BU CS 332 – Theory of Computation

https://forms.gle/T38zDHBgd62avxWy7

Lecture 15:

• Review mid-semester feedback
• More on Reductions

Reading:
Sipser Ch 5.1

Mark Bun
October 28, 2021
What helps you learn best?

- Discussion sections (17)
- In-class examples / walkthroughs (12)
- Lectures in general (10)
- Use of slides, annotations (8)
- Interaction in lecture, polls (6)
- Homework – useful, appropriate length/difficulty (6)
- Office hours (4)
- Course organization, perspective (2)
- Piazza use (2)
- Automata Tutor, TM simulator (1)
- Reading (1)
What hinders your learning?

- Automata Tutor / Morphett (1)
- Turing machines (1)

- Annotation readability (4)
- Not enough concrete examples in class (3)
- Identifying differences in definitions / types (1)
- Practice problems not exhaustive of material (1)
- Slides difficult to understand (2)
- Polls not useful (1)
- Hard to see or hear from back (2)
- Chalkboard use (2)
- Classroom distractions (1)
- Lectures boring (2)
- Classroom too warm (1)
- Lecture pace too fast (1)

- Can’t make office hours (4)
- Environment not collaborative (1)

- Required discussions (1)
- Discussions in general (1)
- Discussion pace too slow (1)
- Lack of synchronization between discussion and lecture (1)

- Can’t understand what HW problems are asking for (2)
- Proofs, proof assignments on homework (1)
- Homework too time-consuming, too difficult (3)
- Transferring lecture knowledge to homework (2)
- Grading (2)
Suggestions for course improvement

• More office hours (1)
• Zoom office hours (2)
• Don’t require discussions / lecture attendance (1)
• Extend “late submission” deadline (1)
• Release grade statistics (1)
• Point to outside references (1)
• More examples (2)
• More polls, interaction (1)
• Slower lectures with more pauses (1)
• Introduce more material during lectures (1)
• More examples in class that are similar to homework (1)
• Review prerequisite material when needed (1)
• Clarify what parts of the material are most important (1)
• Record lectures (4)
• More programming examples (1)

• Use a mic (1)
• More in-class problem solving (1)
• Give more intuition leading into proofs before giving the proofs (1)
• More programming examples / exercises (2)
• More proof-based problem-solving examples (1)
• Fewer discussion problems / more time to discuss each (1)
• Synchronize discussion with previous lectures (1)
• More explanation of solutions during discussion (1)
• Shorter, but more difficult homework (1)
• Longer, but easier, homework (2)
• Make difficulty of lectures / homework closer (1)
• More homework hints (1)
• More practice problems (1)
Clarity of expectations

• Seems mostly clear
• Participation: Base grade determined by polls, discussion worksheets; other participation is “bonus”
• Reminder of resources to take advantage of:
 Sipser textbook
 Lectures (slides, recordings)
 Discussions (in-class meetings, posted slides)
 Homework feedback, posted solutions
 Office hours
 Piazza

• See Lecture 1, Slides 13-17 for more advice
Suggestions for self-improvement

• Keep up with readings (17)
• Review lecture / discussion materials (7)
• Attend more office hours (7)
• Time management (6)
• Do example problems in Sipser (5)
• Participate in class more actively (2)
• More organized note-taking (1)
Proposed Course Modifications

• Poll for more office hours

• Synchronize lecture / discussion / homework cycle correctly

• Homework more approachable and useful
 - Gradient from easier (mechanical) to harder (creative) questions
 - Mechanical problems closer to discussion / lecture examples
Reductions
Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A is also decidable.
Ex. E_{DFA} is decidable $\Rightarrow E_{EQ_{DFA}}$ is decidable.

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable.
Ex. A_{TM} is undecidable $\Rightarrow HALT_{TM}$ is undecidable.
Halting Problem

Computational problem: Given a program (TM) and input \(w \), does that program halt (either accept or reject) on input \(w \)?

Formulation as a language:

\[
HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}
\]

Ex. \(M = \) “On input \(x \) (a natural number in binary):

For each \(y = 1, 2, 3, \ldots \):

If \(y^2 = x \), accept. Else, continue.”

\(M' = \) “On input \(x \) (a natural number in binary):

For each \(y = 1, 2, 3, \ldots, x \):

If \(y^2 = x \), accept. Else, continue.

Reject.”
Halting Problem

\[\text{HALT}_\text{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

Theorem: \(\text{HALT}_\text{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(H \) for \(\text{HALT}_\text{TM} \). We construct a decider for \(V \) for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \): (input to \(A_{\text{TM}} \))

1. Run \(H \) on input \(\langle M, w \rangle \)
2. If \(H \) rejects, reject
3. If \(H \) accepts, run \(M \) on \(w \)
4. If \(M \) accepts, accept
 Otherwise, reject.

