
BU CS 332 – Theory of Computation

Lecture 5:

• Closure Properties

• Regular Expressions

Reading:

Sipser Ch 1.2-1.3

Mark Bun

September 16, 2021

https://forms.gle/nhDVMnUWLYLjdYZ2A

https://forms.gle/nhDVMnUWLYLjdYZ2A

Last Time

• NFAs vs. DFAs
• Subset construction: NFA -> DFA

• Intro to closure properties of regular languages

9/16/2021 CS332 - Theory of Computation 2

Closure Properties

9/16/2021 CS332 - Theory of Computation 3

Operations on languages
Let 𝐴, 𝐵 ⊆ Σ∗ be languages. Define

Union: 𝐴 ∪ 𝐵

Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}

Star: 𝐴∗ = { 𝑤1𝑤2…𝑤𝑛|𝑛 ≥ 0 and 𝑤𝑖 ∈ 𝐴}

Complement: ҧ𝐴

Intersection: 𝐴 ∩ 𝐵

Reverse: 𝐴𝑅 = { 𝑎1𝑎2…𝑎𝑛|𝑎𝑛…𝑎1 ∈ 𝐴}

Theorem: The class of regular languages is closed under all six
of these operations

9/16/2021 CS332 - Theory of Computation 4

{Regular
Operations

Proving Closure Properties

9/16/2021 CS332 - Theory of Computation 5

Complement

Complement: ҧ𝐴 = 𝑤 𝑤 ∉ 𝐴}

Theorem: If 𝐴 is regular, then ҧ𝐴 is also regular

Proof idea:

9/16/2021 CS332 - Theory of Computation 6

Complement, Formally

Let 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) be a DFA recognizing a language
𝐴. Which of the following represents a DFA recognizing ҧ𝐴?

a) (𝐹, Σ, 𝛿, 𝑞0, 𝑄)

b) (𝑄, Σ, 𝛿, 𝑞0, 𝑄 ∖ 𝐹), where 𝑄 ∖ 𝐹 is the set of states in
𝑄 that are not in 𝐹

c) (𝑄, Σ, 𝛿′, 𝑞0, 𝐹) where 𝛿′(𝑞, 𝑠) = 𝑝 such that
𝛿(𝑝, 𝑠) = 𝑞

d) None of the above

9/16/2021 CS332 - Theory of Computation 7

Closure under Concatenation

9/16/2021 CS332 - Theory of Computation 8

Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 𝐴, 𝑦 𝐵 }

Theorem. If 𝐴 and 𝐵 are regular, 𝐴 ∘ 𝐵 is also regular.

Proof idea: Given DFAs 𝑀𝐴 and 𝑀𝐵, construct NFA by

• Connecting all accept states in 𝑀𝐴 to the start state in 𝑀𝐵.

• Make all states in 𝑀𝐴 non-accepting.

𝐿(𝑀𝐴) = 𝐴 𝐿(𝑀𝐵) = 𝐵

Closure under Concatenation

9/16/2021 CS332 - Theory of Computation 9

Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 𝐴, 𝑦 𝐵 }

Theorem. If 𝐴 and 𝐵 are regular, 𝐴 ∘ 𝐵 is also regular.

Proof idea: Given DFAs 𝑀𝐴 and 𝑀𝐵, construct NFA by

• Connecting all accept states in 𝑀𝐴 to the start state in 𝑀𝐵.

• Make all states in 𝑀𝐴 non-accepting.

ε

ε

𝐿(𝑀𝐴) = 𝐴 𝐿(𝑀𝐵) = 𝐵

A Mystery Construction

9/16/2021 CS332 - Theory of Computation 10

ε

ε

𝐿(𝑀𝐴) = 𝐴

𝐿(𝑀𝐵) = 𝐵

Given DFAs 𝑀𝐴 recognizing 𝐴 and 𝑀𝐵 recognizing 𝐵, what does the

following NFA recognize?

a) 𝐴 ∪ 𝐵
b) 𝐴 ∘ 𝐵
c) 𝐴 ∩ 𝐵
d) {𝜀} ∪ 𝐴 ∪ 𝐵

Closure under Star

9/16/2021 CS332 - Theory of Computation 11

Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

Theorem. If 𝐴 is regular, 𝐴∗ is also regular.

𝐿(𝑀) = 𝐴

Closure under Star

9/16/2021 CS332 - Theory of Computation 12

Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

Theorem. If 𝐴 is regular, 𝐴∗ is also regular.

𝐿(𝑀) = 𝐴ε

ε

ε

On proving your own closure properties

You’ll have homework/test problems of the form “show that
the regular languages are closed under some operation”

What would Sipser do?

