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The Basic Turing Machine (TM)

Input

Tape a | b |a|a

Finite

control

* Input is written on an infinitely long tape

 Head can both read and write, and move in both
directions

 Computation halts as soon as control reaches
“accept” or “reject” state
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Formal Definition of a TM

ATMisa 7-tuple M = (Q,%,T, 9, qo, Qaccept’ Qreject)
* () is afinite set of states

e ) is the input alphabet (does not include L)

e ["is the tape alphabet (contains LI and )

e 0:Q XTI - QXTI X{L,R}is the transition function
S(q') d\) _ (g’ KW ymboo |

(i nt stwie c~m Fgmma\ <\ 4-( d vee i kead mHLS (L 74 "L)

* gy € (Qis the start state
* Jaccept € U is the accept state

* Qreject € () is the reject state (Qreject a qaccept)
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Configuration of a TM: Formally

A configuration is a string uqu whereq € Q and u,v € I'*
* Tape contents = uv (followed by blanks U)

* Current state =g

* Tape head on first symbol of v

Example: 1019g:0111

17010 1 1|1 U

o
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How a TM Computes

%,
0

Start configuration: qow [Wlw, fu). Jw/JaTSy

One step of computation:

*If5(q,b) = (q,c,R), then ua q bv yields uac q' v
*If 6§(q,b) =(q',c,L),thenua q bv yieldsu q" acv
*If 6(q,b) =(q',c,L),then g bv yields q' cv

Accepting configuration: g = Qaccept

Rejecting configuration: g = qreject
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How a TM Computes

M accepts input w if there is a sequence of configurations
Cy, ..., Cy such that:

* (1 =qoW C. s stord  configunton
* C;yields Cijyq foreveryi  Can god $fomm C; 4o Cuy 1y
* C), is an accepting configuration 0% ke ol conpdmien

L(M) = the set of all strings w which M accepts
A is Turing-recognizable if A = L(M) for some TM M:
*w €A = M halts on w in state qaccept

*w&A = M haltson w in state qreject OR
M runs forever on w
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Recognizers vs. Deciders

L(M) = the set of all strings w which M accepts

A is Turing-recognizable if A = L(M) for some TM M:
*w €A = M haltson w in state q,ccept

*w€&A = M halts on win state qpgject OR
M runs forever on w

A is (Turing-)decidable if A = L(M) for some TM M
which halts on every input
*w €A = M haltsonw in state q,ccept

*w€&A = M halts on w in state qpeject
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| | Bt
(Recogmzers VS. Dguders E‘%?ffﬂ.
A ™ doidor fo laguage 9 alyp a TN rl 1, ey
R0

rogre fy A) =) (A dddMe = 4 ropie) [m]
=) decdaMe largs © vRogniesbie lovgs,

Which of the following is true about the relationship
between decidable and recognizable languages?

a) | The decidable languages are a subset of the
recognizable languages

b) The recognizable languages are a subset of the
decidable languages

c) They are incomparable: There might be decidable
languages which are not recognizable and vice versa
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Example: Arithmetic on a TM

The foIIownl TI\/I decides MULT = {albfck ‘ i Xj =k}

¢ [ ¥ }oA
On mput string w:

1. Check w is formatted correctly CVM 4 wel (a"bYe)

. - Can &> v\./ nEd = Can\
For each a appearing in w: 8o R yeod -onl

2
y s
L m
3 For each b appearing in w: dal
4, Attempt to cross off a c. If none e(z(lst,fhe-Ject
J
5. Ifall ¢’s are crossed off, accept. Else, reject.

. A L Xy el
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Example: Arithmetic on a TM

The following TM decides MULT = {aibjck ‘ i XJ =k}

On input string w: T mplewgyd PATONIYTY

1. Scan the input from left to right to determine whether
it isa member of L(a*b*c™)

o WBly cec/cec

2. Return head to left end of tape

3. Cross off an a if one exists. Scan right until a b occurs.
Shuttle between b’s and c¢’s crossing off one of each
until all b’s are gone. Reject if all ¢’s are gone but some
b’s remain. | | A KWWY 29 175/

4. Restore crossed off b’s. If any a’s remain, repeat step 3.

5. If all ¢’s are crossed off, accept. Else, reject.
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Back to Hilbert’s Tenth Problem

Computational Problem: Given a Diophantine equation, does

it have a solution over the integers?
P2 o pdywtmal o] whger coeflc. and

% ?(?”"" \0\3 l a (1‘4"' h)(Z/ sy, {)(-2,',., o) ‘.‘Og
. L is Turing-recognizable

(L4

Specdd cave T L, G PN | 3 g g ied

| - L
X 0 - | | 212 o] A"Q__ On 01_“_‘ P ’
-OT * /F—y o Ted f(ﬁ 3) = 0, d ¢, augt
1§ U /’/ ‘ * Test P( 1,0) »:’; o s, el
"é (ﬁ/ Yoyt P (0)—)) .%O) .
d a\ f..
=% (\ \ \ A")}_:_

- Tf 3 7(,-0 %3 p(’“d) 0‘ alq o))
Q\N«ALM“ *pnl‘(\ % ond a.(LQ["'

e L is not decidable (1949-70)
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TM Variants
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How Robust is the TM Model?

