BU CS 332 – Theory of Computation

https://forms.gle/eqKpuJzFDYhWfy7eA

Lecture 13:

- Countability and Diagonalization
- Undecidability

Reading: Sipser Ch 4.2

Mark Bun October 21, 2021

Last Time

Decidable languages (from language theory) $A_{\text{DFA}} = \{\langle D, w \rangle \mid \text{DFA } D \text{ accepts input } w\}, \text{ etc.}$

Universal Turing machine

A recognizer for $A_{TM} = \{\langle M, w \rangle \mid TM \ M \text{ accepts input } w\}$...but not a decider

Today: Some languages, including $A_{\rm TM}$, are *undecidable* But first, a math interlude...

Countability and Diagonalizaiton

10/21/2021

What's your intuition?

Which of the following sets is the "biggest"?

- a) The natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- b) The even numbers: $E = \{2, 4, 6, ...\}$
- c) The positive powers of 2: $POW2 = \{2, 4, 8, 16, ...\}$
- d) They all have the same size

Set Theory Review

- A function $f: A \rightarrow B$ is
- 1-to-1 (injective) if $f(a) \neq f(a')$ for all $a \neq a'$
- onto (surjective) if for all b ∈ B, there exists a ∈ A such that f(a) = b
- a correspondence (bijective) if it is 1-to-1 and onto, i.e., every b ∈ B has a unique a ∈ A with f(a) = b

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them

A set is countable if

- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers

Examples of countable sets

- Ø
- {0,1}
- {0, 1, 2, ..., 8675309}
- $E = \{2, 4, 6, 8, ...\}$
- $SQUARES = \{1, 4, 9, 16, 25, ...\}$
- $POW2 = \{2, 4, 8, 16, 32, ...\}$

$|E| = |SQUARES| = |POW2| = |\mathbb{N}|$

How	to show	that ℕ ≻	< ℕ is co	ountabl	e?
(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	
(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	
(1,4)	(2,4)	(3,4)	(4, 4)	(5,4)	
(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	۰.

How to argue that a set S is countable

- Describe how to "list" the elements of S, usually in stages:
- Ex: Stage 1) List all pairs (x, y) such that x + y = 2Stage 2) List all pairs (x, y) such that x + y = 3

Stage n) List all pairs (x, y) such that x + y = n + 1

- Explain why every element of S appears in the list Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage x + y - 1
- Define the bijection $f: \mathbb{N} \to S$ by f(n) = the n'th element in this list (ignoring duplicates if needed)

. . .

...

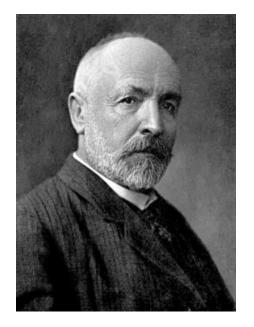
More examples of countable sets

- {0,1} *
- { $\langle M \rangle$ | *M* is a Turing machine}
- $\mathbb{Q} = \{ rational numbers \}$
- If $A \subseteq B$ and B is countable, then A is countable
- If A and B are countable, then $A \times B$ is countable

Ex: Show that $\mathcal{F} = \{L \subseteq \{0, 1\}^* \mid L \text{ is finite}\}$ is countable

So what *isn't* countable?

Cantor's Diagonalization Method



Georg Cantor 1845-1918

- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...

Some praise for his work:

"Scientific charlatan...renegade...corruptor of youth" –L. Kronecker

"Set theory is wrong...utter nonsense...laughable" -L. Wittgenstein

Uncountability of the reals

Theorem: The real interval [0, 1] is uncountable.

Proof: Assume for the sake of contradiction it were countable, and let $f: \mathbb{N} \rightarrow [0,1]$ be a bijection

n	f(n)
1	$0.d_1^1d_2^1d_3^1d_4^1d_5^1$
2	$0.d_1^2d_2^2d_3^2d_4^2d_5^2$
3	$0.d_1^3d_2^3d_3^3d_4^3d_5^3$
4	$0.d_1^{4}d_2^{4}d_3^{4}d_4^{4}d_5^{4}$
5	$0.d_1^{5}d_2^{5}d_3^{5}d_4^{5}d_5^{5}$

Construct $b \in [0,1]$ which does not appear in this table – contradiction!

