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TMs are equivalent to...

* TMs with “stay put”

 TMs with 2-way infinite tapes

* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

* Finite automata with access to an unbounded queue
* Primitive recursive functions

* Cellular automata



Multi-Tape TMs

v
Finite
a | b U | a | a
!

Fixed number of ta pes k (k can’t depend on input or change
during computation)

Transition function § : Q X T - Q x T'* x {L, R, S}*

10/14/2021 CS332 - Theory of Computation 4



How to Simulate It

To show that a TM variant is no more powerful than the
basic, single-tape TM:

Show that if M is any variant machine, there exists a basic,
single-tape TM M’ that can simulate M

(Usual) parts of the simulation:

 Describe how to initialize the tapes of M’ based on the
input to M

* Describe how to simulate one step of M’s computation
using (possibly many steps of) M’
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Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an
equivalent single-tape TM M’

\ 4

b |b |a | a

Finite -
a | b | U | a
control
]
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Simulating Multiple Tapes

Implementation-Level Description of M’

Oninputw = wyw, ...W,

1. Format tape into # wyw, ..w,# U# LU # .. #

2. For each move of M:
Scan left-to-right, finding current symbols
Scan left-to-right, writing new symbols,
Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank
If a tape head goes off left end, move back right



Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it’s
enough to construct a multi-tape TM

Often easier to construct multi-tape TMs

Ex. Decider for {aibj|i > j}

On input w:

1) Scan tape 1 left-to-right to check that w € L(a™b")
2) Scan tape 2 left-to-right to copy all b’s to tape 2

3) Starting from left ends of tapes 1 and 2, scan both tapes to check
that every b on tape 2 has an accompanying a on tape 1. If not,
reject.

4) Check that the first blank on tape 2 has an accompanying a on
tape 1. If so, accept; otherwise, reject.



Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it’s
enough to construct a multi-tape TM

Very helpful for proving closure properties

Ex. Closure of recognizable languages under union. Suppose M, is a
single-tape TM recognizing L{, M, is a single-tape TM recognizing L,

On input w:
1) Scan tapes 1, 2, and 3 left-to-right to copy w to tapes 2 and 3
2) Repeat forever:

a) Run M, for one step on tape 2

b) Run M, for one step on tape 3

c) If either machine accepts, accept
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Closure Properties

The Turing-decidable languages are closed under:

* Union * |ntersection
* Concatenation * Reverse
e Star * Complement

The Turing-recognizable languages are closed under:

e Union * |Intersection
e Concatenation e Reverse
e Star



Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting branch.

Transition function § : Q XI' - P(Q XTI’ x {L,R,S})

a > bR @ a - bR @
a > bR
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Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting computation
path

a.b — R
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Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting computation
path

Implementation-Level Description:

a.b — R
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Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting computation

path AL [m] &, v [a]

st
N TR

o

a.b — R

Y a,b —+R
start —| 40

What is the language recognized by this
NTM?

—
|

a) {ww|wef{ab}}
b) {ww® |w € {a, b}}

;f-:};:)K%L x‘“‘“(q; c) {wwl|we€{ab,x}}

J ' 7 d) {wx"w®|wef{ab},n=0}
/" b—=L x — x. L
| Gaceept |
N
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Nondeterministic TMs

Ex. Given TMs M; and M,, construct an NTM recognizing
L(M;) U L(M;)
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Nondeterministic TMs

Ex. NTM for L = {w |w is a binary number representing
the product of two integers a, b > 2}

High-Level Description:
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Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on
at least one computational branch

L(N) = {w | N accepts input w}

An NTM N is a decider if on every input, it halts on every
computational branch



Nondeterministic TMs

Theorem: Every nondeterministic TM can be simulated by
an equivalent deterministic TM

Proof idea: Explore “tree of possible computations”
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Simulating NTMs E—i’"‘ﬂTJE-I

_Ellllllr.l-:d"
Which of the following algorithms is always appropriate

for searching the tree of possible computations for an
accepting configuration?

a) Depth-first search: Explore as far as possible down
each branch before backtracking

b) Breadth-first search: Explore all configurations at
depth 1, then all configurations at depth 2, etc.

c) Both algorithms will always work



Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent
deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM
(See Sipser for full description)

Input w to N (read-only)

.. ¥ : : :
Finite Simulation tape (run N on w using
Wy [ H# W3 [ Wy . e . .
control nondeterministic choices from tape 3)
‘

1|13 |3 ]| 7 Address in computation tree
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TMs are equivalent to...

* TMs with “stay put”

 TMs with 2-way infinite tapes

* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

* Finite automata with access to an unbounded queue
* Primitive recursive functions

* Cellular automata



Church-Turing Thesis

The equivalence of these models is a mathematical
theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these
models) captures our intuitive notion of algorithms

Church-Turing Thesis v2: Any physically realizable model
of computation can be simulated by the basic TM

The Church-Turing Thesis is not a mathematical
statement! Can’t be mathematically proved
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