BU CS 332 – Theory of Computation

Lecture 6:
• Regexes = NFAs
• Non-regular languages

Reading:
Sipser Ch 1.3
“Myhill-Nerode” note

Mark Bun
September 21, 2021

https://forms.gle/XT3v76KCagDQB5QL6

-Hw 2 due tonight
- Islam’s OH moved to
 3:30 - 4:30 Mrs B33
 (today only)
Regular Expressions – Syntax

A regular expression \(R \) is defined recursively using the following rules:

1. \(\varepsilon, \emptyset, \) and \(a \) are regular expressions for every \(a \in \Sigma \)

2. If \(R_1 \) and \(R_2 \) are regular expressions, then so are
 \[
 (R_1 \cup R_2), \ (R_1 \circ R_2), \text{ and } (R_1^*)
 \]

Examples: (over \(\Sigma = \{a, b, c\} \)) (with simplified notation)

\[
\begin{align*}
ab & \quad ab^* c \cup (a^* b)^* \quad \emptyset
\end{align*}
\]
Regular Expressions – Semantics

$L(R) = \text{the language a regular expression describes}$

1. $L(\emptyset) = \emptyset$
2. $L(\varepsilon) = \{\varepsilon\}$
3. $L(a) = \{a\}$ for every $a \in \Sigma$
4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
6. $L((R_1^*)) = (L(R_1))^*$

Example: $L(a^* b^*) = \{a^m b^n \mid m, n \geq 0\}$
Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases:

\[R = \emptyset \]

\[R = \varepsilon \]

\[R = a \]
Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:

\[R = (R_1 \cup R_2) \]

\[R = (R_1 R_2) \]

\[R = (R_1^*) \]
Example

Convert \((1(0 \cup 1))^*\) to an NFA

even length string; each odd position is 1

\[(1(0 \cup 1))^* \]

Simplification
Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a time and replacing with regexes
Generalized NFAs \((G\text{NFA})\)

- Every transition is labeled by a regex
- One start state with only outgoing transitions
- Only one accept state with only incoming transitions
- Start state and accept state are distinct
Generalized NFA Example

\[R(q_s, q) = a^*b \]
\[R(q_a, q) = \emptyset \]
\[R(q, q_s) = \emptyset \]
Which of these strings is accepted?

Which of the following strings is accepted by this GNFA?

a) aaa

b) $aabb$

c) bbb

d) bba ✓
NFA -> Regular expression

- NFA k states
- GNFA $k + 2$ states
- GNFA $k + 1$ states
- GNFA 2 states
- Regex

$q_s \xrightarrow{r} q_o$
NFA -> GNFA

- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.
GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

$q_1 \xrightarrow{a^* b} q_2 \xrightarrow{a} q_3$

$q_1 \xrightarrow{a^* b a} q_3$
GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

a) $a^*b(a \cup b)a$
b) $a^*b(a \cup b)^*a$
c) $a^*b \cup (a \cup b) \cup a$
d) None of the above
GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state.
GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state.
Step 0: Convert to GNF-A

Step 1: Rip out state 2

Step 2: Rip out state 3

Step 3: Rip out state 1

\[\epsilon (baa* b U aa*b)^* (b(aa* e U e) U aa*) \]
\[= (ba^* b U a^* a)^* (b a^* U aa^*) \]
\[= (ba^* b U a^* a)^* (ba^* U va^*) \]
Non-Regular Languages
Motivating Questions

• We’ve seen techniques for showing that languages are regular
 - Construct DFA
 - Construct NFA
 - Construct regex

• How can we tell if we’ve found the smallest DFA recognizing a language?

• Are all languages regular? How can we prove that a language is not regular?
An Example

\[A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \} \]

Claim: Every DFA recognizing \(A \) needs at least 3 states

Proof: Let \(M \) be any DFA recognizing \(A \). Consider running \(M \) on each of \(x = \varepsilon, y = 0, w = 01 \)

Let \(q_x = \text{state } M \text{ reads when reading } x \)

\(q_x = \) reading \(x \)

Let \(q_y = \) reading \(y \)

Claim: \(q_x, q_y, q_w \) are all distinct

\(q_w \neq q_x \), \(q_w \neq q_y \) because \(q_w \) is an accept, \(q_x \) \& \(q_y \) reject

\(q_x \neq q_y \): Assume for contr. that \(q_x = q_y \)

Let \(z = 1 \). Then what does \(M \) do on \(xz = 1 \), and \(yz = 01 \)? Should accept?
A General Technique

\[A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \} \]

Definition: Strings \(x \) and \(y \) are **distinguishable** by \(L \) if there exists a string \(z \) such that exactly one of \(xz \) or \(yz \) is in \(L \).

Example: \(x = \varepsilon, \; y = 0 \)

\[z = 1, \quad xz \notin A, \quad yz \in A \]

Definition: A set of strings \(S \) is **pairwise distinguishable** by \(L \) if every pair of distinct strings \(x, y \in S \) is distinguishable by \(L \).

Example: \(S = \{ \varepsilon, 0, 01 \} \)

\begin{align*}
\varepsilon = \varepsilon, \; y = 0 & : \; z = 1 \\
\varepsilon = \varepsilon, \; y = 01 & : \; z = 0 \\
\varepsilon = 0, \; y = 01 & : \; z = 0
\end{align*}
A General Technique

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least $|S|$ states