BU CS 332 – Theory of Computation https://forms.gle/HCgscGEzevjHXcAg8 # Lecture 10: - Turing Machines - TM Variants and Closure Properties Reading: Sipser Ch 3.1-3.3 Mark Bun October 7, 2021 # The Basic Turing Machine (TM) - Input is written on an infinitely long tape - Head can both read and write, and move in both directions - Computation halts as soon as control reaches "accept" or "reject" state # Example read this symbol write this symbol q_0 $0 \to 0, R$ q_1 Q_0 # Formal Definition of a TM A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ - Q is a finite set of states - ∑ is the input alphabet (does not include □) - Γ is the tape alphabet (contains \sqcup and Σ) - $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function S(q, a) = (q', b', m) director head makes (L or R) $q_0 \in O$ is the start state - $q_{\text{accept}} \in Q$ is the accept state - $q_{\text{reject}} \in Q$ is the reject state $(q_{\text{reject}} \neq q_{\text{accept}})$ # Configuration of a TM: Formally A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$ - Tape contents = uv (followed by blanks \sqcup) - Current state = q - ullet Tape head on first symbol of v Example: $101q_50111$ # How a TM Computes Start configuration: q_0w # One step of computation: - If $\delta(q,b) = (q',c,R)$, then $ua \ q \ bv$ yields $uac \ q' \ v$ - If $\delta(q,b) = (q',c,L)$, then $ua \ q \ bv$ yields $u \ q' \ acv$ - If $\delta(q,b) = (q',c,L)$, then q bv yields q' cv Accepting configuration: $q = q_{accept}$ Rejecting configuration: $q = q_{reject}$ # How a TM Computes M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that: - $C_1 = q_0 w$ (, is start configuration - C_i yields C_{i+1} for every i (an get from (; to (i), by - C_k is an accepting configuration on step of continuous L(M) = the set of all strings w which M accepts A is Turing-recognizable if A = L(M) for some TM M: - $w \in A \implies M$ halts on w in state q_{accept} - $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w # Recognizers vs. Deciders L(M) = the set of all strings w which M accepts A is Turing-recognizable if A = L(M) for some TM M: - $w \in A \implies M$ halts on w in state q_{accept} - $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w A is (Turing-)decidable if A = L(M) for some TM M which halts on every input - $w \in A \implies M$ halts on w in state q_{accept} - $w \notin A \implies M$ halts on w in state q_{reject} Recognizers vs. Deciders A The decider for larguage (A is also a the resignizable large) Which of the following is true about the relationship between decidable and recognizable languages? - The decidable languages are a subset of the recognizable languages - b) The recognizable languages are a subset of the decidable languages - c) They are incomparable: There might be decidable languages which are not recognizable and vice versa # Example: Arithmetic on a TM The following TM decides MULT = $\{a^ib^jc^k \mid i \times j = k\}$: On input string w: - 1. Check *w* is formatted correctly - 2. For each a appearing in w: - 3. For each b appearing in w: - 4. Attempt to cross off a c. If none exist, reject. - 5. If all c's are crossed off, accept. Else, reject. Chech it we L (a btct) Can do u/ DED => can do in one read-only pass # Example: Arithmetic on a TM The following TM decides MULT = $\{a^ib^jc^k \mid i \times j = k\}$: On input string w: - 1. Scan the input from left to right to determine whether it is a member of $L(a^*b^*c^*)$ - 2. Return head to left end of tape - 3. Cross off an a if one exists. Scan right until a b occurs. Shuttle between b's and c's crossing off one of each until all b's are gone. Reject if all c's are gone but some b's remain. - 4. Restore crossed off b's. If any a's remain, repeat step 3. - 5. If all c's are crossed off, accept. Else, reject. # Back to Hilbert's Tenth Problem Computational Problem: Given a Diophantine equation, does it have a solution over the integers? $$L = \{ p(z_1, ..., z_n) \mid \beta \text{ is a psynomial of integer coeffs. and } \}$$ • L is Turing-recognizable • L is not decidable (1949-70) aly look forever eventually find it and accept # TM Variants # How Robust is the TM Model? Does changing the model result in different languages being recognizable / decidable? So far we've seen... - We can require