BU CS 332 – Theory of Computation

https://forms.gle/LMB5MR8hSc5mxVt4A

Lecture 14:

- Undecidability
- Reductions

Reading:

Sipser Ch 4.2, 5.1

Mark Bun October 26, 2021 MW 6 dead line extended led, 11:59 pm

Where we are and where we're going

Church-Turing thesis: TMs capture all algorithms

Consequence: studying the limits of TMs reveals the limits of computation

Existential proof that there are undecidable and unrecognizable languages

Today: An explicit undecidable language

> Reductions: Relate decidability / undecidability of different problems

An Explicit Undecidable Language

Last time:

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

1) Assume, for the sake of contradiction, that there is a bijection $f: X \to P(X)$

2) "Flip the diagonal" to construct a set $S \in P(X)$ such that

 $f(x) \neq S \text{ for every } x \in X$ $x = f(x)^{\frac{1}{2}} \quad x \in f(x)^{\frac{1}{2}} \quad x \in f(x)^{\frac{1}{2}}$ $x = f(x)^{\frac{1}{2}} \quad x \in f(x)^{\frac{1}{2}}$

3) Conclude that f is not onto, contradicting assumption that f is a bijection

Specializing the proof

Theorem: Let X be the set of all TM deciders. Then there exists an undecidable language in $P(\{0,1\}^*)$

- 1) Assume, for the sake of contradiction, that $L: X \to P(\{0,1\}^*)$ is onto Maleing from TM to the larguage it
- 2) "Flip the diagonal" to construct a language $UD \in P(\{0,1\}^*)$ such that $L(M) \neq UD$ for every $M \in X$

3) Conclude that L is not onto, a contradiction

An explicit undecidable language

TM M			
M_1			
M_2			
M_3			
M_4			
:			

Why is it possible to enumerate all TMs like this?

- a) The set of all TMs is finite
- b) The set of all TMs is countably infinite
- c) The set of all TMs is uncountable

An explicit undecidable language N if M2 does not

TM M	$M(\langle M_1 \rangle)$?	$M(\langle M_2 \rangle)$?	$M(\langle M_3 \rangle)$?	$M(\langle M_4 \rangle)$?		$D(\langle D \rangle)$?
M_1	УN	N	Y	Υ		
M_2	N	Y	Υ	Υ		
M_3	Υ	Υ	X N	N		
M_4	N	N	Υ	N Y		
:					*••	
D						X N

 $UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \}$ Claim: UD is undecidable Assume for contradiction $\exists \text{ TM D}$ deciding up (axe 1' If D accepts $\langle O \rangle$, then by definition of $\langle O \rangle$, $\langle O \rangle \neq \langle O \rangle$

An explicit undecidable language

Theorem: $UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \}$ is undecidable

Proof: Suppose for contradiction, that TM D decides UD

A more useful undecidable language

 $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$

Theorem: A_{TM} is undecidable

Proof: Assume for the sake of contradiction that TM H decides $A_{\rm TM}$:

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

Idea: Show that H can be used to construct a decider for the (undecidable) language UD -- a contradiction.

A more useful undecidable language

 $U_0: \{\langle M, w \rangle \mid TM M \text{ does not accept an input } \langle M \rangle \}$ $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$

Proof (continued):

Suppose, for contradiction, that H decides A_{TM}

Consider the following TM D:

"On input $\langle M \rangle$ where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. If H accepts, reject. If H rejects, accept."

Claim: D decides $UD = \{\langle M \rangle \mid TM M \text{ does not accept } \langle M \rangle \}$ Case 1: If $\langle M \rangle \in VO \implies M$ does not accept $\langle M \rangle = \rangle \langle M, \langle M \rangle \rangle \notin A_{-M}$ => H rycets => 0 accepts

If all got, read

II resect occupt

Unrecognizable Languages

Am in undecidable

Theorem: A language L is decidable if and only if L and Lare both Turing-recognizable. ATM is recognizable (by UTM)

Proof: ⇒

Lis decidable => Lix recognitable

Lis decidable => I is decidable (closure of decidable

langs. under complement)

=> [] recognitable

Application: Azm is "co-unnecognitable" meaning Azm is unrecognitable.

