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Lecture 6: Reading:
* Regexes = NFAs Sipser Ch 1.3
* Non-regular languages “Myhill-Nerode” note
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Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

1. &, ®,and a are regular expressions for every a € X

2. If R{ and R, are regular expressions, then so are
(R1UR3), (R1° R3), and (Ry)

Examples: (over £ = {a, b,c}) (with simplified notation)
ab ab*c U (a*b)* 1)
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Regular Expressions — Semantics

L(R) = the language a regular expression describes

L(©®) =0

L(e) = {¢}

L(a) = {a}foreverya € X
L((RiUR3)) =L(Ry) U L(R3)
L((Ri° Ry)) = L(Rq) ° L(R3)
L((R)) = (L(Ry))"

O U1 W

Example: L(a*bh*) = {a™b"™ | m,n = 0}
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Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA
e—

Theorem 2: Every NFA has an equivalent regular expression
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

LN
Base cases:

R =0 - ) p

R =¢ __3@ i
R=a D3O g5
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex LN
Z, '
Inductive step: é/7' , LCR)N Vele,)
R = (R,UR,) ‘76\9

e
R = (RiR;) —-\\ﬂ Lﬁ@ L(R) aL(as)

[

R = (Rik) —> (L, (L(((.\y‘
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Example Convert (1(0 U 1))* to an NFA
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Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

9/21/2021 CS332 - Theory of Computation 8



NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

00



Generalized NFAs (GnNEAY)

* Every transition is labeled by a regex

* One start state with only outgoing transitions

* Only one accept state with only incoming transitions
 Start state and accept state are distinct

auUb

a*b P ‘
NOI0-©
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Generalized NFA Example

an

~(O—= @*.

R(q,q) = ,x\
R(q,q) = ¢
R(q,qs) = ¢



Which of these strings is accepted?

Which of the following strings is accepted by this GNFA?

an °
Nor: @*.
~a)aaa
—b)aabb-
—e)}-bbbh



NFA -> Regular expression

‘

k states

Regex
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NFA -> GNFA

s+m wly b oy oue atql
0w} arsows / w/ Mlj K"
¢
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>
—»O NFA |—
<

 Add a new start state with no incoming arrows.
 Make a unique accept state with no outgoing arrows.



GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state
‘ G



GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state aUb

a) a*b(aUb)a a*b
b) a*b(aU b)*a a

d) None of the above




GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state aUb

atk(auv,)*ﬁ U \o
ﬂ



GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state R,
R, ‘ | R,
ﬁ #

R,
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Non-Regular Languages
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Motivating Questions

* We've seen techniques for showing that languages are
regular  _ o et 0FA
- Conshud  NFA
= (psdmed regex

e How can we tell if we’ve found the smallest DFA
recognizing a language?

* Are all languages regular? How can we prove that a
language is not regular?



AN Example gm’“ﬁs — *&\_7.

={w € {0,1}" | w ends with 01 }
Claim: Every DFA recognizing A needs at least 3 states

Proof: Let M be any DFA recognizing A. Consider running

M oneachofx =¢,y=0,w =01 ; ,

let g, = sldt M reades e reacivg € N eadsg W
ays ready 9

CLaw Gx, 1y, 94 o al dichut
Gyt G, Gufd, beaw Ga b ow o), g,% oo

A-;SM for ‘”"“'\ RA 9u 9
q“‘#q Le,\l—lq‘ltu\vlu* d%SMdgm/ﬁ
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A General Technique A ={w € {0,1} | w ends with 01}
2 hh'adwhwhmj‘”%¢uuh'”qdj

Definition: Strings x and y are distinguishable by L if there

exists a string z such that exactly one of xz or yzisin L.

Ex.x=¢ y=0 et 2¢A e A

Definition: A set of strings S is pairwise distinguishable by
L if every pair of distinct strings x, y € § is distinguishable
by L.

A~ €, 4Yy=0 2c)
Ex. S = {¢,0,01} X=€ gror. 2:€
N =0, y=or. :-€
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A General Technique

Theorem: If S is pairwise distinguishable by L, then every
DFA recognizing L needs at least |S| states
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