Lecture 17:

• Mapping Reductions

Reading:
Sipser Ch 5.3

Mark Bun
November 9, 2021

Take-home part of test 2 due Wednesday, 11:59 PM
Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A is also decidable.

Ex. E_{DFA} is decidable $\Rightarrow E_{Q_{DFA}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable.

Ex. E_{TM} is undecidable $\Rightarrow E_{Q_{TM}}$ is undecidable
What’s wrong with the following “proof”?

Bogus “Theorem”: A_{TM} is not Turing-recognizable

Bogus “Proof”: Let R be an alleged recognizer for A_{TM}. We construct a recognizer S for unrecognizable language $\overline{A_{TM}}$:

On input $\langle M, w \rangle$:
1. Run R on input $\langle M, w \rangle$
2. If R accepts, reject. Otherwise, accept.

If M loops on w, then $\langle M, w \rangle \in \overline{A_{TM}}$
But, $S(\langle M, w \rangle)$ loops forever, so behavior of S is not correct.

This sure looks like a reduction from $\overline{A_{TM}}$ to A_{TM}
Mapping Reductions: Motivation

1. How do we formalize the notion of a reduction?
2. How do we use reductions to show that languages are unrecognizable?
3. How do we protect ourselves from accidentally “proving” bogus statements about recognizability?
 Computable Functions

Definition:

A function \(f: \Sigma^* \rightarrow \Sigma^* \) is **computable** if there is a TM \(M \) which, given as input any \(w \in \Sigma^* \), halts with only \(f(w) \) on its tape. ("Outputs \(f(w) \)"")
Computable Functions

Definition:
A function \(f : \Sigma^* \to \Sigma^* \) is computable if there is a TM \(M \) which, given as input any \(w \in \Sigma^* \), halts with only \(f(w) \) on its tape. (“Outputs \(f(w) \)”)

Example 1: \(f((x, y)) = x + y \)

Example 2: \(f((M, w)) = \langle M' \rangle \) where \(M \) is a TM, \(w \) is a string, and \(M' \) is a TM that ignores its input and simulates running \(M \) on \(w \).
Mapping Reductions

Definition: \(A, B \subseteq \Sigma^* \)

Language \(A \) is mapping reducible to language \(B \), written \(A \leq_m B \)

if there is a computable function \(f: \Sigma^* \to \Sigma^* \) such that for all strings \(w \in \Sigma^* \), we have \(w \in A \iff f(w) \in B \)
Mapping Reductions

Definition:
Language A is mapping reducible to language B, written $A \leq_m B$ if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$.

If $A \leq_m B$, which of the following is true?

a) $\overline{A} \leq_m B$

b) $A \leq_m \overline{B}$

c) $\overline{A} \leq_m \overline{B}$

d) $\overline{B} \leq_m \overline{A}$
Decidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Proof: Let M be a decider for B and let $f: \Sigma^* \rightarrow \Sigma^*$ be a mapping reduction from A to B. Construct a decider for A as follows:

Proof of correctness (N decides A):

1. If $w \in A$, then $f(w) \in B$ [def of mapping red.]
 $\Rightarrow M$ accepts $f(w)$ [M decides B]
 $\Rightarrow N$ accepts

2. If $w \notin A$, then $f(w) \notin B$ [def of mapping red.]
 $\Rightarrow M$ rejects $f(w)$ [M decides B]
 $\Rightarrow N$ rejects

On input w:
1. Compute $f(w)$
2. Run M on input $f(w)$
3. If M accepts, accept. If it rejects, reject.
Undecidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

(Contrapositive of Thm)

Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable
Old Proof: Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(E_{TM} \) as follows:

On input \(\langle M \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:

 \[M_1 = M \]

 \[M_2 = "\text{On input } x, 1. \text{Ignore } x \text{ and reject}" \]

2. Run \(R \) on input \(\langle M_1, M_2 \rangle \)

3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)
New Proof: Equality Testing for TMs

\[\text{EQ}_\text{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(E_{\text{TM}} \leq_m \text{EQ}_\text{TM} \) hence \(\text{EQ}_\text{TM} \) is undecidable

Proof: The following TM \(N \) computes the reduction \(f: \)

\[f : \Sigma^* \rightarrow \Sigma^* \quad \text{Input: } \langle m \rangle \quad \langle m \rangle \in E_{\text{TM}} \Leftrightarrow \langle m, m \rangle \in \text{EQ}_\text{TM} \]

On input \(\langle M \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:

 \[
 M_1 = M \\
 M_2 = \text{"On input } x, \text{ 1. Ignore } x \text{ and reject"}
 \]

2. Output \(\langle M_1, M_2 \rangle \)
Mapping Reductions: Recognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable.

