BU CS 332 — Theory of Computation

https://forms.gle/T38zDHBgd62avx\Wy7 S

A - .:':'"-IF.

e

Lecture 15: Reading:

 Review mid-semester Sipser Ch 5.1
feedback

e More on Reductions

Mark Bun
October 28, 2021

What helps you learn best?

 Discussion sections (17)

* In-class examples / walkthroughs (12)
e Lectures in general (10)

e Use of slides, annotations (8)

* Interaction in lecture, polls (6)
 Homework — useful, appropriate length/difficulty (6)
e Office hours (4)

» Course organization, perspective (2)

* Piazza use (2)

e Automata Tutor, TM simulator (1)

* Reading (1)

What hinders your learning?

* Automata Tutor / Morphett (1)

e Turing machines (1)

* Annotation readability (4

* Not enough concrete examples in class (3)
 Identifying differences in definitions / types (1)
* Practice problems not exhaustive of material (1)
* Slides difficult to understand (2)

* Polls not useful (1)

* Hard to see or hear from back (2)

* Chalkboard use (2)

* Classroom distractions (1)

* Lectures boring (2)

* Classroom too warm (1)

* Lectue pace too fast (1)

10/28/2021

Can’t make office hours (4)

Environment not collaborative (1)

Required discussions (1)
Discussions in general (1)
Discussion pace too slow (1)

Lack of synchronization between discussion and
lecture (1)

(Cza)n't understand what HW problems are asking for

Proofs, proof assignments on homework (1)
Homework too time-consuming, too difficult (3)
Transferring lecture knowledge to homework (2)
Grading (2)

CS332 - Theory of Computation 3

Suggestions for course improvement

* More office hours (1)
* Zoom office hours (2)

* Don’t require discussions / lecture attendance (1)

* Extend “late submission” deadline (1)
/—__’/__\/_

* Release grade statistics (1)

* Point to outside references (1)

* More examples (2)

* More polls, interaction (1)

* Slower lectures with more pauses (1)

* Introduce more material during lectures (1)

* More examples in class that are similar to
homework (1)

* Review prerequisite material when needed (1)

* Clarify what parts of the material are most
important (1

* Record lectures (4)
\

* More programming examples (1)

10/28/2021

Use a mic (1)
More in-class problem solving (1)

Give more intuition leading into proofs before
giving the proofs (1)

More programming examples / exercises (2)

More proof-based problem-solving examples (1)

Fewer discussion problems / more time to discuss
each (1)

Synchronize discussion with previous lectures (1)

More explanation of solutions during discussion (1)

Shorter, but more difficult homework (1)

Longer, but easier, homework (2)

Make difficulty of lectures / homework closer (1)
More homework hints (1)

More practice problems (1)

CS332 - Theory of Computation 4

Clarity of expectations

* Seems mostly clear

 Participation: Base grade determined by polls,
discussion worksheets; other participation is “bonus”

* Reminder of resources to take advantage of:
Sipser textbook

Lectures (slides, reeerdings)

Discussions (in-class meetings, posted slides)
Homework feedback, posted solutions
Office hours

Piazza

e See Lecture 1, Slides 13-17 for more advice

10/28/2021 CS332 - Theory of Computation 5

Suggestions for self-improvement

* Keep up with readings (17)

* Review lecture / discussion materials (7)
* Attend more office hours (7)

* Time management (6)

* Do example problems in Sipser (5)

* Participate in class more actively (2)

* More organized note-taking (1)

10/28/2021 CS332 - Theory of Computation

Proposed Course Modifications

e Poll for more office hours
* Synchronize lecture / discussion / homework cycle

correctly K R

W T h T J T h T
L—J — —J —
K-j;\}\u ¢ ST

elea ud duwe

* Homework more approachable and useful
- Gradient from easier (mechanical) to harder (creative)

questions
- Mechanical problems closer to discussion / lecture examples

10/28/2021 CS332 - Theory of Computation

Reductions

10/28/2021 CS332 - Theory of Computation

Reductions

A reduction from problem A to problem B is an algorithm

for problem A which uses an algorithm for problem B as a
subroutine

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A
is also decidable

Ex. Eppa is decidable = EQpppa is decidable

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Ex. Aty is undecidable = HALTy, is‘decidable

10/28/2021 CS332 - Theory of Computation 9

Halting Problem
Computational problem: Given a program (TM; and input w,
does that program halt (either accept or reject) on input w?

Formulation as a language:
HALTyy = {{M,w) |M is a TM that halts on input w}

Ex. M = “On input x (a natural number in binary):
Foreachy = 1,2,3,...:
|f y2 = x, accept. Else, continue.”

M' = “On input x (a natural number in binary):
Foreachy =1,2,3,...,x
|f y2 = x, accept. Else, continue.

Reject.”

10/28/2021 CS332 - Theory of Computation 10

Halting Problem
HALTry = {{M,w) |M is a TM that halts on input w}

Theorem: HALTty is undecidable

Proof: Suppose for contradiction that there exists a decider H
for HALTt\. We construct a decider for V for Aty as follows:

2.
3.
4

On input {M, w): (e o Psu)
1.

Run H on input (M, W->]
If H rejects, reject
If H accepts, run M on w|

If M accepts, accept

Otherwise, reject.

