BU CS 332 – Theory of Computation

https://forms.gle/HCgscGEzevjHXcAg8

Lecture 10:

- Turing Machines
- TM Variants and Closure Properties

Reading:

Sipser Ch 3.1-3.3

Mark Bun October 7, 2021

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

Example read this symbol write this symbol q_0 $0 \to 0, R$ q_1 Q_0 Q_0

Formal Definition of a TM

A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- Q is a finite set of states
- ∑ is the input alphabet (does not include □)
- Γ is the tape alphabet (contains \sqcup and Σ)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function S(q, a) = (q', b', m) director head makes (L or R) $q_0 \in O$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state $(q_{\text{reject}} \neq q_{\text{accept}})$

Configuration of a TM: Formally

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by blanks \sqcup)
- Current state = q
- ullet Tape head on first symbol of v

Example: $101q_50111$

How a TM Computes

Start configuration: q_0w

One step of computation:

- If $\delta(q,b) = (q',c,R)$, then $ua \ q \ bv$ yields $uac \ q' \ v$
- If $\delta(q,b) = (q',c,L)$, then $ua \ q \ bv$ yields $u \ q' \ acv$
- If $\delta(q,b) = (q',c,L)$, then q bv yields q' cv

Accepting configuration: $q = q_{accept}$

Rejecting configuration: $q = q_{reject}$

How a TM Computes

M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that:

- $C_1 = q_0 w$ (, is start configuration
- C_i yields C_{i+1} for every i (an get from (; to (i), by
- C_k is an accepting configuration on step of continuous

L(M) = the set of all strings w which M accepts A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w

Recognizers vs. Deciders

L(M) = the set of all strings w which M accepts

A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w

A is (Turing-)decidable if A = L(M) for some TM M which halts on every input

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject}

Recognizers vs. Deciders

A The decider for larguage (A is also a the resignizable large)

Which of the following is true about the relationship

between decidable and recognizable languages?

- The decidable languages are a subset of the recognizable languages
- b) The recognizable languages are a subset of the decidable languages
- c) They are incomparable: There might be decidable languages which are not recognizable and vice versa

Example: Arithmetic on a TM

The following TM decides MULT = $\{a^ib^jc^k \mid i \times j = k\}$: On input string w:

- 1. Check *w* is formatted correctly
- 2. For each a appearing in w:
- 3. For each b appearing in w:
- 4. Attempt to cross off a c. If none exist, reject.
- 5. If all c's are crossed off, accept. Else, reject.

Chech it we L (a btct)

Can do u/ DED => can

do in one read-only pass

Example: Arithmetic on a TM

The following TM decides MULT = $\{a^ib^jc^k \mid i \times j = k\}$:
On input string w:

- 1. Scan the input from left to right to determine whether it is a member of $L(a^*b^*c^*)$
- 2. Return head to left end of tape
- 3. Cross off an a if one exists. Scan right until a b occurs. Shuttle between b's and c's crossing off one of each until all b's are gone. Reject if all c's are gone but some b's remain.
- 4. Restore crossed off b's. If any a's remain, repeat step 3.
- 5. If all c's are crossed off, accept. Else, reject.

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?

$$L = \{ p(z_1, ..., z_n) \mid \beta \text{ is a psynomial of integer coeffs. and } \}$$

• L is Turing-recognizable

• L is not decidable (1949-70)

aly look forever

eventually find it and accept

TM Variants

How Robust is the TM Model?

Does changing the model result in different languages being recognizable / decidable?

So far we've seen...

- We can require that NFAs have a single accept state
- Adding nondeterminism does not change the languages recognized by finite automata Subset construction

Other modifications possible too: E.g., allowing DFAs to have multiple passes over their input does not increase their power

Turing machines have an astonishing level of robustness

TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue
- Primitive recursive functions > \(\lambda \) \(\lambda \) \(\lambda \) \(\lambda \)
- Cellular automata

• • •

Equivalent TM models

• TMs that are allowed to "stay put" instead of moving left or right

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

TMs with stay put are *at least* as powerful as basic TMs (Every basic TM is a TM with stay put that never stays put)

How would you show that TMs with stay put are *no more* powerful than basic TMs?

- a) Convert any basic TM into an equivalent TM with stay put
- b)) Convert any TM with stay put into an equivalent basic TM
 - c) Construct a language that is recognizable by a TM with stay put, but not by any basic TM "TM with stay put can be work pass Al Hum basic TM"
 - d) Construct a language that is recognizable by a basic TM, but not by any TM with stay put "Bosic TM can be not pour 41"

Equivalent TM models

 TMs that are allowed to "stay put" instead of moving left or right

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

Proof that TMs with stay put are no more powerful:

Simulation: Convert any TM M with stay put into an equivalent basic TM M' "Implementation level"

Replace every stay put instruction in M with a move right instruction, followed by a move left instruction in M'

Equivalent TM models

• TMs with a 2-way infinite tape, unbounded left to right

Proof that TMs with 2-way infinite tapes are no more powerful:

Simulation: Convert any TM M with 2-way infinite tape into a 1-way infinite TM M' with a "two-track tape"

Implementation-Level Simulation

Given 2-way TM M construct a basic TM M' as follows.

TM
$$M' =$$
"On input $w = w_1 w_2 ... w_n$:

1. Format 2-track tape with contents (w_n, \sqcup) , (w_1, \sqcup) , (w_2, \sqcup) , ..., (w_n, \sqcup)

- 2. To simulate one move of M:
- a) If working on upper track, read/write to the first position of cell under tape head, and move in the same direction as M
- b) If working on lower track, read/write to second position of cell under tape head, and move in the opposite direction as M
 - c) If move results in hitting \$, switch to the other track. "

Formalizing the Simulation

Given 2-way TM $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm accept},q_{\rm reject})$, construct $M'=(Q',\Sigma,\Gamma',\delta',q_0',q_{\rm accept}',q_{\rm reject}')$

New tape alphabet: $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$

New state set: $Q' = Q \times \{+, -\}$

(q, -) means "q, working on upper track"

(q, +) means "q, working on lower track"

New transitions:

If
$$\delta(p, a_-) = (q, b, L)$$
, let $\delta'((p, -), (a_-, a_+)) = ((q, -), (b, a_+), R)$

Also need new transitions for moving right, lower track, hitting \$, initializing input into 2-track format

Multi-Tape TMs

$$S(P, (b, a, a)) = (q, (d, a, d), (L, R, s))$$

Input water on tope 1, read-only

Fixed number of tapes k

(k can't depend on input or change during computation)

Transition function
$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$

(used slote in symbols to what to what it is shown in short in the start in short in the start in short in the short short i

Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an equivalent single-tape TM M'

Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it's enough to construct a multi-tape TM

Often easier to construct multi-tape TMs

```
Ex. Decider for \{a^ib^j|i>j\}
Three tape TM decider

On imput w  (w withen an tape i)

1) Farnot check: Reject if w \notin L(a^{*}b^{*})

2) (ony all a's from w to tape 2

3) (ony all b's from w to tape 3

4) Return Loads to left ends of tapes 2 and 3

Scan tapes 2 & 3 [off-to-right. If hit a blank on tape 3, accept iff still army a's left on tape 2.
```