Lecture 11:

- More TM Variants and Closure Properties
- Church-Turing Thesis

Reading:
Sipser Ch 3.2

Mark Bun
October 14, 2021
TM Variants
TM are equivalent to...

• TMs with “stay put”
• TMs with 2-way infinite tapes
• Multi-tape TMs
• Nondeterministic TMs
• Random access TMs
• Enumerators
• Finite automata with access to an unbounded queue
• Primitive recursive functions
• Cellular automata

...
Multi-Tape TMs

Fixed number of tapes k

Transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$

k can’t depend on input or change during computation
How to Simulate It

To show that a TM variant is no more powerful than the basic, single-tape TM:

Show that if M is any variant machine, there exists a basic, single-tape TM M' that can simulate M

(Usual) parts of the simulation:

• Describe how to initialize the tape(s) of M' based on the input to M

• Describe how to simulate one step of M’s computation using (possibly many steps of) M'
Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an equivalent single-tape TM M'.
Simulating Multiple Tapes

Implementation-Level Description of M'

On input $w = w_1 w_2 \ldots w_n$
1. Format tape into $\# w_1 w_2 \ldots w_n \# \# \# \# \# \# \# \#$
2. For each move of M:
 - Scan left-to-right, finding current symbols
 - Scan left-to-right, writing new symbols,
 - Scan left-to-right, moving each tape head

 If a tape head goes off the right end, insert blank
 If a tape head goes off left end, move back right
Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it’s enough to construct a multi-tape TM

Often easier to construct multi-tape TMs

Ex. Decider for \(\{a^i b^j | i > j \} \)

On input \(w \):

1) Scan tape 1 left-to-right to check that \(w \in L(a^* b^*) \)

2) Scan tape 2 left-to-right to copy all \(b \)'s to tape 2

3) Starting from left ends of tapes 1 and 2, scan both tapes to check that every \(b \) on tape 2 has an accompanying \(a \) on tape 1. If not, reject.

4) Check that the first blank on tape 2 has an accompanying \(a \) on tape 1. If so, accept; otherwise, reject.
Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it’s enough to construct a multi-tape TM

Very helpful for proving **closure properties**

Ex. Closure of recognizable languages under union. Suppose M_1 is a single-tape TM recognizing L_1, M_2 is a single-tape TM recognizing L_2

On input w:

1) Scan tapes 1, 2, and 3 left-to-right to copy w to tapes 2 and 3

2) Repeat forever:

 a) Run M_1 for one step on tape 2

 b) Run M_2 for one step on tape 3

 c) If either machine accepts, **accept**

 Interlaced computation deals w/ possibility that M_1 loops on w, while M_2 accepts w.

10/14/2021 CS332 - Theory of Computation
Closure Properties

The Turing-decidable languages are closed under:

- Union
- Concatenation
- Star
- Intersection
- Reverse
- Complement

The Turing-recognizable languages are closed under:

- Union
- Concatenation
- Star
- Intersection
- Reverse
- Complement

\[
\text{L \ decidable, } \exists \ TM \ M \ s.t. \ \forall w:\
\begin{align*}
\text{w} \in L & \Rightarrow M \text{ accepts } w \\
\text{w} \notin L & \Rightarrow M \text{ rejects } w
\end{align*}
\]

\[
\text{M flips between accept/reject states of M}
\]

\[
\text{L \ recognizable } \Rightarrow \exists \ TM \ M \ s.t. \ \forall w:\
\begin{align*}
\text{w} \in L & \Rightarrow M \text{ accepts } w \\
\text{w} \notin L & \Rightarrow M \text{ rejects } w
\end{align*}
\]

\[
\text{Not complement: Above construction fails because it may loop on strings it should accept. Label: we'll see it recognizable } L \ s.t. \ L \text{ is not recognizable}
\]
Nondeterministic TMs

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting branch.

Transition function $\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R, S\})$
Nondeterministic TMs

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting computation path.

