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Lecture 11: Reading:

* More TM Variants and Sipser Ch 3.2
Closure Properties

* Church-Turing Thesis
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TM Variants
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TMs are equivalent to...

* TMs with “stay put”

* TMs with 2-way infinite tapes

* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

* Finite automata with access to an unbounded queue
* Primitive recursive functions

e Cellular automata



Multi-Tape TMs
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Fixed number of ta pes k (k can’t depend on input or change
during computation)

Transition function § : Q X T — Q x T'* x {L, R, S}*
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How to Simulate It

(9»?1. nald: - dgpe TW\\
To show that a TM variant is no more powerful than the
basic, single-tape TM:

Show that if M is any variant machine, there exists a basic,
single-tape TM M’ that can simulate M

(Usual) parts of the simulation:

 Describe how to initialize the tapes)of M’ based on the
input to M

* Describe how to simulate one step of M’s computation
using (possibly many steps of) M’
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Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an
equivalent single-tape TM M’
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Simulating Multiple Tapes T ol o

Implementation-Level Description of M’

‘_,__,—-L ] ¢ w.[ e
Oninputw = wyw, ...w, (qlalo] - JA[#) 0 [4]a] ]a)

. vat lea T

1. Format tapeinto # wiw, ..w, # U # eI SRR IO
2. For each move of M:

Scan left-to-right, finding current symbols {nh @ ¢ ymwols

Scan left-to-right, writing new symbols, ;4. :L\'j:*iab

Scan left-to-right, moving each tape head dot>

mwr  doty
If a tape head goes off the right end, insert blank

If a tape head goes off left end, move back right
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Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it’s
enough to construct a multi-tape TM

Often easier to construct multi-tape TMs

Ex. Decider for {aibj|i > j}

On input w:

1) Scan tape 1 left-to-right to check that w € L(a"b™)
2) Scan tape 2 left-to-right to copy all b’s to tape 2

3) Starting from left ends of tapes 1 and 2, scan both tapes to check
that every b on tape 2 has an accompanying a on tape 1. If not,
reject.

4) Check that the first blank on tape 2 has an accompanying a on
tape 1. If so, accept; otherwise, reject.



Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it’s
enough to construct a multi-tape TM

Very helpful for proving closure properties

Ex. Closure of recognizable languages under union. Suppose M, is a
single-tape TM recognizing L{, M, is a single-tape TM recognizing L,

On input w: New ™ wogniwy L,V L,
1) Scan tapes 1, 2, and 3 left-to-right to copy w to tapes 2 and 3

2) Repeat forever:
(\

- s

Laa ™, iy |
b) Run M, for one stepontape3 ea: Tl ... 1
Wal

a) Run M, for one step on tape 2

i i N [V
c) If either machine accepts, accept ", Lol

’.LA\-Q‘\&(C& ('Awu‘qw A(o\‘g w/ (ns«,.\o‘.h\j Heat M‘ (oo', on \J,

10/14/2021 CS332 - Theory of Computation 9



Closure Properties L bt 3 Th M

. . L =D
The Turing-decidable languages are closed under:"€* ™ ™y

W#L el | rer‘ﬁ
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* Union * |Intersection
* Concatenation * Reverse
e Star * Complement
M lerchages ac / vesect
Shley, of M
The Turing-recognizable languages are closed under:
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Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting branch.
Transition function § : Q XTI' - P(Q xI' X {L,R,S})
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Nondeterministic TMs

Comgolerbion fotn L weans NI M aeegh
Gl Yo\

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting computation
path

X — x,L I“(’“+ 0\\0»)2
M . , .
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Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting computation

path HHUKK oxkek‘?‘%‘:&
Implementation-Level Description:
On tapal  Shey O - (ow dlphalet §o,b4)
0\ Scan tap lefd o gt af sse ot (nendety madic ally) goto
AT
exd sambdl S C(eoss X ofHf
L)Sp\:i bead L‘-} vefei’tedh) (okiy fv ¢ TF found, Coss + off
(ofwuie voyact)
A Move Ve gt um rtades  a-X syalal T L b 9o ds
3) Deteat (9o ack 4o 1 a) ke 2
2) Oen Wt 0t ol s X5 T 9D awwt.
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Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting computation

path x_::\T-L E”"!!;':E
C Ir o

e

a. f)—)R

ot _fq“\: : '. - | What is the language recognized by this
< b— x.L NTM?
) b& a) {ww|wE€{a,b}}
C/Dﬁ_‘)xer, \CID @{WWR | S {a; b}*}
/‘ 7 ¢ {wwlwé€f{abx}"}
ol <xtd) {wx"wR | w € {a,b}",n 2 0)
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Nondeterministic TMs

Ex. Given TMs M; and M,, construct an NTM recognizing
L(M;) U L(M;) >om, |
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Nondeterministic TMs

Ex. NTM for L = {w |w is a binary number representing
the product of two integers a, b = 2}

High-Level Description:
OV\ ‘un(h‘\ \A P
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Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on

at least one computational branch

L(N) = {w | N accepts input w} ""“L,am o1 ‘T\P o lodde o

N N recognies lauage L A7 "‘T““’. J""fé‘;’(lh ;’ﬂﬁm‘wﬁ
WEL =7 3 comdudan path of N aa o) leading o aces?™
An NTM N is a decider Iif on every input, it halts on every

computational branch
N decdes [ 1° ,
Wél D 3 agdubsn o leadiy s acgph

VL = Ay ppdehin path leds b v@ject
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Nondeterministic TMs

Theorem: Every nondeterministic TM can be simulated by

an equivalent deterministic TM
ol N o \M.;l ..)

Proof idea: Explore tree of possible computations”
‘g, W, Wy e W [© BFS

>
Y A VNN
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Simulating NTMs E—iﬁ,"um

e

Which of the following algorithms is always appropriate
for searching the tree of possible computations for an
accepting configuration?

a) Depth-first search: Explore as far as possible down
each branch before backtracking
Wolkg ‘¢ NwWm N was o Aﬁ(tw

b) Breadth-first search: Explore all configurations at
depth 1, then all configurations at depth 2, etc.
Mrys worles . Ay A wel

Novechh o/ loy X' WL

c) Both algorithms will always work
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Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent
deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM
(See Sipser for full description)

Input w to N (read-only)

.. v : : .
Finite Simulation tape (run N on w using
W1 U H W3 | Wy e e e .
control nondeterministic choices from tape 3)

1|13 |3 ]| 7 Address in computation tree
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TMs are equivalent to...

* TMs with “stay put”

* TMs with 2-way infinite tapes

* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

* Finite automata with access to an unbounded queue
* Primitive recursive functions

e Cellular automata



Church-Turing Thesis

The equivalence of these models is a mathematical
theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these

models) captures our intuitive notion of algorithms
NOIMHJ Qﬁf‘;crwk\ﬁ.

Church-Turing Thesis v2: Any physically realizable model
of computation can be simulated by the basic TM

E W\(J.V((q\

The Church-Turing Thesis is not a mathematical
statement! Can’t be mathematically proved
“Weda mad W 0 padt V'
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