Lecture 12:
• Decidable Languages
• Universal TM

Reading:
Sipser Ch 4.1

Mark Bun
October 19, 2021
Last Time

Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on at least one computational branch

Church-Turing Thesis

v1: The basic TM (and all equivalent models) capture our intuitive notion of algorithms

v2: Any physically realizable model of computation can be simulated by the basic TM
Decidable Languages
1928 – The Entscheidungsproblem

The “Decision Problem”

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it’s logically valid?

"mathematical statement"

"true or false?"

Question: Can computers automate mathematicians?

Question: Can we automate theorems about regular languages?
Questions about regular languages

• Given a DFA D and a string w, does D accept input w?
• Given a DFA D, does D recognize the empty language?
• Given DFAs D_1, D_2, do they recognize the same language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language, and decide them using Turing machines
Questions about regular languages

Design a TM which takes as input a DFA D and a string w, and determines whether D accepts w

How should the input to this TM be represented?
Let $D = (Q, \Sigma, \delta, q_0, F)$. List each component of the tuple separated by #
• Represent Q by -,separated binary strings
• Represent Σ by -,separated binary strings
• Represent $\delta : Q \times \Sigma \rightarrow Q$ by a -,separated list of triples (p, a, q), ...

Denote the **encoding** of D, w by $\langle D, w \rangle$
Example

\(Q = \{ q_0, q_1, q_3 \} \)

\(\Sigma = \{ a, b \} \)

\(S(q_0, a) = q_1, \quad S(q_0, b) = q_0, \ldots \)

Start \(q_0 \)

\(F = \{ q_0, q_3 \} \)

\(\delta = \begin{align*}
0, 1 & \rightarrow 0, 1 \\
q_0 & \rightarrow q_1
\end{align*} \)

- Alphabet of encoded NFA:
 \[\{ 0, 1, #, \#, (,), \} \]
Representation independence

Computability (i.e., decidability and recognizability) is **not** affected by the precise choice of encoding.

Let $\langle \cdot \rangle$ be a different encoding.

Why? A TM can always convert between different (reasonable) encodings.

On input $\langle D \rangle$:

1) Convert $\langle D \rangle$ to $\langle O \rangle$

2) Run M on input $\langle O \rangle$, accept if it accepts, reject otherwise.

From now on, we’ll take $\langle \cdot \rangle$ to mean “any reasonable encoding.”
A “universal” algorithm for recognizing regular languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA} D \text{ accepts } w \} \]

Theorem: \(A_{\text{DFA}} \) is decidable

Proof: Define a (high-level) 3-tape TM \(M \) on input \(\langle D, w \rangle \):

1. Check if \(\langle D, w \rangle \) is a valid encoding (reject if not)
2. Simulate \(D \) on \(w \), i.e.,
 - Tape 2: Maintain \(w \) and head location of \(D \)
 - Tape 3: Maintain state of \(D \), update according to \(\delta \)
3. **Accept** if \(D \) ends in an accept state, **reject** otherwise

Analysis:
1) \(\langle D, w \rangle \in A_{\text{DFA}} \Rightarrow D \text{ ends in accept on input } w \Rightarrow M \text{ accepts} \)
2) \(\langle D, w \rangle \notin A_{\text{DFA}} \Rightarrow \text{either improperly formatted, or } D \text{ ends in reject} \Rightarrow M \text{ rejects} \)
Other decidable languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid \text{NFA } N \text{ accepts } w \} \]

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid \text{regular expression } R \text{ generates } w \} \]
NFA Acceptance

Your TM should:
\begin{align*}
\text{Accept } (N, w) & \text{ if } N \text{ accepts } w \\
\text{Reject } (N, w) & \text{ if } N \text{ does not accept } w
\end{align*}

Which of the following describes a **decider** for \(A_{\text{NFA}} = \{ (N, w) \mid \text{NFA } N \text{ accepts } w \} \)?

a) Using a deterministic TM, simulate \(N \) on \(w \), always making the first nondeterministic choice at each step. Accept if it accepts, and reject otherwise.

b) Using a deterministic TM, simulate all possible choices of \(N \) on \(w \) for 1 step of computation, 2 steps of computation, etc. Accept whenever some simulation accepts.

c) Use the subset construction to convert \(N \) to an equivalent DFA \(M \). Simulate \(M \) on \(w \), accept if it accepts, and reject otherwise.
Regular Languages are Decidable

Theorem: Every regular language L is decidable

Proof 1: If L is regular, it is recognized by a DFA D. Convert this DFA to a TM M. Then M decides L.

Proof 2: If L is regular, it is recognized by a DFA D. The following TM M_D decides L.

