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Last Time

• NFAs vs. DFAs
• Subset construction: NFA -> DFA

• Intro to closure properties of regular languages
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Closure Properties
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Operations on languages
Let 𝐴, 𝐵 ⊆ Σ∗ be languages. Define

Union: 𝐴 ∪ 𝐵

Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}

Star: 𝐴∗ = { 𝑤1𝑤2…𝑤𝑛|𝑛 ≥ 0 and 𝑤𝑖 ∈ 𝐴}

Complement: ҧ𝐴

Intersection: 𝐴 ∩ 𝐵

Reverse: 𝐴𝑅 = { 𝑎1𝑎2…𝑎𝑛|𝑎𝑛…𝑎1 ∈ 𝐴}

Theorem: The class of regular languages is closed under all six 
of these operations
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{Regular
Operations



Proving Closure Properties
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Complement

Complement: ҧ𝐴 = 𝑤 𝑤 ∉ 𝐴}

Theorem: If 𝐴 is regular, then ҧ𝐴 is also regular

Proof idea:
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Complement, Formally

Let 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) be a DFA recognizing a language 
𝐴. Which of the following represents a DFA recognizing ҧ𝐴?

a) (𝐹, Σ, 𝛿, 𝑞0, 𝑄)

b) (𝑄, Σ, 𝛿, 𝑞0, 𝑄 ∖ 𝐹), where 𝑄 ∖ 𝐹 is the set of states in 
𝑄 that are not in 𝐹

c) (𝑄, Σ, 𝛿′, 𝑞0, 𝐹) where 𝛿′(𝑞, 𝑠) = 𝑝 such that 
𝛿(𝑝, 𝑠) = 𝑞

d) None of the above
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Closure under Concatenation
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Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥  𝐴, 𝑦  𝐵 }

Theorem. If 𝐴 and 𝐵 are regular, 𝐴 ∘ 𝐵 is also regular. 

Proof idea: Given DFAs 𝑀𝐴 and 𝑀𝐵, construct NFA by 

• Connecting all accept states in 𝑀𝐴 to the start state in 𝑀𝐵.

• Make all states in 𝑀𝐴 non-accepting.

𝐿(𝑀𝐴) = 𝐴 𝐿(𝑀𝐵) = 𝐵



Closure under Concatenation
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Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥  𝐴, 𝑦  𝐵 }

Theorem. If 𝐴 and 𝐵 are regular, 𝐴 ∘ 𝐵 is also regular. 

Proof idea: Given DFAs 𝑀𝐴 and 𝑀𝐵, construct NFA by 

• Connecting all accept states in 𝑀𝐴 to the start state in 𝑀𝐵.

• Make all states in 𝑀𝐴 non-accepting.

ε

ε

𝐿(𝑀𝐴) = 𝐴 𝐿(𝑀𝐵) = 𝐵



A Mystery Construction
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ε

ε

𝐿(𝑀𝐴) = 𝐴

𝐿(𝑀𝐵) = 𝐵

Given DFAs 𝑀𝐴 recognizing 𝐴 and 𝑀𝐵 recognizing 𝐵, what does the 

following NFA recognize?

a) 𝐴 ∪ 𝐵
b) 𝐴 ∘ 𝐵
c) 𝐴 ∩ 𝐵
d) {𝜀} ∪ 𝐴 ∪ 𝐵



Closure under Star
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Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

Theorem. If 𝐴 is regular, 𝐴∗ is also regular. 

𝐿(𝑀) = 𝐴



Closure under Star
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Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

Theorem. If 𝐴 is regular, 𝐴∗ is also regular. 

𝐿(𝑀) = 𝐴ε

ε

ε



On proving your own closure properties

You’ll have homework/test problems of the form “show that 
the regular languages are closed under some operation”

What would Sipser do?

