
BU CS 332 – Theory of Computation

Lecture 6:
• Regexes = NFAs
• Non-regular languages

Reading:
Sipser Ch 1.3
“Myhill-Nerode” note

Mark Bun
September 21, 2021

https://forms.gle/XT3v76KCagDQBsQL6

https://forms.gle/XT3v76KCagDQBsQL6

Regular Expressions – Syntax
A regular expression 𝑅𝑅 is defined recursively using the
following rules:

1. 𝜀𝜀, ∅, and 𝑎𝑎 are regular expressions for every 𝑎𝑎 ∈ Σ

2. If 𝑅𝑅1 and 𝑅𝑅2 are regular expressions, then so are
(𝑅𝑅1∪ 𝑅𝑅2), (𝑅𝑅1∘ 𝑅𝑅2), and (𝑅𝑅1∗)

Examples: (over Σ = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}) (with simplified notation)
𝑎𝑎𝑎𝑎 𝑎𝑎𝑏𝑏∗𝑐𝑐 ∪ 𝑎𝑎∗𝑏𝑏 ∗ ∅

9/21/2021 CS332 - Theory of Computation 2

Regular Expressions – Semantics
𝐿𝐿(𝑅𝑅) = the language a regular expression describes

1. 𝐿𝐿(∅) = ∅
2. 𝐿𝐿 𝜀𝜀 = 𝜀𝜀
3. 𝐿𝐿(𝑎𝑎) = {𝑎𝑎} for every 𝑎𝑎 ∈ Σ
4. 𝐿𝐿((𝑅𝑅1∪ 𝑅𝑅2)) = 𝐿𝐿(𝑅𝑅1) ∪ 𝐿𝐿(𝑅𝑅2)
5. 𝐿𝐿((𝑅𝑅1∘ 𝑅𝑅2)) = 𝐿𝐿(𝑅𝑅1) ∘ 𝐿𝐿(𝑅𝑅2)
6. 𝐿𝐿 𝑅𝑅1∗ = (𝐿𝐿 𝑅𝑅1)∗

Example: 𝐿𝐿 𝑎𝑎∗𝑏𝑏∗ = {𝑎𝑎𝑚𝑚𝑏𝑏𝑛𝑛 ∣ 𝑚𝑚,𝑛𝑛 ≥ 0}

9/21/2021 CS332 - Theory of Computation 3

Regular Expressions Describe Regular Languages

Theorem: A language 𝐴𝐴 is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

9/21/2021 CS332 - Theory of Computation 4

Regular expression -> NFA
Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

Base cases:
𝑅𝑅 = ∅

𝑅𝑅 = 𝜀𝜀

𝑅𝑅 = 𝑎𝑎

9/21/2021 CS332 - Theory of Computation 5

Regular expression -> NFA
Theorem 1: Every regex has an equivalent NFA
Proof: Induction on size of a regex

Inductive step:
𝑅𝑅 = (𝑅𝑅1∪ 𝑅𝑅2)

𝑅𝑅 = (𝑅𝑅1𝑅𝑅2)

𝑅𝑅 = 𝑅𝑅1∗

9/21/2021 CS332 - Theory of Computation 6

Example Convert (1(0 ∪ 1))∗ to an NFA

9/21/2021 CS332 - Theory of Computation 7

Regular Expressions Describe Regular Languages

Theorem: A language 𝐴𝐴 is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression

9/21/2021 CS332 - Theory of Computation 8

NFA -> Regular expression
Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

9/21/2021 CS332 - Theory of Computation 9

0

1

001*0

Generalized NFAs
• Every transition is labeled by a regex
• One start state with only outgoing transitions
• Only one accept state with only incoming transitions
• Start state and accept state are distinct

9/21/2021 CS332 - Theory of Computation 10

𝑞𝑞
𝑎𝑎∗𝑏𝑏

𝑞𝑞𝑠𝑠 𝑞𝑞𝑎𝑎

𝑎𝑎 ∪ 𝑏𝑏

𝑎𝑎

Generalized NFA Example

9/21/2021 CS332 - Theory of Computation 11

𝑅𝑅(𝑞𝑞𝑠𝑠, 𝑞𝑞) =
𝑅𝑅(𝑞𝑞𝑎𝑎, 𝑞𝑞) =

𝑅𝑅(𝑞𝑞, 𝑞𝑞𝑠𝑠) =

𝑞𝑞
𝑎𝑎∗𝑏𝑏

𝑞𝑞𝑠𝑠 𝑞𝑞𝑎𝑎

𝑎𝑎 ∪ 𝑏𝑏

𝑎𝑎

Which of these strings is accepted?
Which of the following strings is accepted by this GNFA?

9/21/2021 CS332 - Theory of Computation 12

a) 𝑎𝑎𝑎𝑎𝑎𝑎
b) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
c) 𝑏𝑏𝑏𝑏𝑏𝑏
d) 𝑏𝑏𝑏𝑏𝑏𝑏

𝑞𝑞
𝑎𝑎∗𝑏𝑏

𝑞𝑞𝑠𝑠 𝑞𝑞𝑎𝑎

𝑎𝑎 ∪ 𝑏𝑏

𝑎𝑎

NFA -> Regular expression

9/21/2021 CS332 - Theory of Computation 13

NFA GNFA

GNFA

GNFA

Regex

𝑘𝑘 states

𝑘𝑘 + 2 states

𝑘𝑘 + 1 states

2 states

…

NFA -> GNFA

9/21/2021 CS332 - Theory of Computation 14

NFAε
ε

ε

ε

• Add a new start state with no incoming arrows.
• Make a unique accept state with no outgoing arrows.