 $b = 0. b_1 b_2 b_3 \dots$ where $b_i \neq d_i^i$ (digit *i* of f(i))

Uncountability of the reals

A concrete example of the contradiction construction:

n	f(n)
1	0.8675309
2	0.1415926
3	0.7182818
4	0.444444
5	0.1337133

Construct $b \in [0,1]$ which does not appear in this table - contradiction!

$$b = 0.b_1b_2b_3...$$
 where $b_i \neq d_i^i$ (digit i of $f(i)$)

Diagonalization

This process of constructing a counterexample by "contradicting the diagonal" is called diagonalization

Structure of a diagonalization proof

Say you want to show that a set T is uncountable

- 1) Assume, for the sake of contradiction, that T is countable with bijection $f: \mathbb{N} \to T$
- 2) "Flip the diagonal" to construct an element $b \in T$ such that $f(n) \neq b$ for every n

Ex: Let $b = 0. b_1 b_2 b_3 \dots$ where $b_n \neq d_n^n$ (where d_n^n is digit n of f(n))

3) Conclude that f is not onto, contradicting assumption that f is a bijection

A general theorem about set sizes

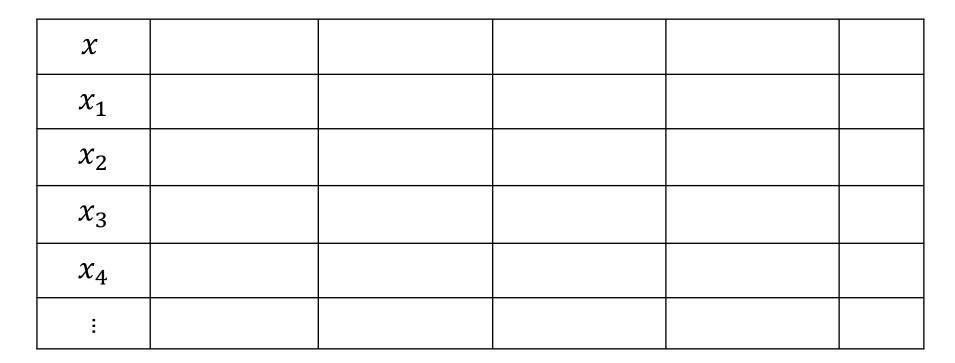
Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a bijection $f: X \rightarrow P(X)$

<u>Goal</u>: Construct a set $S \in P(X)$ (meaning, $S \subseteq X$) that cannot be the output f(x) for any $x \in X$

Diagonalization argument

Assume a correspondence $f: X \to P(X)$



Diagonalization argument

Assume a correspondence $f: X \to P(X)$

x	$x_1 \in f(x)?$	$x_2 \in f(x)$?	$x_3 \in f(x)$?	$x_4 \in f(x)$?	
<i>x</i> ₁	Y	Ν	Y	Y	
<i>x</i> ₂	N	Ν	Y	Y	
<i>x</i> ₃	Y	Y	Y	Ν	
<i>x</i> ₄	N	N	Y	N	
:					•••

Define S by flipping the diagonal: Put $x_i \in S \iff x_i \notin f(x_i)$

Example

Let $X = \{1, 2, 3\}, P(X) = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$ Ex. $f(1) = \{1, 2\}, f(2) = \emptyset, f(3) = \{2\}$

x	$1 \in f(x)?$	$2 \in f(x)$?	$3 \in f(x)$?
1			
2			
3			

Construct S =

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a bijection $f: X \rightarrow P(X)$

Construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$:

$$S = \{x \in X \mid x \notin f(x)\}$$

If S = f(y) for some $y \in X$,

then $y \in S$ if and only if $y \notin S$

Undecidable Languages

Undecidability / Unrecognizability

Definition: A language L is undecidable if there is no TM deciding L

Definition: A language L is unrecognizable if there is no TM recognizing L

An existential proof

Theorem: There exists an undecidable language over {0, 1} Proof:

Set of all encodings of TM deciders: $X \subseteq \{0, 1\}^*$ Set of all languages over $\{0, 1\}$: $P(\{0, 1\}^*)$

There are more languages than there are TM deciders! ⇒ There must be an undecidable language

An existential proof

Theorem: There exists an unrecognizable language over {0, 1} Proof:

- Set of all encodings of TMs: $X \subseteq \{0, 1\}^*$
- Set of all languages over $\{0, 1\}$: $P(\{0, 1\}^*)$

There are more languages than there are TM recognizers! ⇒ There must be an unrecognizable language

"Almost all" languages are undecidable

But how do we actually find one?

10/21/2021