Lecture 12:

- Decidable Languages
- Universal TM

Reading:

Sipser Ch 4.1

Mark Bun

October 19, 2021
Last Time

Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on at least one computational branch.

Church-Turing Thesis

v1: The basic TM (and all equivalent models) capture our intuitive notion of algorithms.

v2: Any physically realizable model of computation can be simulated by the basic TM.
Decidable Languages
The “Decision Problem”

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it’s logically valid?
Questions about regular languages

• Given a DFA D and a string w, does D accept input w?
• Given a DFA D, does D recognize the empty language?
• Given DFAs D_1, D_2, do they recognize the same language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language, and decide them using Turing machines
Questions about regular languages

Design a TM which takes as input a DFA D and a string w, and determines whether D accepts w

How should the input to this TM be represented?

Let $D = (Q, \Sigma, \delta, q_0, F)$. List each component of the tuple separated by #

• Represent Q by ,-separated binary strings
• Represent Σ by ,-separated binary strings
• Represent $\delta : Q \times \Sigma \rightarrow Q$ by a ,-separated list of triples (p, a, q), ...

Denote the encoding of D, w by $\langle D, w \rangle$
Example
Representation independence

Computability (i.e., decidability and recognizability) is not affected by the precise choice of encoding

Why? A TM can always convert between different (reasonable) encodings

From now on, we’ll take \langle \rangle to mean “any reasonable encoding”
A “universal” algorithm for recognizing regular languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

Theorem: \(A_{\text{DFA}}\) is decidable

Proof: Define a (high-level) 3-tape TM \(M\) on input \(\langle D, w \rangle\):

1. Check if \(\langle D, w \rangle\) is a valid encoding (reject if not)
2. Simulate \(D\) on \(w\), i.e.,
 - Tape 2: Maintain \(w\) and head location of \(D\)
 - Tape 3: Maintain state of \(D\), update according to \(\delta\)
3. **Accept** if \(D\) ends in an accept state, **reject** otherwise
Other decidable languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid \text{NFA } N \text{ accepts } w \} \]

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid \text{regular expression } R \text{ generates } w \} \]
NFA Acceptance

Which of the following describes a decider for $A_{\text{NFA}} = \{\langle N, w \rangle \mid \text{NFA } N \text{ accepts } w \}$?

a) Using a deterministic TM, simulate N on w, always making the first nondeterministic choice at each step. Accept if it accepts, and reject otherwise.

b) Using a deterministic TM, simulate all possible choices of N on w for 1 step of computation, 2 steps of computation, etc. Accept whenever some simulation accepts.

c) Use the subset construction to convert N to an equivalent DFA M. Simulate M on w, accept if it accepts, and reject otherwise.
Regular Languages are Decidable

Theorem: Every regular language L is decidable

Proof 1: If L is regular, it is recognized by a DFA D. Convert this DFA to a TM M. Then M decides L.

Proof 2: If L is regular, it is recognized by a DFA D. The following TM M_D decides L.

On input w:

1. Run the decider for A_{DFA} on input $\langle D, w \rangle$
2. Accept if the decider accepts; reject otherwise
Classes of Languages

- Regular
- Recognizable
- Decidable
More Decidable Languages: Emptiness Testing

Theorem: \(E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA such that } L(D) = \emptyset \} \) is decidable

Proof: The following TM decides \(E_{\text{DFA}} \)

On input \(\langle D \rangle \), where \(D \) is a DFA with \(k \) states:

1. Perform \(k \) steps of breadth-first search on state diagram of \(D \) to determine if an accept state is reachable from the start state

2. **Reject** if a DFA accept state is reachable; **accept** otherwise
E_{DFA} Example
New Deciders from Old: Equality Testing

\[EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

Theorem: \(EQ_{\text{DFA}} \) is decidable

Proof: The following TM decides \(EQ_{\text{DFA}} \)

On input \(\langle D_1, D_2 \rangle \), where \(\langle D_1, D_2 \rangle \) are DFAs:

1. Construct DFA \(D \) recognizing the \textbf{symmetric difference}
 \[L(D_1) \Delta L(D_2) \]

2. Run the decider for \(E_{\text{DFA}} \) on \(\langle D \rangle \) and return its output
Symmetric Difference

\[A \triangle B = \{ w \mid w \in A \text{ or } w \in B \text{ but not both} \} \]
Universal Turing Machine
Meta-Computational Languages

\[A_{DFA} = \{\langle D, w \rangle \mid \text{DFA } D \text{ accepts } w\} \]
\[A_{TM} = \{\langle M, w \rangle \mid \text{TM } M \text{ accepts } w\} \]

\[E_{DFA} = \{\langle D \rangle \mid \text{DFA } D \text{ recognizes the empty language } \emptyset\} \]
\[E_{TM} = \{\langle M \rangle \mid \text{TM } M \text{ recognizes the empty language } \emptyset\} \]

\[EQ_{DFA} = \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs, } L(D_1) = L(D_2)\} \]
\[EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs, } L(M_1) = L(M_2)\} \]
The Universal Turing Machine

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Theorem: \(A_{TM} \) is Turing-recognizable

The following “Universal TM” \(U \) recognizes \(A_{TM} \)

On input \(\langle M, w \rangle \):

1. Simulate running \(M \) on input \(w \)
2. If \(M \) accepts, accept. If \(M \) rejects, reject.
Universal TM and A_{TM}

Why is the Universal TM not a decider for A_{TM}?

The following “Universal TM” U recognizes A_{TM}

On input $\langle M, w \rangle$:
1. Simulate running M on input w
2. If M accepts, accept. If M rejects, reject.

a) It may reject inputs $\langle M, w \rangle$ where M accepts w
b) It may accept inputs $\langle M, w \rangle$ where M rejects w
c) It may loop on inputs $\langle M, w \rangle$ where M loops on w
d) It may loop on inputs $\langle M, w \rangle$ where M accepts w
More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine \(U \) is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine \(M \), then \(U \) will compute the same sequence as \(M \)."

- Turing, “On Computable Numbers...” 1936

• Foreshadowed general-purpose programmable computers
• No need for specialized hardware: Virtual machines as software

Harvard architecture:
Separate instruction and data pathways

von Neumann architecture:
Programs can be treated as data
Undecidability

A_{TM} is Turing-recognizable via the Universal TM

...but it turns out A_{TM} (and $E_{TM}, E_{Q_{TM}}$) is **undecidable**

i.e., computers cannot solve these problems no matter how much time they are given