GNFA -> Regular expression
Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

9/21/2021 CS332 - Theory of Computation 15

𝑎𝑎∗𝑏𝑏
𝑞𝑞1 𝑞𝑞3

𝑎𝑎
𝑞𝑞2

𝑞𝑞1 𝑞𝑞3

GNFA -> Regular expression
Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

9/21/2021 CS332 - Theory of Computation 16

𝑞𝑞1 𝑞𝑞3

a) 𝑎𝑎∗𝑏𝑏 𝑎𝑎 ∪ 𝑏𝑏 𝑎𝑎
b) 𝑎𝑎∗𝑏𝑏 𝑎𝑎 ∪ 𝑏𝑏 ∗𝑎𝑎
c) 𝑎𝑎∗𝑏𝑏 ∪ 𝑎𝑎 ∪ 𝑏𝑏 ∪ 𝑎𝑎
d) None of the above

𝑎𝑎∗𝑏𝑏
𝑞𝑞1 𝑞𝑞3

𝑎𝑎
𝑞𝑞2

𝑎𝑎 ∪ 𝑏𝑏

GNFA -> Regular expression
Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

9/21/2021 CS332 - Theory of Computation 17

𝑎𝑎∗𝑏𝑏
𝑞𝑞1 𝑞𝑞3

𝑎𝑎
𝑞𝑞2

𝑎𝑎 ∪ 𝑏𝑏

𝑏𝑏

𝑞𝑞1 𝑞𝑞3

GNFA -> Regular expression
Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

9/21/2021 CS332 - Theory of Computation 18

𝑞𝑞1 𝑞𝑞3𝑞𝑞2

𝑅𝑅1

𝑅𝑅2

𝑅𝑅3

𝑅𝑅4

𝑞𝑞1 𝑞𝑞3

9/21/2021 CS332 - Theory of Computation 19

Non-Regular Languages

9/21/2021 CS332 - Theory of Computation 20

Motivating Questions
• We’ve seen techniques for showing that languages are

regular

• How can we tell if we’ve found the smallest DFA
recognizing a language?

• Are all languages regular? How can we prove that a
language is not regular?

9/21/2021 CS332 - Theory of Computation 21

An Example
𝐴𝐴 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 ends with 01

Claim: Every DFA recognizing 𝐴𝐴 needs at least 3 states
Proof: Let 𝑀𝑀 be any DFA recognizing 𝐴𝐴. Consider running
𝑀𝑀 on each of 𝑥𝑥 = 𝜀𝜀,𝑦𝑦 = 0,𝑤𝑤 = 01

9/21/2021 CS332 - Theory of Computation 22

A General Technique
Definition: Strings 𝑥𝑥 and 𝑦𝑦 are distinguishable by 𝐿𝐿 if there
exists a string 𝑧𝑧 such that exactly one of 𝑥𝑥𝑥𝑥 or 𝑦𝑦𝑦𝑦 is in 𝐿𝐿.

Ex. 𝑥𝑥 = 𝜀𝜀, 𝑦𝑦 = 0

Definition: A set of strings 𝑆𝑆 is pairwise distinguishable by
𝐿𝐿 if every pair of distinct strings 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆 is distinguishable
by 𝐿𝐿.

Ex. 𝑆𝑆 = {𝜀𝜀, 0, 01}

9/21/2021 CS332 - Theory of Computation 23

𝐴𝐴 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 ends with 01

A General Technique
Theorem: If 𝑆𝑆 is pairwise distinguishable by 𝐿𝐿, then every
DFA recognizing 𝐿𝐿 needs at least |𝑆𝑆| states
Proof: Let 𝑀𝑀 be a DFA with < 𝑆𝑆 states. By the
pigeonhole principle, there are 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆 such that 𝑀𝑀 ends
up in same state on 𝑥𝑥 and 𝑦𝑦

9/21/2021 CS332 - Theory of Computation 24

Back to Our Example
𝐴𝐴 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 ends with 01

Theorem: If 𝑆𝑆 is pairwise distinguishable by 𝐿𝐿, then every
DFA recognizing 𝐿𝐿 needs at least |𝑆𝑆| states

𝑆𝑆 = {𝜀𝜀, 0, 01}

9/21/2021 CS332 - Theory of Computation 25

Another Example
𝐵𝐵 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 = 2

Theorem: If 𝑆𝑆 is pairwise distinguishable by 𝐿𝐿, then every
DFA recognizing 𝐿𝐿 needs at least |𝑆𝑆| states

𝑆𝑆 = { }

9/21/2021 CS332 - Theory of Computation 26

Distinguishing Extension
Which of the following is a distinguishing extension for 𝑥𝑥 =
0 and 𝑦𝑦 = 00 for language 𝐵𝐵 = 𝑤𝑤 ∈ {0, 1}∗ 𝑤𝑤 = 2 ?

a) 𝑧𝑧 = 𝜀𝜀
b) 𝑧𝑧 = 0
c) 𝑧𝑧 = 1
d) 𝑧𝑧 = 00

9/21/2021 CS332 - Theory of Computation 27

	BU CS 332 – Theory of Computation
	Regular Expressions – Syntax
	Regular Expressions – Semantics
	Regular Expressions Describe Regular Languages
	Regular expression -> NFA
	Regular expression -> NFA
	Example
	Regular Expressions Describe Regular Languages
	NFA -> Regular expression
	Generalized NFAs
	Generalized NFA Example
	Which of these strings is accepted?
	NFA -> Regular expression
	NFA -> GNFA
	GNFA -> Regular expression
	GNFA -> Regular expression
	GNFA -> Regular expression
	GNFA -> Regular expression
	Slide Number 19
	Non-Regular Languages
	Motivating Questions
	An Example
	A General Technique
	A General Technique
	Back to Our Example
	Another Example
	Distinguishing Extension

