BU CS 332 – Theory of Computation

https://forms.gle/XT3v76KCagDQBsQL6

Lecture 6:

- Regexes = NFAs
- Non-regular languages

Reading:

Sipser Ch 1.3

"Myhill-Nerode" note

Mark Bun September 21, 2021

Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

- 1. ε , \emptyset , and α are regular expressions for every $\alpha \in \Sigma$
- 2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1^*)

Examples: (over
$$\Sigma = \{a, b, c\}$$
) (with simplified notation)
 ab $ab^*c \cup (a^*b)^*$ \emptyset

Regular Expressions – Semantics

L(R) = the language a regular expression describes

- 1. $L(\emptyset) = \emptyset$
- 2. $L(\varepsilon) = \{\varepsilon\}$
- 3. $L(a) = \{a\}$ for every $a \in \Sigma$
- 4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- 5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- 6. $L((R_1^*)) = (L(R_1))^*$

Example: $L(a^*b^*) = \{a^m b^n \mid m, n \ge 0\}$

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases:

$$R = \emptyset$$

$$R = \varepsilon$$

L(N)

$$R = a$$

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

L(N)

Inductive step:

$$R = (R_1 \cup R_2)$$

$$R = (R_1 R_2)$$

$$R = (R_1^*)$$

Example

Convert $(1(0 \cup 1))^*$ to an NFA

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by "ripping out" states one at a time and replacing with regexes

Generalized NFAs (GNFA)

- Every transition is labeled by a regex
- One start state with only outgoing transitions
- Only one accept state with only incoming transitions
- Start state and accept state are distinct

Generalized NFA Example

Which of these strings is accepted?

Which of the following strings is accepted by this GNFA?

- a) aaa
- b) aabb
- -c) bbb
 - d) bba

NFA -> GNFA

- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state $a \cup b$

- a) $a^*b(a \cup b)a$
- b) $a^*b(a \cup b)^*a$
- c) $a^*b \cup (a \cup b) \cup a$
- d) None of the above

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state $a \cup b$

Idea: While the machine has more than 2 states, rip one

out and relabel the arrows with regexes to account for the missing state R_4

Non-Regular Languages

Motivating Questions

• We've seen techniques for showing that languages are regular

- (onstruct OFA
- (onstruct NFA
- (onstruct regex

- How can we tell if we've found the smallest DFA recognizing a language?
- Are all languages regular? How can we prove that a language is not regular?

An Example

 $A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}$

Claim: Every DFA recognizing A needs at least 3 states

Proof: Let M be any DFA recognizing A. Consider running

Claim 97, 9y, 9w are all distinct $q_w \neq q_x$, $q_w \neq q_y$ became q_w is an accept, $q_x \neq q_y$ resert $q_x \neq q_y$: Assume for contrad. That $q_x = q_y$: $q_x \neq q_y$: Let z = 1. Then what does M do an $q_x = q_y$:

Should restrict $q_x = q_y$. Should accept $q_x = q_y$.

A General Technique

$$A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}$$

Definition: Strings x and y are distinguishable by L if there exists a string z such that exactly one of xz or yz is in L.

Ex.
$$x = \varepsilon$$
, $y = 0$ $7=1$ $y \in A$

Definition: A set of strings S is pairwise distinguishable by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

$$\text{Ex. } S = \{\varepsilon, 0, 01\}$$

$$\chi = \varepsilon, \ \gamma = 0 : \ \forall = \varepsilon \in \mathbb{R}$$

$$\chi = \varepsilon, \ \gamma = 0 : \ \forall = \varepsilon \in \mathbb{R}$$

$$\chi = \varepsilon, \ \gamma = 0 : \ \forall = \varepsilon \in \mathbb{R}$$

A General Technique

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states