem: Given a C program, can it ever get stuck in an infinite loop?

$$\Sigma = L =$$

Machine Models

Computation is the processing of information by the **unlimited application** of a **finite set** of operations or rules

<u>Abstraction</u>: We don't care how the control is implemented. We just require it to have a finite number of states, and to transition between states using fixed rules.

Machine Models

• <u>Finite Automata (FAs)</u>: Machine with a finite amount of unstructured memory

Control scans left-to-right Can check simple patterns Can't perform unlimited counting

Useful for modeling chips, simple control systems, choose-yourown adventure games...

Machine Models

• <u>Turing Machines (TMs)</u>: Machine with unbounded, unstructured memory

Control can scan in both directions Control can both read and <u>write</u>

Model for general sequential computation Church-Turing Thesis: Everything we intuitively think of as "computable" is computable by a Turing Machine

What theorems would we like to prove?

We will define classes of languages based on which machines can recognize them

Inclusion: Every language recognizable by a FA is also recognizable by a TM

Non-inclusion: There exist languages recognizable by TMs which are not recognizable by FAs

Completeness: Identify a "hardest" language in a class

Robustness: Alternative definitions of the same class

Ex. Languages recognizable by FAs = regular expressions

Why study theory of computation?

- You'll learn how to formally reason about computation
- You'll learn the technology-independent foundations of CS

Philosophically interesting questions:

- Are there well-defined problems which cannot be solved by computers?
- Can we always find the solution to a puzzle faster than trying all possibilities?
- Can we say what it means for one problem to be "harder" than another?

Why study theory of computation?

- You'll learn how to formally reason about computation
- You'll learn the technology-independent foundations of CS

Connections to other parts of science:

• Finite automata arise in compilers, AI, coding, chemistry

https://cstheory.stackexchange.com/a/14818

- Hard problems are essential to cryptography
- Computation occurs in cells/DNA, the brain, economic systems, physical systems, social networks, etc.

What appeals to you about the theory of computation?

- 1. I want to learn new ways of thinking about computation
- 2. I like math and want to see how it's used in computer science
- 3. I'm excited about the philosophical questions about computation
- 4. I want to practice problem solving and algorithmic thinking
- 5. I want to develop a "computational perspective" on other areas of math/science
- 6. I actually wanted to take CS 320 or 350 but they were full

Why study theory of computation?

Practical knowledge for developers

"Boss, I can't find an efficient algorithm. I guess I'm just too dumb."

"Boss, I can't find an efficient algorithm because no such algorithm exists."

Will you be asked about this material on job interviews? No promises, but a true story...

More about strings and languages

String Theory

- Symbol: Ex. a, b, 0, 1
- Alphabet: A finite set Σ Ex. $\Sigma = \{a, b\}$
- String: A finite concatenation of alphabet symbols Ex. bba, ababb

 ε denotes empty string, length 0

 Σ^* = set of all strings using symbols from Σ

Ex. $\{a, b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, ...\}$

• Language: A set $L \subseteq \Sigma^*$ of strings

String Theory

- Length of a string, written |x|, is the number of symbols Ex. $|abba| = |\varepsilon| =$
- **Concatenation** of strings *x* and *y*, written *xy*, is the symbols from *x* followed by the symbols from *y*
- **Reversal** of string *x*, written *x*^{*R*}, consists of the symbols of *x* written backwards
- Ex. $x = aab \implies x^R =$

Fun with String Operations

What is $(xy)^R$? Ex. $x = aba, y = bba \Rightarrow xy =$ $\Rightarrow (xy)^R =$

- a) $x^R y^R$ b) $y^R x^R$ c) $(yx)^R$
- d) xy^R

Fun^{proofs} with String Operations

Claim:
$$(xy)^R =$$

Proof: Let $x = x_1x_2 \dots x_n$ and $y = y_1y_2 \dots y_m$
Then $(xy)^R =$

Not even the most formal way to do this:

- 1. Define string length recursively
- 2. Prove by induction on |y|

Languages

A language L is a set of strings over an alphabet Σ i.e., $L \subseteq \Sigma^*$

Languages = computational (decision) problems <u>Input:</u> String $x \in \Sigma^*$ <u>Output:</u> Is $x \in L$? (YES or NO?)

Some Simple Languages $\Sigma = \{0,1\} \qquad \Sigma = \{a,b,c\}$

Ø (Empty set)

Σ^* (All strings)

$\Sigma^{n} = \{x \in \Sigma^{*} \mid |x| = n\}$ (All strings of length *n*)

Some More Interesting Languages

 L₁ = The set of strings x ∈ {a, b}* that have an equal number of a's and b's

• L_2 = The set of strings $x \in \{a, b\}^*$ that start with (0 or more) a's and are followed by an equal number of b's

• L_3 = The set of strings $x \in \{0, 1\}^*$ that contain the substring '0100'

Some More Interesting Languages

• L_4 = The set of strings $x \in \{a, b\}^*$ of length at most 4

• L_5 = The set of strings $x \in \{a, b\}^*$ that contain at least two a's

New Languages from Old

 L_6 = The set of strings $x \in \{a, b\}^*$ that have an equal number of a's and b's and length greater than 4

Since languages are just sets of strings, can build them using set operations:

 $A \cup B$ "union"

 $A \cap B$ "intersection"

 $ar{A}$ "complement"

New Languages from Old

 L_6 = The set of strings $x \in \{a, b\}^*$ that have an equal number of a's and b's and have length greater than 4

- L₁ = The set of strings x ∈ {a, b}* that have an equal number of a's and b's
- L_4 = The set of strings $x \in \{a, b\}^*$ of length at most 4

$$\Rightarrow L_6 =$$

Operations Specific to Languages

• Reverse: $L^R = \{x^R | x \in L\}$ Ex. $L = \{\varepsilon, a, ab, aab\} \Rightarrow L^R =$

• Concatenation: $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$ Ex. $L_1 = \{ab, aab\}$ $L_2 = \{\varepsilon, b, bb\}$ $\Rightarrow L_1 \circ L_2 =$

String, language, or something else?

Е

{Ø}

Languages

Languages = computational (decision) problems

```
<u>Input:</u> String x \in \Sigma^*
```

```
<u>Output:</u> Is x \in L? (YES or NO?)
```

The language **recognized** by a program is the set of strings $x \in \Sigma^*$ that it *accepts*

9/7/2021

Eori - 1

What Language Does This Program Recognize?

Alphabet
$$\Sigma = \{a, b\}$$

a) $\{x \in \Sigma^* \mid |x| > 4\}$ b) $\{x \in \Sigma^* \mid |x| \le 4\}$ c) $\{x \in \Sigma^* \mid |x| = 4\}$ d) $\{x \in \Sigma^* \mid x \text{ has more than 4 a's}\}$ e) $\{x \in \Sigma^* \mid x \text{ has at most 4 a's}\}$ f) $\{x \in \Sigma^* \mid x \text{ has exactly 4 a's}\}$

On input
$$x = x_1 x_2 \dots x_n$$
:
count = 0

If
$$x_i = a$$
:
count = count + 1
If count ≤ 4 : accept
Else: reject

