BU CS 332 – Theory of Computation

https://forms.gle/h1xzMYnBnYKm3yMJ8

Lecture 11:

- More TM Variants and Closure Properties
- Church-Turing Thesis

Reading:

Sipser Ch 3.2

Mark Bun October 14, 2021

TM Variants

TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue
- Primitive recursive functions
- Cellular automata

• • •

Multi-Tape TMs

Fixed number of tapes k

(k can't depend on input or change during computation)

Transition function
$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$

Current read read rew with the state usymbols restrictions

P (baa) 9 (a,b,a) (R, R, S)

How to Simulate It

(e.g. nult: - tape TM)

To show that a TM variant is no more powerful than the basic, single-tape TM:

Show that if M is any variant machine, there exists a basic, single-tape TM M' that can simulate M

(Usual) parts of the simulation:

- Describe how to initialize the tapes of M' based on the input to M
- Describe how to simulate one step of M's computation using (possibly many steps of) M'

Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an equivalent single-tape TM M'

Simulating Multiple Tapes

a means tape head of M

Implementation-Level Description of M'

On input $w = w_1 w_2 \dots w_n$

- 1. Format tape into # $\dot{w_1}w_2 \dots w_n$ # $\dot{\Box}$ # $\ddot{\Box}$ # $\ddot{\Box}$ # $\ddot{\Box}$ #
- 2. For each move of M:

Scan left-to-right, finding current symbols find all symbols Scan left-to-right, writing new symbols, which symbols with symbols and symbols with symbols and symbols with symbols with symbols symbols. Scan left-to-right, moving each tape head dots

If a tape head goes off the right end, insert blank If a tape head goes off left end, move back right

Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it's enough to construct a multi-tape TM

Often easier to construct multi-tape TMs

Ex. Decider for $\{a^i b^j | i > j\}$

On input w:

- 1) Scan tape 1 left-to-right to check that $w \in L(a^*b^*)$
- 2) Scan tape 2 left-to-right to copy all b's to tape 2
- 3) Starting from left ends of tapes 1 and 2, scan both tapes to check that every b on tape 2 has an accompanying a on tape 1. If not, reject.
- 4) Check that the first blank on tape 2 has an accompanying a on tape 1. If so, accept; otherwise, reject.

Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it's enough to construct a multi-tape TM

Very helpful for proving closure properties

Ex. Closure of recognizable languages under union. Suppose M_1 is a single-tape TM recognizing L_1 , M_2 is a single-tape TM recognizing L_2

On input w: New YM recogniting L, V Lz

- 1) Scan tapes 1, 2, and 3 left-to-right to copy w to tapes 2 and 3
- 2) Repeat forever:
 - a) Run M_1 for one step on tape 2
 - b) Run M_2 for one step on tape 3
 - c) If either machine accepts, accept

Closure Properties

L decidable, 7 TM M s.t. & W.

The Turing-decidable languages are closed under: Wel and Macaph

- Union
- Concatenation
- Star

- Intersection
- Reverse
- Complement MI intercharges acrept / reject States of M

L recognitable = 7 7 TM M G.I. Yw:

The Turing-recognizable languages are closed under:

- Union
- Concatenation
- Star

- Intersection u & L => M accepts w

 e. Her resents
- Reverse

war loops forever

Not (omplement: Above construction fails because ? may loop on strings it should acapt will see I magnitude L sit. I is CS332 - Theory of Computation

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting branch.

Transition function $\delta: Q \times \Gamma \to P(Q \times \Gamma \times \{L, R, S\})$ (are state (not got of possible next moves)

Some read/unite wave

(Multiple ways to or both!

unary take you to update tape

(p) $a \to b, R$ $a \to b, R$

10/14/2021

 $a \rightarrow b$, R

 $a \rightarrow c.L$

Nondeterministic TMs Computation path 2 nears NTM accepts

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting computation

Consulation path 2'. abq, ba a gybxa axqxa $a \times x q_a$ axq₂xx a q2 XXX gaaxxx Quuxxxx12 aught

Implementation-Level Description:

At any point in computation, may nondeterministically branch. Accepts iff there exists an accepting computation

path

What is the language recognized by this NTM?

- a) $\{ ww \mid w \in \{a, b\}^* \}$
- $\{b\}$ $\{ww^R \mid w \in \{a, b\}^*\}$
- c) $\{ ww \mid w \in \{a, b, x\}^* \}$
- d) $\{wx^nw^R \mid w \in \{a,b\}^*, n \ge 0\}$

Ex. Given TMs M_1 and M_2 , construct an NTM recognizing

 $L(M_1) \cup L(M_2)$ NEW recogniting ((M)) / ((M2))

```
Implementation - level:
```

i w hym no

1) Nondetermush rally, either: a) Run M. on take, aught it accepts, b) hun M2 on tape, accept if accepts

Ex. NTM for $L = \{w \mid w \text{ is a binary number representing the product of two integers } a, b \ge 2\}$

High-Level Description:

```
On input wi.

1) Nondesterministically guess' a \in \{2, ..., u^3\} and b \in \{3, ..., u^3\}

2) Multiply a.b., cleck equal to u. Accept it so, reject
```

Analysis.

```
• If well, I a, b first here fictors leads to accept.

• If well, every a, b guessed will lead to reject
```

An NTM N accepts input w if when run on w it accepts on at least one computational branch

```
L(N) = \{w \mid N \text{ accepts input } w\}

Now N recognites language L(N) reach as state

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N) = \{w \mid N \text{ accepts input } w\}

L(N)
```

```
N decide's L if:

WEL => 3. conjutation path leading to accept

UGL => every computation path leads to resect

(must halt)
```

Theorem: Every nondeterministic TM can be simulated by an equivalent deterministic TM

Proof idea: Explore "tree of possible computations"

Simulating NTMs

Which of the following algorithms is always appropriate for searching the tree of possible computations for an accepting configuration?

a) Depth-first search: Explore as far as possible down each branch before backtracking

works i.f NYM N was a decider

b) Breadth-first search: Explore all configurations at depth 1, then all configurations at depth 2, etc.

Always norts: Accepts 14 WEL
Réports or loops 15 WAL

c) Both algorithms will always work

Theorem: Every nondeterministic TM has an equivalent deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM (See Sipser for full description)

TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue
- Primitive recursive functions
- Cellular automata

• • •

Church-Turing Thesis

The equivalence of these models is a mathematical theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these models) captures our intuitive notion of algorithms

Normalie, prescriptie

Church-Turing Thesis v2: Any physically realizable model of computation can be simulated by the basic TM

The Church-Turing Thesis is **not** a mathematical statement! Can't be mathematically proved

"We to- muth e mat; al"