Clawm N docdeq B4
gl
N MWD EA, = M acyh w
3 dMmuy ¢ HALT,,
=) W acpts
Lie 4. Maceph U =5 V accepts
) {M, ‘,3791 Aam = M does ust atpt L
Cdr.) M ek W =2M, 4D € UALT,

=) H awghs
= \J Aseeke

L P regoceq mpet Lo dedn i WMol ol » .,J} b) M loaps on w =3 ¢y & HALY

UGimalatle M gn W

10/28/2021

=) W reocte

S\ reyechy

This'is a reduction from Aty to HALTTM

CS332 - Theory of Computation

Halting Problem

Computational problem: Given a program (TM) and input
w, does that program halt on input w?

* A central problem in formal verification

* Dealing with undecidability in practice:
- Use heuristics that are correct on most real instances,
but may be wrong or loop forever on others
- Restrict to a “non-Turing-complete” subclass of
programs for which halting is decidable
- Use a programming language that lets a programmer

specify hints (e.g., loop invariants) that can be
compiled into a formal proof of halting

AT {Loblm G ven

Emptiness testing for TMs

a MM = e layuage
vt‘oqnh'fct \”j M Cn(ﬂv7

Etpy = {{M) |MisaTMand L(M) = @}
Theorem: Etpy is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETp. We construct a decider for Aty as follows:

On input (M, w):

1. Run R oninput ?7??
Lav R on M) 7

o ((Q_P"’
(@) = i

wsect (£ d 3/

Leim= 4

10/28/2021

(4003‘\ Jrs'b;‘]q?\l‘l
) M achy W
1) M doeg not acgty

hat M acephy
Qomlkm] lce

This is a reduction from Aty to Ey

CS332 - Theory of Computation

13

Emptiness testing for TMs

Want’. TF (M,,neu—ME
— R resect

Fr _l|-:_ 'l:?."f."l

g (ﬂ,o-n fA'i

. acepr %
Exy = (M) [Misa TM and L{M) = @) :f"fl;r

Theorem: Ep is undecidable

Proof: Suppose for contradiction that there exists a decider R
for Et+p. We construct a decider for A

On input (M, w):

1. Constructa TM N as follows:
(N, @) €hn & 1 (LND) wereeh

E> L(N) wor-eaphy

2. Run R on input (N)

3.If R revects, accept. Otherwise, reject

/

/

10/28/2021

as follows:

What do we want out of
machine N?
a) L(N)isemptyiff M
accepts w
| b)) L(N) is non-empty iff M
— accepts w
c) L(M)isemptyiff N
accepts w
d) L(M) is non-empty iff N
accepts w

This is a reduction from Aty to Ey

CS332 - Theory of Computation

14

Emptiness testing for TMs

Etpy = {{M) |MisaTMand L(M) = 0@}
Theorem: Etp is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETy. We construct a decider for Aty as follows:

On input (M, w): Claim - LN # 65
) a(Q{'i'& (O
1. Constructa TM N as follows: Droot
“Oninput x: Tgaee X ") Macgh W
: caphs

Run M on w and output the result.” L(““':’ %L" acar™s x§
2. Run R on input (N) 2 M does wot syt o
3. If R rejects, accept. Otherwise, reject LN = 93

This is a reduction from Aty to Ey

10/28/2021 CS332 - Theory of Computation 15

Interlude: Formalizing Reductions
(Sipser 6.3)

Informally: A reduces to B if a decider for B can be used
to construct a decider for A

One way to formalize:

* An oracle for language B is a device that can answer
qguestions “Isw € B?”

* An oracle TM M* is a TM that can query an oracle for B
in one computational step

A is Turing-reducible to B (written A <; B) if there is an
oracle TM M* deciding A

10/28/2021 CS332 - Theory of Computation 16

Dovy W embesrd - "
. . hWowd EGoF docidehlp S‘,ow\.\«,
Equality Testing for TMs g/EQM Cedess o Eora

m——

EQrm = {(My, M) [My, M5 are TMs and L(M,) = L(M;)}
Theorem: EQry is undecidable

Proof: Suppose for contradiction that there exists a-decider R
for EQry. We construct a decider for ETy; as follows:

[N

Oninput (M): Tapt o E-m
1. Construct TMs Ny, N, as follows:
N]_ - N2 =

2. Run R on input (N, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from E1y to EQ1m

10/28/2021 CS332 - Theory of Computation 17

#
i i) =lLd: §) B EE
Equality Testing for TMs Wg%um?(; Ui? iy
[

What do we want out of the machines Ny, N,?

F—mmﬁ =N, | [BLL(M) = @ iff L(N,) = L(N,)
c) L =Qiff Ny#N,| d)L(M) =0@iff L(N;) # L(N,)

On input (M):
1. Construct TMs Ny, N, as follows:
N, = M N, = Yo w1l //(.(Nt)"¢

Reyed

. (= L(NI): L(N') _
2. Run Roninput (N, N3) R acah (& (M7 € Exm E7 Lim) = ¢f

3. If R accepts, accept. Otherwise, reject.
This is a reduction from Ety to EQ1pm

10/28/2021 CS332 - Theory of Computation 18

Equality Testing for TMs

EQrm = {(My, M) [My, M5 are TMs and L(M,) = L(M;)}
Theorem: EQry is undecidable

Proof: Suppose for contradiction that there exists a decider R
for EQ1y. We construct a decider for Aty as follows:

On input (M):
1. Construct TMs Ny, N, as follows:
N]_ - N2 =

2. Run R on input (N, N,)
3. If R accepts, accept. Otherwise, reject.

This is a reduction from E1y to EQ1m

10/28/2021 CS332 - Theory of Computation 19