Proof: Let M be a recognizer for B and let $f : \Sigma^* \rightarrow \Sigma^*$ be a mapping reduction from A to B. Construct a recognizer for A as follows:

1. Compute $f(w)$
2. Run M on input $f(w)$
3. If M accepts, accept. Otherwise, reject.

Correctness:

1. If $w \in A \implies f(w) \in B$ [if f is a mapping red.]
 $\implies M$ accepts [if M recognizes B]
 $\implies N$ accepts w.

2. If $w \notin A \implies f(w) \notin B$ [if f is a mapping red.]
 $\implies M$ either rejects or loops [if M recognizes B]
 $\implies N$ either rejects or loops on w.
Unrecognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable.

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is also unrecognizable.

We know $\overline{A_{TM}}$ is unrecognizable.

Corollary: If $\overline{A_{TM}} \leq_m B$, then B is unrecognizable.

Corollary: If $A_{TM} \leq_m \overline{B}$ then B is unrecognizable.
Recognizability and A_{TM}

Let L be a language. Which of the following is true?

- **a)** If $L \leq_m A_{TM}$, then L is recognizable
- **b)** If $A_{TM} \leq_m L$, then L is recognizable
- **c)** If L is recognizable, then $L \leq_m A_{TM}$
- **d)** If L is recognizable, then $A_{TM} \leq_m L$

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$
Recognizability and A_{TM}

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$

Proof:

\leq_m If $L \leq_m A_{TM}$, then by Thm 9.4 that A_{TM} is recognizable, L is recognizable.

\Rightarrow Suppose L is recognizable by TM M.

Claim:Exists a mapping reduction f from L to A_{TM}.

Want $w \in L \iff f(w) \in A_{TM}$. Compute f using the following TM R:

"On input w:

Output $\langle M, w \rangle$.

Correctness: $w \in L \Rightarrow M$ accepts $w \Rightarrow \langle M, w \rangle \in A_{TM}$

$w \notin L \Rightarrow M$ does not accept $w \Rightarrow \langle M, w \rangle \notin A_{TM}$
Example: Another reduction to EQ_{TM}

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $A_{TM} \leq_m EQ_{TM}$ \[A_{TM} = \{ \langle m, w \rangle \mid TM \text{ M accepts } w \} \]

Proof: The following TM N computes the reduction f:

$\langle m, w \rangle \in A_{TM} \Rightarrow f(\langle m, w \rangle) = \langle m, m_2 \rangle \in EQ_{TM}$

$\langle m, w \rangle \notin A_{TM} \Rightarrow f(\langle m, w \rangle) = \langle m, m_2 \rangle \notin EQ_{TM}$

What should the inputs and outputs to f be?

a) f should take as input a pair $\langle M_1, M_2 \rangle$ and output a pair $\langle M, w \rangle$

b) f should take as input a pair $\langle M, w \rangle$ and output a pair $\langle M_1, M_2 \rangle$

c) f should take as input a pair $\langle M_1, M_2 \rangle$ and either accept or reject

d) f should take as input a pair $\langle M, w \rangle$ and either accept or reject
Example: Another reduction to EQ_{TM}

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $A_{TM} \leq_m EQ_{TM}$

Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:
1. Construct TMs M_1, M_2 as follows:
 \[
 M_1 = \text{"On input } x, \quad M_2 = \text{"On input } x, \\
 1. \text{Ignore } x \\
 2. \text{Run } M \text{ on } w, \text{ if accept, accept. If reject, reject.}" \\
 \]
2. Output $\langle M_1, M_2 \rangle$

\[
\begin{align*}
L(M_1) &\colon \begin{cases} \sum^\ast & \text{if } M \text{ accepts } w \\
\emptyset & \text{if } M \text{ does not accept } w \end{cases} \\
L(M_2) &\colon \sum^\ast
\end{align*}
\]

Correctness of reduction:
1. If $\langle M, w \rangle \in A_{TM} \Rightarrow L(M_1) = \sum^\ast \\
2. If $\langle M, w \rangle \notin A_{TM} \Rightarrow L(M_1) = \emptyset \neq \sum^\ast = L(M_2)$
Consequences of $A_{TM} \leq_m EQ_{TM}$

1. Since A_{TM} is undecidable, EQ_{TM} is also undecidable

2. $A_{TM} \leq_m EQ_{TM}$ implies $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$

Since $\overline{A_{TM}}$ is unrecognizable, $\overline{EQ_{TM}}$ is unrecognizable
EQ_{TM} itself is also unrecognizable

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $\overline{A_{TM}} \leq_m EQ_{TM}$ hence EQ_{TM} is unrecognizable

Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

1. Construct TMs M_1, M_2 as follows:

 $M_1 = \text{"On input } x, \text{ 1. Ignore } x \text{ 2. Run } M \text{ on input } w \text{ 3. If } M \text{ accepts, accept. Otherwise, reject."}$

 $M_2 = \text{"On input } x, \text{ 1. Ignore } x \text{ and reject"}$

2. Output $\langle M_1, M_2 \rangle$