Claim: \(V \) decides \(A_{\text{TM}} \)

1. \(\langle M, w \rangle \notin A_{\text{TM}} \Rightarrow M \text{ does not accept } w \)
 \Rightarrow \langle M, w \rangle \notin \text{HALT}_\text{TM}
 \Rightarrow H \text{ accepts}
 \Rightarrow V \text{ accepts}

2. \(\langle M, w \rangle \notin A_{\text{TM}} \Rightarrow M \text{ does not accept } w \)
 Either: a) \(M \text{ rejects } w \) \Rightarrow \langle M, w \rangle \notin \text{HALT}_\text{TM}
 \Rightarrow H \text{ accepts}
 \Rightarrow V \text{ rejects}

 b) \(M \text{ loops on } w \) \Rightarrow \langle M, w \rangle \notin \text{HALT}_\text{TM}
 \Rightarrow H \text{ rejects}
 \Rightarrow V \text{ rejects}

This is a reduction from \(A_{\text{TM}} \) to \(\text{HALT}_\text{TM} \)
Halting Problem

Computational problem: Given a program (TM) and input w, does that program halt on input w?

• A central problem in formal verification
• Dealing with undecidability in practice:
 - Use heuristics that are correct on most real instances, but may be wrong or loop forever on others
 - Restrict to a “non-Turing-complete” subclass of programs for which halting is decidable
 - Use a programming language that lets a programmer specify hints (e.g., loop invariants) that can be compiled into a formal proof of halting
Emptiness testing for TMs

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. Run \(R \) on input \(\langle M \rangle \):

 \[R(\langle M \rangle) = \begin{cases}
 \text{accept} & L(M) = \emptyset \\
 \text{reject} & L(M) \neq \emptyset
 \end{cases} \]

 Cannot distinguish between:
 1) \(M \) accepts \(w \)
 2) \(M \) does not accept \(w \)
 but \(M \) accepts something else

This is a reduction from \(A_{TM} \) to \(E_{TM} \)
Emptiness testing for TMs

\[E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M, w \rangle \):

1. **Construct a TM \(N \) as follows:**
 \[\langle M, w \rangle \in A_{TM} \iff R(\langle N \rangle) \text{ rejects} \iff L(N) \text{ non-empty} \]

2. **Run \(R \) on input \(\langle N \rangle \)**
3. **If \(R \text{ rejects} \), accept. Otherwise, reject**

This is a reduction from \(A_{TM} \) to \(E_{TM} \)

What do we want out of machine \(N \)?

a) \(L(N) \) is empty iff \(M \) accepts \(w \)

b) \(L(N) \) is non-empty iff \(M \) accepts \(w \)

c) \(L(M) \) is empty iff \(N \) accepts \(w \)

d) \(L(M) \) is non-empty iff \(N \) accepts \(w \)
Emptiness testing for TMs

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{\text{TM}} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(E_{\text{TM}} \). We construct a decider for \(A_{\text{TM}} \) as follows:

On input \(\langle M, w \rangle \):
1. Construct a TM \(N \) as follows:
 - “On input \(x \): Ignore \(x \)
 - Run \(M \) on \(w \) and output the result.”
2. Run \(R \) on input \(\langle N \rangle \)
3. If \(R \) rejects, accept. Otherwise, reject

This is a reduction from \(A_{\text{TM}} \) to \(E_{\text{TM}} \)
Interlude: Formalizing Reductions (Sipser 6.3)

Informally: \(A \) reduces to \(B \) if a decider for \(B \) can be used to construct a decider for \(A \)

One way to formalize:

• An oracle for language \(B \) is a device that can answer questions “Is \(w \in B \)?”

• An oracle TM \(M^B \) is a TM that can query an oracle for \(B \) in one computational step

\(A \) is Turing-reducible to \(B \) (written \(A \leq_T B \)) if there is an oracle TM \(M^B \) deciding \(A \)
Equality Testing for TMs

\[EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(E_{TM} \) as follows:

On input \(\langle M \rangle \):

1. Construct TMs \(N_1, N_2 \) as follows:
 \[N_1 = \quad N_2 = \]

2. Run \(R \) on input \(\langle N_1, N_2 \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)
Equality Testing for TMs

What do we want out of the machines N_1, N_2?

a) $L(M) = \emptyset$ iff $N_1 = N_2$

b) $L(M) = \emptyset$ iff $L(N_1) = L(N_2)$

c) $L(M) = \emptyset$ iff $N_1 \neq N_2$

d) $L(M) = \emptyset$ iff $L(N_1) \neq L(N_2)$

On input $\langle M \rangle$:

1. Construct TMs N_1, N_2 as follows:

 $N_1 = M$

 $N_2 = \text{"On input } x\text{. If } L(N_2) = \emptyset \text{ reject"}$

2. Run R on input $\langle N_1, N_2 \rangle$

3. If R accepts, accept. Otherwise, reject.

This is a reduction from E_{TM} to EQ_{TM}
Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(A_{TM} \) as follows:

On input \(\langle M \rangle \):
1. Construct TMs \(N_1, N_2 \) as follows:
 \[N_1 = \quad N_2 = \]
2. Run \(R \) on input \(\langle N_1, N_2 \rangle \)
3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)