that NFAs have a single accept state - Adding nondeterminism does not change the languages recognized by finite automata Subset construction Other modifications possible too: E.g., allowing DFAs to have multiple passes over their input does not increase their power Turing machines have an astonishing level of robustness # TMs are equivalent to... - TMs with "stay put" - TMs with 2-way infinite tapes - Multi-tape TMs - Nondeterministic TMs - Random access TMs - Enumerators - Finite automata with access to an unbounded queue - Primitive recursive functions > \(\lambda \) \(\lambda \) \(\lambda \) \(\lambda \) - Cellular automata • • • # Equivalent TM models • TMs that are allowed to "stay put" instead of moving left or right $$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$ TMs with stay put are *at least* as powerful as basic TMs (Every basic TM is a TM with stay put that never stays put) How would you show that TMs with stay put are *no more* powerful than basic TMs? - a) Convert any basic TM into an equivalent TM with stay put - b)) Convert any TM with stay put into an equivalent basic TM - c) Construct a language that is recognizable by a TM with stay put, but not by any basic TM "TM with stay put can be work pass Al Hum basic TM" - d) Construct a language that is recognizable by a basic TM, but not by any TM with stay put "Bosic TM can be not pour 41" # Equivalent TM models TMs that are allowed to "stay put" instead of moving left or right $$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$ Proof that TMs with stay put are no more powerful: Simulation: Convert any TM M with stay put into an equivalent basic TM M' "Implementation level" Replace every stay put instruction in M with a move right instruction, followed by a move left instruction in M' # Equivalent TM models • TMs with a 2-way infinite tape, unbounded left to right Proof that TMs with 2-way infinite tapes are no more powerful: Simulation: Convert any TM M with 2-way infinite tape into a 1-way infinite TM M' with a "two-track tape" # Implementation-Level Simulation Given 2-way TM M construct a basic TM M' as follows. TM $$M' =$$ "On input $w = w_1 w_2 ... w_n$: 1. Format 2-track tape with contents (w_n, \sqcup) , (w_1, \sqcup) , (w_2, \sqcup) , ..., (w_n, \sqcup) - 2. To simulate one move of M: - a) If working on upper track, read/write to the first position of cell under tape head, and move in the same direction as M - b) If working on lower track, read/write to second position of cell under tape head, and move in the opposite direction as M - c) If move results in hitting \$, switch to the other track. " # Formalizing the Simulation Given 2-way TM $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm accept},q_{\rm reject})$, construct $M'=(Q',\Sigma,\Gamma',\delta',q_0',q_{\rm accept}',q_{\rm reject}')$ New tape alphabet: $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$ New state set: $Q' = Q \times \{+, -\}$ (q, -) means "q, working on upper track" (q, +) means "q, working on lower track" ## **New transitions:** If $$\delta(p, a_-) = (q, b, L)$$, let $\delta'((p, -), (a_-, a_+)) = ((q, -), (b, a_+), R)$ Also need new transitions for moving right, lower track, hitting \$, initializing input into 2-track format # Multi-Tape TMs $$S(P, (b, a, a)) = (q, (d, a, d), (L, R, s))$$ Input water on tope 1, read-only Fixed number of tapes k (k can't depend on input or change during computation) Transition function $$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$ (used slote in symbols to what to what it is shown in short in the start in short in the start in short in the short in short in the i # Multi-Tape TMs are Equivalent to Single-Tape TMs Theorem: Every k-tape TM M with can be simulated by an equivalent single-tape TM M' # Why are Multi-Tape TMs Helpful? To show a language is Turing-recognizable or decidable, it's enough to construct a multi-tape TM Often easier to construct multi-tape TMs ``` Ex. Decider for \{a^ib^j|i>j\} Three tape TM decider On imput w (w withen an tape i) 1) Farnot check: Reject if w \notin L(a^{*}b^{*}) 2) (ony all a's from w to tape 2 3) (ony all b's from w to tape 3 4) Return Loads to left ends of tapes 2 and 3 Scan tapes 2 & 3 [off-to-right. If hit a blank on tape 3, accept iff still army a's left on tape 2. ```