Proof. By Thm, Lis undeidable at least one of L, I un may nisable

Atm underhable => exter Atm or Atm un may nisable

10/26/2021

CS332-Theory of Computation => Atm un mag nisable 11

Unrecognizable Languages

Theorem: A language L is decidable if and only if L and L are both Turing-recognizable.

```
Proof: (a) Suppose L to recognized by TM M

L is remognized by TM N

Goal'. (a) struct a decider V for L (using M and N)

V- On input w.

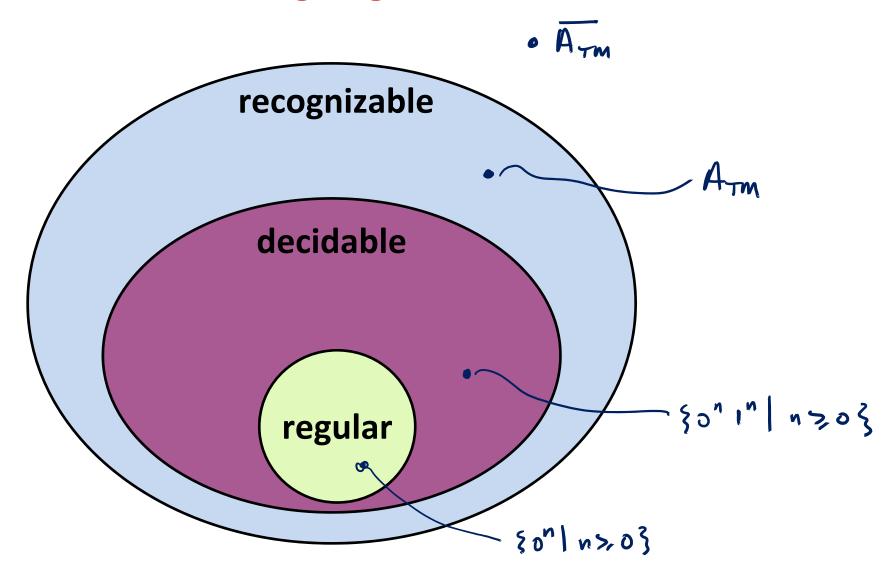
Repeat the following forever:

I thin M for one step on w

2 thin N for one step on w

3. If M accents, accept; if N accepts, reject."
```

Classes of Languages



Reductions

Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

"Now we've reduced the problem to one we've already solved."

(Please laugh)

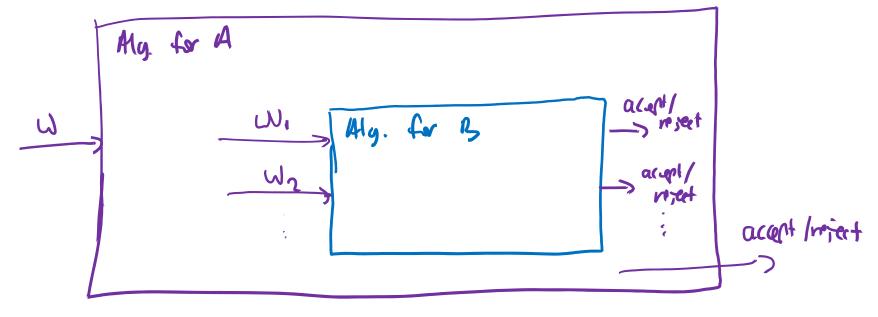
Reductions

cating a coconnel form tree 2

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

eating concord from thee 1

If such a reduction exists, we say "A reduces to B"



Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

If A reduces to B, and B is decidable, what can we say about A?

- a) A is decidable
- b) A is undecidable
- c) A might be either decidable or undecidable

Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

$$EQ_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$$

Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \triangle L(D_2)$
- 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

```
A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}
Suppose H decides A_{\text{TM}}
```

Consider the following TM D.

On input $\langle M \rangle$ where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, reject. If *H* rejects, accept.

```
Claim: D decides UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}
```

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:

- 1. Suppose to the contrary that B is decidable
- 2. Using a decider for B as a subroutine, construct an algorithm deciding A
- 3. But A is undecidable. Contradiction!

Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:

```
HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}
```

Ex. M = "On input x (a natural number written in binary):

```
For each y = 1, 2, 3, ...:

If y^2 = x, accept. Else, continue."
```

Is $\langle M, 101 \rangle \in HALT_{TM}$?

- a) Yes, because M accepts on input 101
- b) Yes, because M rejects on input 101
- c) No, because *M* rejects on input 101
- d) No, because M loops on input 101

Halting Problem

```
Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:

HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}

Ex. M = "On input x (a natural number in binary):
```

```
For each y=1,2,3,...:

If y^2=x, accept. Else, continue."

M'= "On input x (a natural number in binary):

For each y=1,2,3,...,x:

If y^2=x, accept. Else, continue.

Reject."
```

Halting Problem

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}$

Theorem: $HALT_{TM}$ is undecidable

Proof: Suppose for contradiction that there exists a decider H for $HALT_{\rm TM}$. We construct a decider for V for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$: Inter to Am

- 1. Run H on input $\langle M, w \rangle$
- 2. If *H* rejects, reject
- 3. If H accepts, run M on w
- 4. If *M* accepts, accept Otherwise, reject.