On input w:

1. Run the decider for A_{DFA} on input $\langle D, w \rangle$
2. Accept if the decider accepts; reject otherwise

Analysis:
1) If $w \in L$, then D accepts $w \Rightarrow \langle N, w \rangle \in A_{DFA} \Rightarrow M_0$ accepts
2) If $w \notin L$, then D does not accept $w \Rightarrow \langle N, w \rangle \notin A_{DFA} \Rightarrow M_0$ rejects
Classes of Languages

regular ⊆ decidable ⊆ recognizable
More Decidable Languages: Emptiness Testing

Theorem: $E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA such that } L(D) = \emptyset \}$ is decidable

Proof: The following TM decides E_{DFA}

- If $L(D) = \emptyset$, there are no reachable accept states \Rightarrow TM accepts
- If $L(D) \neq \emptyset$, then a reachable accept state \Rightarrow TM rejects

On input $\langle D \rangle$, where D is a DFA with k states:

1. Perform k steps of breadth-first search on state diagram of D to determine if an accept state is reachable from the start state

2. **Reject** if a DFA accept state is reachable; accept otherwise
DFA Example

$D =$

- q_0
- q_1
- q_2
- q_3
- q_4
- q_5

No accept states are reachable

$\Rightarrow L(0) = \emptyset$

reject input $\langle 0 \rangle$.
New Deciders from Old: Equality Testing

\[EQ_{DFA} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

Theorem: \(EQ_{DFA} \) is decidable

Proof: The following TM decides \(EQ_{DFA} \)

On input \(\langle D_1, D_2 \rangle \), where \(\langle D_1, D_2 \rangle \) are DFAs:

1. Construct DFA \(D \) recognizing the symmetric difference
 \[L(D_1) \triangle L(D_2) = \{ w \mid \text{exactly one of } D_1, D_2 \text{ accept } w \} \]

2. Run the decider for \(E_{DFA} \) on \(\langle D \rangle \) and return its output

Analysis:

1) If \(L(D_1) = L(D_2) \), then \(L(D_1) \triangle L(D_2) = \emptyset \) \(\Rightarrow \) decider for \(E_{DFA} \) accepts \(\Rightarrow \) TM accepts

2) If \(L(D_1) \neq L(D_2) \) \(\Rightarrow \) \(L(D_1) \triangle L(D_2) \neq \emptyset \) \(\Rightarrow \) decider for \(E_{DFA} \) rejects \(\Rightarrow \) TM rejects
Symmetric Difference

\[A \triangle B = \{w \mid w \in A \text{ or } w \in B \text{ but not both} \} \]

\[
A \triangle B = (A \setminus B) \cup (B \setminus A) \\
= (A \cap \overline{B}) \cup (B \cap \overline{A})
\]

If \(A, B \) recognized by DFAs, can use complement/intersection/union constructions & subset construction to get DFA for \(A \triangle B \).
Universal Turing Machine
Meta-Computational Languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]
\[A_{\text{TM}} = \{ \langle M, w \rangle \mid \text{TM } M \text{ accepts } w \} \]

\[E_{\text{DFA}} = \{ \langle D \rangle \mid \text{DFA } D \text{ recognizes the empty language } \emptyset \} \]
\[E_{\text{TM}} = \{ \langle M \rangle \mid \text{TM } M \text{ recognizes the empty language } \emptyset \} \]

\[E_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs, } L(D_1) = L(D_2) \} \]
\[E_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs, } L(M_1) = L(M_2) \} \]
The Universal Turing Machine

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Theorem: \(A_{TM} \) is Turing-recognizable

The following “Universal TM” \(U \) recognizes \(A_{TM} \)

On input \(\langle M, w \rangle \):
1. Simulate running \(M \) on input \(w \)
2. If \(M \) accepts, accept. If \(M \) rejects, reject.

Analysis:
1) If \(\langle M, w \rangle \in A_{TM} \Rightarrow M \text{ accepts } w \Rightarrow U \text{ accepts } \langle M, w \rangle
2) If \(\langle M, w \rangle \notin A_{TM} \Rightarrow \text{either } M \text{ rejects } w \Rightarrow U \text{ rejects } \langle M, w \rangle
\]

\[M \text{ loops on } w \Rightarrow U \text{ loops on } \langle M, w \rangle \]
Universal TM and A_{TM}

Why is the Universal TM not a decider for A_{TM}?

The following “Universal TM” U recognizes A_{TM}

On input $\langle M, w \rangle$:
1. Simulate running M on input w
2. If M accepts, accept. If M rejects, reject.

a) It may reject inputs $\langle M, w \rangle$ where M accepts w
b) It may accept inputs $\langle M, w \rangle$ where M rejects w
c) It may loop on inputs $\langle M, w \rangle$ where M loops on w
d) It may loop on inputs $\langle M, w \rangle$ where M accepts w
More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine U is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine M, then U will compute the same sequence as M.”

- Turing, “On Computable Numbers...” 1936

• Foreshadowed general-purpose programmable computers
• No need for specialized hardware: Virtual machines as software

Harvard architecture: Separate instruction and data pathways
von Neumann architecture: Programs can be treated as data
Undecidability

\(A_{TM} \) is Turing-recognizable via the Universal TM

...but it turns out \(A_{TM} \) (and \(E_{TM}, EQ_{TM} \)) is undecidable

i.e., computers cannot solve these problems no matter how much time they are given