Lecture 7:

• Distinguishing sets
• Non-regular languages

Reading:
“Myhill-Nerode” note

Mark Bun
September 23, 2021
Motivating Questions

• How can we tell if we’ve found the smallest DFA recognizing a language?

 Last time: Introduced distinguishing set method

• Are all languages regular? How can we prove that a language is not regular?
A General Technique

Definition: Strings x and y are distinguishable by L if there exists a “distinguishing extension” z such that exactly one of xz or yz is in L.

Ex. $x = \varepsilon$, $y = 0$

Definition: A set of strings S is pairwise distinguishable by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

Ex. $S = \{\varepsilon, 0, 01\}$

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least $|S|$ states
A General Technique

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least $|S|$ states

Proof: Let M be a DFA with $< |S|$ states. By the pigeonhole principle, there are $x, y \in S$ such that M ends up in same state on x and y
Another Example

\[B = \{ w \in \{0, 1\}^* \mid |w| = 2 \} \]

Theorem: If \(S \) is pairwise distinguishable by \(L \), then every DFA recognizing \(L \) needs at least \(|S| \) states

\[S = \{ \} \]
Distinguishing Extension

Which of the following is a distinguishing extension for \(x = 0 \) and \(y = 00 \) for language \(B = \{ w \in \{0, 1\}^* \mid |w| = 2 \} \) ?

a) \(z = \varepsilon \)
b) \(z = 0 \)
c) \(z = 1 \)
d) \(z = 00 \)
Historical Note

Converse to the distinguishing set method:

If L has no distinguishing set of size $> k$, then L is recognized by a DFA with k states

Myhill-Nerode Theorem (1958): L is recognized by a DFA with $\leq k$ states iff L does not have a distinguishing set of size $> k$
Non-Regularity

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least $|S|$ states.

Corollary: If S is an **infinite** set that is pairwise distinguishable by L, then no DFA recognizes L.
h/t Islam
The Classic Example

Theorem: $A = \{0^n1^n \mid n \geq 0\}$ is not regular

Proof: We construct an infinite pairwise distinguishable set
Palindromes

Theorem: $L = \{w \in \{0,1\}^* \mid w = w^R\}$ is not regular

Proof: We construct an infinite pairwise distinguishable set
Now you try!

Use the distinguishing set method to show that the following languages are not regular

\[L_1 = \{0^i1^j \mid i > j \geq 0\} \]
Now you try!

Use the distinguishing set method to show that the following languages are not regular

\[L_2 = \{ww \mid w \in \{0,1\}^*\} \]
Now you try!

Use the distinguishing set method to show that the following languages are not regular

\[L_3 = \{1^{n^2} \mid n \geq 0\} \]
Reusing a Proof

Finding a distinguishing set can take some work...
Let’s try to reuse that work!

How might we show that

\[\text{BALANCED} = \{w \mid w \text{ has an equal # of 0s and 1s}\} \]

is not regular?

\[\{0^n1^n \mid n \geq 0\} = \text{BALANCED} \cap \{w \mid \text{all 0s in } w \text{ appear before all 1s}\} \]
Using Closure Properties

If A is not regular, we can show a related language B is not regular

By contradiction: If B is regular, then $B \cap C (= A)$ is regular.

But A is not regular so neither is B!
Example

Prove $B = \{0^i1^j | i \neq j\}$ is not regular using

- nonregular language
 \[A = \{0^n1^n | n \geq 0\} \text{ and} \]

- regular language
 \[C = \{w \mid \text{all } 0\text{s in } w \text{ appear before all } 1\text{s}\} \]

Which of the following expresses A in terms of B and C?

a) $A = B \cap C$

b) $A = \overline{B} \cap C$

c) $A = B \cup C$

d) $A = \overline{B} \cup C$
Proof that B is nonregular

Assume for the sake of contradiction that B is regular
We know: \[A = \overline{B} \cap C \]
Let $B = \{0^i1^j \mid i \neq j\}$ and write $B = A \cup C$ where

- nonregular language

 $A = \{0^i1^j \mid i > j \geq 0\}$ and

- nonregular language

 $C = \{0^i1^j \mid j > i \geq 0\}$ and

Does this let us conclude B is nonregular?