- Give the “proof idea”: Explain how to take machine(s)
recognizing regular language(s) and create a new machine

- Explain in a few sentences why the construction works

- Give a formal description of the construction

- No need to formally prove that the construction works

9/16/2021 CS332 - Theory of Computation 13

Regular Expressions

9/16/2021 CS332 - Theory of Computation 14

Regular Expressions

• A different way of describing regular languages

• A regular expression expresses a (possibly complex)
language by combining simple languages using the
regular operations

“Simple” languages: ∅, 𝜀 , {𝑎} for some 𝑎 ∈ Σ

Regular operations:

Union: 𝐴 ∪ 𝐵

Concatenation: 𝐴 ∘ 𝐵 = 𝑎𝑏 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

9/16/2021 CS332 - Theory of Computation 15

Regular Expressions – Syntax

A regular expression 𝑅 is defined recursively using the
following rules:

1. 𝜀, ∅, and 𝑎 are regular expressions for every 𝑎 ∈ Σ

2. If 𝑅1 and 𝑅2 are regular expressions, then so are

(𝑅1∪ 𝑅2), (𝑅1∘ 𝑅2), and (𝑅1
∗)

Examples: (over Σ = {𝑎, 𝑏, 𝑐})
𝑎 ∘ 𝑏 ((((𝑎 ∘ (𝑏∗)) ∘ 𝑐) ∪ (((𝑎∗) ∘ 𝑏))∗)) (∅∗)

9/16/2021 CS332 - Theory of Computation 16

Regular Expressions – Semantics

𝐿(𝑅) = the language a regular expression describes

1. 𝐿(∅) = ∅

2. 𝐿 𝜀 = 𝜀

3. 𝐿(𝑎) = {𝑎} for every 𝑎 ∈ Σ

4. 𝐿((𝑅1∪ 𝑅2)) = 𝐿(𝑅1) ∪ 𝐿(𝑅2)

5. 𝐿((𝑅1∘ 𝑅2)) = 𝐿(𝑅1) ∘ 𝐿(𝑅2)

6. 𝐿 𝑅1
∗ = (𝐿 𝑅1)∗

9/16/2021 CS332 - Theory of Computation 17

Regular Expressions – Example

𝐿(((𝑎∗) ∘ (𝑏∗))) =

a) {𝑎𝑛𝑏𝑛 ∣ 𝑛 ≥ 0}

b) {𝑎𝑚𝑏𝑛 ∣ 𝑚, 𝑛 ≥ 0}

c) { 𝑎𝑏 𝑛 ∣ 𝑛 ≥ 0}

d) {𝑎, 𝑏}∗

9/16/2021 CS332 - Theory of Computation 18

Simplifying Notation

• Omit ∘ symbol: 𝑎𝑏 = 𝑎 ∘ 𝑏

• Omit many parentheses, since union and concatenation
are associative:

𝑎 ∪ 𝑏 ∪ 𝑐 = 𝑎 ∪ (𝑏 ∪ 𝑐) = (𝑎 ∪ 𝑏) ∪ 𝑐

• Order of operations: Evaluate star, then concatenation,
then union

𝑎𝑏∗ ∪ 𝑐 = (𝑎 𝑏∗) ∪ 𝑐

9/16/2021 CS332 - Theory of Computation 19

Examples

Let Σ = {0, 1}

1. 𝑤 𝑤 contains exactly one 1}

2. 𝑤 𝑤 has length at least 3 and its third symbol is 0}

3. 𝑤 every odd position of 𝑤 is 1}

9/16/2021 CS332 - Theory of Computation 20

Syntactic Sugar

• For alphabet Σ, the regex Σ represents 𝐿 Σ = Σ

• For regex 𝑅, the regex 𝑅+ = 𝑅𝑅∗

9/16/2021 CS332 - Theory of Computation 21

Regexes in the Real World

grep = globally search for a regular expression and print
matching lines

9/16/2021 CS332 - Theory of Computation 22

Equivalence of Regular
Expressions, NFAs, and DFAs

9/16/2021 CS332 - Theory of Computation 23

Regular Expressions Describe Regular Languages

Theorem: A language 𝐴 is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

9/16/2021 CS332 - Theory of Computation 24

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases:

𝑅 = ∅

𝑅 = 𝜀

𝑅 = 𝑎

9/16/2021 CS332 - Theory of Computation 25

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

What should the inductive hypothesis be?

a) Suppose some regular expression of length 𝑘 can be
converted to an NFA

b) Suppose every regular expression of length 𝑘 can be
converted to an NFA

c) Suppose every regular expression of length at most 𝑘
can be converted to an NFA

d) None of the above

9/16/2021 CS332 - Theory of Computation 26

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:

𝑅 = (𝑅1∪ 𝑅2)

𝑅 = (𝑅1𝑅2)

𝑅 = 𝑅1
∗

9/16/2021 CS332 - Theory of Computation 27

Example

Convert (1(0 ∪ 1))∗ to an NFA

9/16/2021 CS332 - Theory of Computation 28