Does changing the model result in different languages being
recognizable / decidable?

@) Q£
NEA @ = A (.\7)©
So far we’ve seen... @ ol—

- We can require that NFAs have a single accept state

- Adding nondeterminism does not change the languages
recognized by finite automata Sawsed ¢ noductsn

Other modifications possible too: E.g., allowing DFAs to have
multiple passes over their input does not increase their power

Turing machines have an astonishing level of robustness
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TMs are equivalent to...

* TMs with “stay put”

* TMs with 2-way infinite tapes

* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

* Finite automata with access to an unbounded queue
* Primitive recursive functions )\ lculug

e Cellular automata



l;:-“"E
Equivalent TM models gu f%

* TMs that are allowed to “stay put” instead of moving Ieft or
right PRXONERN

5:0XxXI' >0 xT x{L,R,S}
TMs with stay put are at least as powerful as basic TMs
(Every basic TM is a TM with stay put that never stays put)

How would you show that TMs with stay put are no more
powerful than basic TMs?

a) Convert any basic TM into an equivalent TM with stay put

@ Convert any TM with stay put into an equivalent basic TM

c) Construct a language that is recognizable by a TM with

Y m VL\M e F can be ™
stay put, but not by any basic TM o ot o L T

d) Construct a language that is recogmzable by a basic TM,

but not by any TM with stay put “®est ™M can e woe pat k)
y y yp Panh ™™ "-'l sloy f“*“



Equivalent TM models

 TMs that are allowed to “stay put” instead of moving

left or right
5:0xXI' >0 xTI x{L,R,S}

Proof that TMs with stay put are no more powerful:

Simulation: Convert any TM M with stay put into an

. . !
equivalent basic TM M T lom otk Lo

Replace every stay put instruction in M with a move right
instruction, followed by a move left instruction in M’
e T we
o->Y,R g-v, L
a-h,s - D )
A = B>
N W . i
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Equivalent TM models

* TMs with a 2-way infinite tape, unbounded left to right

Input
-3 -2 =1 | 2
a

Tape . a | b

Proof that TMs with 2-way infinite tapes are no more
powerful:

Simulation: Convert any TM M with 2-way infinite tape into
a 1-way infinite TM M’ with a “two-track tape”

W\ ‘S (mle\‘\’; /V\) codeal ¢

B 2% =)

T {albic \dlelf] 11
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Implementation-Level Simulation

Given 2-way TM M construct a basic TM M’ as follows.

TM M' =“On inputw = wyw, .. o
MD

1. Format 2-track tape with contents
$ (Wlllzl) (WZIl—_I_) (Wn)g)

How 4o farmad g
P kil
\2 To simulate one move of I\ﬂ

a) If working on upper track, read/write to the first position of
cell under tape head, and move in the same direction as M

b) If working on lower track, read/write to second position of
cell under tape head, and move in the opposite direction as M

c) If move results in hitting S, switch to the other track. ”
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Formalizing the Simulation

Given 2-way TM M = (Q, %, T, 0, Qo, Gaccepts Greject), cOnstruct
M"=(Q',%TI",68,q, qgccept: q{*eject )

New tape alphabet: T' = (I' X I') U {$}
New state set: Q' = Q X {+, -}
(g, —) means “q, working on upper track”
(g, +) means “q, working on lower track”
New transitions:
if6(p,a_) = (q,b,L), let §'((p,—), (a_,a;)) = ((q,—), (b,a;),R)
Also need new transitions for moving right, lower track, hitting $,
initializing input into 2-track format
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Multi-Tape TMs
(P, (wo,a)) = (4, (do,d), (L,1,9)

Coaveniin
P =9 b yAa @« 1¢ .—L.qu uNMMM‘)
— I vead- Oﬂlj
Finite alb Tula
control For " .
U |b |ddla |c
Fixed number of ta pes k (k can’t depend on input or change

during computation)
Lo shie - WAl & symbels (\,,“...,\:.,_)

Transition function 6 : Q X Fi - Q x I x{L, R'S}kj

71 L
\ef4/v: qnt /<t
(oA Sl UL 9ymVdy o waead W ‘\ni’{‘:‘r\“ﬁ J

(o,) . 4‘()
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Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an
equivalent single-tape TM M’

v

b |b |a|a
Finite -
a | b | U | a
control
]
U |b |a | a

Finite

control
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Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it’s
enough to construct a multi-tape TM

Often easier to construct multi-tape TMs  (alale fdel | . ]

Ex. Decider for {a'b’|i > j} (alald |
Thee Fape M docdor ,
b
o e o e O —

D) Eomed cok . desed £ Q¢ L (&%)
7) Copy al a's fon W 4o tpe Z
3)  Coapy all s Lo Q o e 3
1) Lebwen bods do  left eds of fyes 2ad 3 |
Scan @S 2 %3 (efd-to-vakt. T uX o Hlen o tepe
Y, apt o\ OM ) a's left o e 2 .
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