- Give the “proof idea”: Explain how to take machine(s) 
recognizing regular language(s) and create a new machine

- Explain in a few sentences why the construction works

- Give a formal description of the construction

- No need to formally prove that the construction works
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Regular Expressions
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Regular Expressions

• A different way of describing regular languages

• A regular expression expresses a (possibly complex) 
language by combining simple languages using the 
regular operations

“Simple” languages: ∅, 𝜀 , {𝑎} for some 𝑎 ∈ Σ

Regular operations:

Union: 𝐴 ∪ 𝐵

Concatenation: 𝐴 ∘ 𝐵 = 𝑎𝑏 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}
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Regular Expressions – Syntax

A regular expression 𝑅 is defined recursively using the 
following rules:

1. 𝜀, ∅, and 𝑎 are regular expressions for every 𝑎 ∈ Σ

2. If 𝑅1 and 𝑅2 are regular expressions, then so are

(𝑅1∪ 𝑅2), (𝑅1∘ 𝑅2), and (𝑅1
∗)

Examples: (over Σ = {𝑎, 𝑏, 𝑐})
𝑎 ∘ 𝑏 ((((𝑎 ∘ (𝑏∗)) ∘ 𝑐) ∪ (((𝑎∗) ∘ 𝑏))∗)) (∅∗)
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Regular Expressions – Semantics 

𝐿(𝑅) = the language a regular expression describes

1. 𝐿(∅) = ∅

2. 𝐿 𝜀 = 𝜀

3. 𝐿(𝑎) = {𝑎} for every 𝑎 ∈ Σ

4. 𝐿((𝑅1∪ 𝑅2)) = 𝐿(𝑅1) ∪ 𝐿(𝑅2)

5. 𝐿((𝑅1∘ 𝑅2)) = 𝐿(𝑅1) ∘ 𝐿(𝑅2)

6. 𝐿 𝑅1
∗ = (𝐿 𝑅1 )∗
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Regular Expressions – Example

𝐿(((𝑎∗) ∘ (𝑏∗))) =

a)  {𝑎𝑛𝑏𝑛 ∣ 𝑛 ≥ 0}

b)  {𝑎𝑚𝑏𝑛 ∣ 𝑚, 𝑛 ≥ 0}

c)  { 𝑎𝑏 𝑛 ∣ 𝑛 ≥ 0}

d)  {𝑎, 𝑏}∗
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Simplifying Notation

• Omit ∘ symbol: 𝑎𝑏 = 𝑎 ∘ 𝑏

• Omit many parentheses, since union and concatenation 
are associative:

𝑎 ∪ 𝑏 ∪ 𝑐 = 𝑎 ∪ (𝑏 ∪ 𝑐) = (𝑎 ∪ 𝑏) ∪ 𝑐

• Order of operations: Evaluate star, then concatenation, 
then union

𝑎𝑏∗ ∪ 𝑐 = (𝑎 𝑏∗ ) ∪ 𝑐
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Examples

Let Σ = {0, 1}

1. 𝑤 𝑤 contains exactly one 1}

2. 𝑤 𝑤 has length at least 3 and its third symbol is 0}

3. 𝑤 every odd position of 𝑤 is 1}
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Syntactic Sugar

• For alphabet Σ, the regex Σ represents 𝐿 Σ = Σ

• For regex 𝑅, the regex 𝑅+ = 𝑅𝑅∗
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Regexes in the Real World

grep = globally search for a regular expression and print 
matching lines
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Equivalence of Regular 
Expressions, NFAs, and DFAs
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Regular Expressions Describe Regular Languages

Theorem: A language 𝐴 is regular if and only if it is 
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases: 

𝑅 = ∅

𝑅 = 𝜀

𝑅 = 𝑎
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

What should the inductive hypothesis be?

a) Suppose some regular expression of length 𝑘 can be 
converted to an NFA

b) Suppose every regular expression of length 𝑘 can be 
converted to an NFA

c) Suppose every regular expression of length at most 𝑘
can be converted to an NFA

d) None of the above
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step: 

𝑅 = (𝑅1∪ 𝑅2)

𝑅 = (𝑅1𝑅2)

𝑅 = 𝑅1
∗
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Example

Convert (1(0 ∪ 1))∗ to an NFA
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