Lecture 14:
• Undecidability
• Reductions

Reading:
Sipser Ch 4.2, 5.1

Mark Bun
October 26, 2021

https://forms.gle/LMB5MR8hSc5mxVt4A
Where we are and where we’re going

Church-Turing thesis: TMs capture all algorithms
Consequence: studying the limits of TMs reveals the limits of computation

\[
\{ \text{TM deciders} \} \text{ is countable}\\
\& \text{languages over } \Sigma \text{ is uncountable}
\]

Last time: Countability, uncountability, and diagonalization
Existential proof that there are undecidable and unrecognizable languages

Today: An explicit undecidable language
Reductions: Relate decidability / undecidability of different problems
An Explicit Undecidable Language
Last time:

Theorem: Let X be any set. Then the power set $P(X)$ does not have the same size as X.

1) Assume, for the sake of contradiction, that there is a bijection $f: X \rightarrow P(X)$

2) “Flip the diagonal” to construct a set $S \in P(X)$ such that $f(x) \neq S$ for every $x \in X$

3) Conclude that f is not onto, contradicting assumption that f is a bijection
Specializing the proof

Theorem: Let X be the set of all TM deciders. Then there exists an undecidable language in $P(\{0, 1\}^*)$

1) Assume, for the sake of contradiction, that $L: X \rightarrow P(\{0, 1\}^*)$ is onto \\
 Mapping from TM to the language it recognizes

2) “Flip the diagonal” to construct a language $UD \in P(\{0, 1\}^*)$ such that $L(M) \neq UD$ for every $M \in X$

3) Conclude that L is not onto, a contradiction
An explicit undecidable language

<table>
<thead>
<tr>
<th>TM M</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why is it possible to enumerate all TMs like this?

a) The set of all TMs is finite
b) The set of all TMs is countably infinite
[c) The set of all TMs is uncountable
An explicit undecidable language

<table>
<thead>
<tr>
<th>TM M</th>
<th>$M(\langle M_1 \rangle)$?</th>
<th>$M(\langle M_2 \rangle)$?</th>
<th>$M(\langle M_3 \rangle)$?</th>
<th>$M(\langle M_4 \rangle)$?</th>
<th>$D(\langle D \rangle)$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>Y N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>M_2</td>
<td>N</td>
<td>N Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>Y</td>
<td>Y</td>
<td>Y N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y N</td>
</tr>
</tbody>
</table>

$UD = \{ \langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \} $

Claim: UD is undecidable

Assume for contradiction $\exists \text{ TM } D$ deciding UD

Case 1: If D accepts $\langle 0 \rangle$, then by definition of UD, $\langle 0 \rangle \not\in UD$ ✗

Case 2: If D does not accept $\langle 0 \rangle$, then by definition of UD, $\langle 0 \rangle \in UD$ ✗
An explicit undecidable language

Theorem: \(UD = \{ \langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \} \) is undecidable

Proof: Suppose for contradiction, that TM \(D \) decides \(UD \)

Either:

1) \(D \) accepts \(\langle D \rangle \) \(\implies \langle D \rangle \notin UD \) (by def. of \(UD \))
 \(\implies D \) does the wrong thing on input \(\langle D \rangle \)

2) \(D \) does not accept \(\langle D \rangle \) \(\implies \langle D \rangle \in UD \) (by def. of \(UD \))
 \(\implies D \) does the wrong thing.
A more useful undecidable language

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Theorem: \(A_{TM} \) is undecidable

Proof: Assume for the sake of contradiction that TM \(H \) decides \(A_{TM} \):

\[
H(\langle M, w \rangle) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]

\(\text{(either } M \text{ rejects } w \text{ or } M \text{ loops on } w) \)

Idea: Show that \(H \) can be used to construct a decider for the (undecidable) language \(UD \) -- a contradiction.

"Reduction"
A more useful undecidable language

\[UD = \{ \langle M \rangle \mid \text{TM } M \text{ does not accept on input } \langle M \rangle \} \]

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Proof (continued):

Suppose, for contradiction, that \(H \) decides \(A_{TM} \)

Consider the following TM \(D \):

"On input \(\langle M \rangle \) where \(M \) is a TM:

1. Run \(H \) on input \(\langle M, \langle M \rangle \rangle \)
2. If \(H \) accepts, reject. If \(H \) rejects, accept."