Input abba

Computation path 1:
q₀ abba
q₀ q₁ ba
q₁ b q₂ a
q₂ a q₃ a
q₃ a q₄ a
q₄ accept

Computation path 2:
q₀ abba
q₀ q₁ ba
q₁ b q₂ a
q₂ b xa
q₃ q₄ a
q₄ a q₅ a
q₅ a q₆ a
q₆ a q₇ a
q₇ a q₈ a
q₈ abba
q₈ accept
Nondeterministic TMs

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting computation path.

Implementation-Level Description:

On input string \(w \) (over alphabet \(\{a,b\} \))

1) Scan tape left to right, at some point (nondeterministically) goto step 2

2) a) Read next symbol \(S \), cross it off

 b) Move head left repeatedly, looking for \(S \). If found, cross it off.
 (otherwise reject)

 c) Move read right until reaches non-\(X \) symbol. If \(U \) hit, go to step 3

 d) Repeat (go back to 2 a)

3) Check that entire tape is \(X \)'s. If so accept.
Nondeterministic TMs

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting computation path

What is the language recognized by this NTM?

a) \(\{ \text{ww} \mid w \in \{a, b\}^* \} \)

b) \(\{ \text{ww}^R \mid w \in \{a, b\}^* \} \)

c) \(\{ \text{ww} \mid w \in \{a, b, x\}^* \} \)

d) \(\{ \text{wx}^n w^R \mid w \in \{a, b\}^*, n \geq 0 \} \)
Nondeterministic TMs

Ex. Given TMs M_1 and M_2, construct an NTM recognizing $L(M_1) \cup L(M_2)$.

Implementation level:

On input w:

1) Nondeterministically try:
 a) Run M_1 on tape, accept if accepts, or
 b) Run M_2 on tape, accept if accepts.
Nondeterministic TMs

Ex. NTM for \(L = \{w | w \text{ is a binary number representing the product of two integers } a, b \geq 2\} \)

High-Level Description:

On input \(w \):

1) Nondeterministically "guess" \(a \in \{2, \ldots, w^3\} \) and \(b \in \{2, \ldots, w^3\} \)

2) Multiply \(a \cdot b \), check equal to \(w \). Accept if so, reject o.w.

Analysis:

- If \(w \in L \), \(\exists a, b \in \{2, \ldots, w^3\} \) s.t. \(a \cdot b = w \). So path of computation that guessed these factors leads to accept.
- If \(w \notin L \), every \(a, b \) guessed will lead to reject.
Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on at least one computational branch

$$L(N) = \{w \mid N \text{ accepts input } w\}$$

An NTM N recognizes language L if:

- $w \in L \Rightarrow \exists$ computation path of N on w leading to accept
- $w \notin L \Rightarrow$ every computation path leads to reject, looping or failure

An NTM N is a decider if on every input, it halts on every computational branch

N decides L if:

- $w \in L \Rightarrow \exists$ computation path leading to accept
- $w \notin L \Rightarrow$ every computation path leads to reject (must halt)
Nondeterministic TMs

Theorem: Every nondeterministic TM can be simulated by an equivalent deterministic TM

Proof idea: Explore “tree of possible computations”
Simulating NTMs

Which of the following algorithms is always appropriate for searching the tree of possible computations for an accepting configuration?

a) Depth-first search: Explore as far as possible down each branch before backtracking

b) Breadth-first search: Explore all configurations at depth 1, then all configurations at depth 2, etc.

c) Both algorithms will always work
Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM

(See Sipser for full description)
TMIs are equivalent to...

- TMIs with “stay put”
- TMIs with 2-way infinite tapes
- Multi-tape TMIs
- Nondeterministic TMIs
- Random access TMIs
- Enumerators
- Finite automata with access to an unbounded queue
- Primitive recursive functions
- Cellular automata

...
Church-Turing Thesis

The equivalence of these models is a mathematical theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these models) captures our intuitive notion of algorithms

Normative, prescriptive

Church-Turing Thesis v2: Any physically realizable model of computation can be simulated by the basic TM

Empirical

The Church-Turing Thesis is not a mathematical statement! Can’t be mathematically proved

“Not too mathematical”