Claim: \(D \) decides \(UD = \{ \langle M \rangle \mid \text{TM } M \text{ does not accept } \langle M \rangle \} \)

Case 1: If \(\langle M \rangle \in UD \Rightarrow M \text{ does not accept } \langle M \rangle \Rightarrow \langle M, \langle M \rangle \rangle \notin A_{TM} \Rightarrow H \text{ rejects} \Rightarrow D \text{ accepts}

Case 2: If \(\langle M \rangle \notin UD \Rightarrow M \text{ accepts } \langle M \rangle \Rightarrow \langle M, \langle M \rangle \rangle \in A_{TM} \Rightarrow H \text{ accepts} \Rightarrow D \text{ rejects}

...but this language is undecidable

10/26/2021
Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Proof: \Rightarrow

L is decidable $\Rightarrow L$ is recognizable

L is decidable $\Rightarrow \overline{L}$ is decidable (closure of decidable langs. under complement)

$\Rightarrow \overline{L}$ is recognizable

Application: A_{TM} is "co-unrecognizable" meaning A_{TM} is unrecognizable.

Proof: By Thm, L is undecidable \iff at least one of L, \overline{L} unrecognizable.

A_{TM} undecidable \Rightarrow either A_{TM} or $\overline{A_{TM}}$ unrecognizable

$\Rightarrow A_{TM}$ unrecognizable
Unrecognizable Languages

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Proof:

\leq Suppose L is recognized by TM M and \overline{L} is recognized by TM N.

Goal: Construct a decider V for L (using M and N).

V: On input w:

Repeat the following forever:

1. Run M for one step on w.
2. Run N for one step on w.
3. If M accepts, accept; if N accepts, reject.
Classes of Languages

- **Regular**
- **Decidable**
- **Recognizable**

- A_{TM}
- $\overline{A_{TM}}$

Languages:
- $\exists 0^n | n \geq 0^3$
- $\exists 0^n 1^n | n \geq 0^3$
Reductions
Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

“Now we’ve reduced the problem to one we’ve already solved.” (Please laugh)
Reductions

A reduction from problem \(A \) to problem \(B \) is an algorithm for problem \(A \) which uses an algorithm for problem \(B \) as a subroutine.

If such a reduction exists, we say “\(A \) reduces to \(B \)”
Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”

If A reduces to B, and B is decidable, what can we say about A?

a) A is decidable
b) A is undecidable
c) A might be either decidable or undecidable
Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA, } \lambda(A) = \emptyset \}$

$EQ_{DFA} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$

Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \Delta L(D_2)$

2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output
Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Suppose H decides A_{TM}

Consider the following TM D.

On input $\langle M \rangle$ where M is a TM:
1. Run H on input $\langle M, \langle M \rangle \rangle$
2. If H accepts, reject. If H rejects, accept.

Claim: D decides

$UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept input } \langle M \rangle \}$
Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Template for undecidability proof by reduction:
1. Suppose to the contrary that B is decidable
2. Using a decider for B as a subroutine, construct an algorithm deciding A
3. But A is undecidable. Contradiction!
Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:

$$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$$

Ex. $M =$ “On input x (a natural number written in binary):

For each $y = 1, 2, 3, \ldots$:

If $y^2 = x$, accept. Else, continue.”

Is $\langle M, 101 \rangle \in HALT_{TM}$?

a) Yes, because M accepts on input 101
b) Yes, because M rejects on input 101
c) No, because M rejects on input 101
d) No, because M loops on input 101
Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt (either accept or reject) on input w?

Formulation as a language:
$$HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$$

Ex. $M = \text{“On input } x \text{ (a natural number in binary):} \newline \text{For each } y = 1, 2, 3, \ldots : \newline \quad \text{If } y^2 = x, \text{ accept. Else, continue.”}$

$M' = \text{“On input } x \text{ (a natural number in binary):} \newline \text{For each } y = 1, 2, 3, \ldots, x : \newline \quad \text{If } y^2 = x, \text{ accept. Else, continue.} \newline \quad \text{Reject.”}$
Halting Problem

\[HALT_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

Theorem: \(HALT_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(H \) for \(HALT_{\text{TM}} \). We construct a decider for \(V \) for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \): Input to \(A_{\text{TM}} \)
1. Run \(H \) on input \(\langle M, w \rangle \)
2. If \(H \) rejects, reject
3. If \(H \) accepts, run \(M \) on \(w \)
4. If \(M \) accepts, accept
Otherwise, reject.

This is a reduction from \(A_{\text{TM}} \) to \(HALT_{\text{TM}} \)