BU CS 332 – Theory of Computation

https://forms.gle/VQ9JyAvixkrqfUbHA

Lecture 17:

Mapping Reductions

Reading:

Sipser Ch 5.3

Mark Bun November 9, 2021 Take-home part of lest 2 due Wednesday, 11:59 PM

Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Positive uses: If A reduces to B and B is decidable, then A is also decidable

Ex. $E_{\rm DFA}$ is decidable $\Rightarrow EQ_{\rm DFA}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Ex. $E_{\rm TM}$ is undecidable $\Rightarrow EQ_{\rm TM}$ is undecidable

► Warning ► ►

\$<M, w7 | TM M accepts w3

What's wrong with the føllowing "proof"?

Bogus "Theorem": A_{TM} is not Turing-recognizable

Bogus "Proof": Let R be an alleged recognizer for A_{TM} . We construct a recognizer S for unrecognizable language A_{TM} :

On input $\langle M, w \rangle$:

- 1. Run R on input $\langle M, w \rangle$
- 2. If *R* accepts, reject. Otherwise, accept.

If M loops on W, Hen (M, L) E A, m

But, S((M, L)) loops forever, so behavior of S, is not correct.

This sure looks like a reduction from $A_{\rm TM}$ to $A_{\rm TM}$

Mapping Reductions: Motivation

- 1. How do we formalize the notion of a reduction?
- 2. How do we use reductions to show that languages are unrecognizable?
- 3. How do we protect ourselves from accidentally "proving" bogus statements about recognizability?

Computable Functions | So for, the solve "decision provience" (yes/no)

Definition:

Now, we went this to compute more interesting functions

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)")

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape. ("Outputs f(w)") $f(w) = \int_{\mathbb{R}^n} \int_$

Example 1:
$$f(\langle x, y \rangle) = x + y$$
 only 1: $\frac{7}{2}$ $\frac{7}{2}$

Example 2: $f(\langle M, w \rangle) = \langle M' \rangle$ where M is a TM, w is a string, and M' is a TM that ignores its input and simulates running M on w

Mapping Reductions

Definition: A,ちら Z**

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

Mapping Reductions

Definition:

Language A is mapping reducible to language B, written $A \leq_m B$

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$

If $A \leq_{\mathrm{m}} B$, which of the following is true?

- a) $\bar{A} \leq_{\mathrm{m}} B$
- b) $A \leq_{\mathbf{m}} \overline{B}$
- \bar{C} $\bar{A} \leq_{\rm m} \bar{B}$
 - d) $\bar{B} \leq_{\mathrm{m}} \bar{A}$

Decidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Proof: Let M be a decider for B and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from A to B. Construct a decider for A Proof of remertiess (N decides A) as follows:

TM N'

On input w:

=> N accepts 1. Compute f(w)

1) If UFA, Hen f(W) (B) [defn of mapping red.] >> M arepts f(w) & M decides B]

- 2) If w & A, then f(w) & is [but of Run M on input f(w)map. red]
- If M accepts, accept. If it rejects, reject.

Undecidability

Theorem: If $A \leq_{\mathbf{m}} B$ and B is decidable, then A is also decidable

(containes the of Thm) Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable

Old Proof: Equality Testing for TMs

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable $[E_{TM} \text{ undecidable}]$ $[E_{TM} \text{ undecidable}]$ $[E_{TM} \text{ undecidable}]$

Proof: Suppose for contradiction that there exists a decider Rfor EQ_{TM} . We construct a decider for E_{TM} as follows:

On input $\langle M \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = M$$

$$M_2$$
 = "On input x ,

1. Ignore x and reject"

2. Run R on input $\langle M_1, M_2 \rangle$

If <m> F ETM, Hen L(M,) = L(M) = \$

3. If R accepts, accept. Otherwise, reject.

L(m2) = \$ => (M, M2) + EQ-TM The constant ten $L(M_1) = L(M_2) = 0$ This is a reduction from E_{TM} to EQ_{TM}

>> (M, ,M) & EDIM => R rects

New Proof: Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $E_{TM} \leq_{\rm m} EQ_{TM}$ hence EQ_{TM} is undecidable

Proof: The following TM N computes the reduction f:

On input $\langle M \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = M$$
 $M_2 = "On input x,$ 1. Ignore x and reject"

2. Output $\langle M_1, M_2 \rangle$

Mapping Reductions: Recognizability

Theorem: If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is also recognizable

Proof: Let M be a recognizer for B and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from A to B. Construct a recognizer for A as follows:

```
\underline{\mathsf{DM}}_{\mathsf{N}} On input w:
```

- 1) If $W \in A \Rightarrow f(W) \in B$ [fing map. red.] $\Rightarrow M$ accepts [M recognites B] $\Rightarrow N$ accepts W.
- 1. Compute f(w) 2) If $w \notin A \Rightarrow f(w) \notin B$ (if inquiry red)
- 2. Run M on input $f(w) \Rightarrow M$ ether results or looks

 The require $f(w) \Rightarrow M$ ether residual $f(w) \Rightarrow M$ requires $f(w) \Rightarrow M$ r
- 3. If *M* accepts, accept. Otherwise, reject.

Unrecognizability

Theorem: If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is also recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is also unrecognizable

Corollary: If $\overline{A_{TM}} \leq_{\mathrm{m}} B$, then B is unrecognizable

Recognizability and A_{TM}

Let L be a language. Which of the following is true?

- a) If $L \leq_{\mathrm{m}} A_{\mathrm{TM}}$, then L is recognizable
 - b) If $A_{TM} \leq_{m} L$, then L is recognizable
- c) If L is recognizable, then $L \leq_{\rm m} A_{\rm TM} \succeq also tre!$
- d) If L is recognizable, then $A_{\rm TM} \leq_{\rm m} L$

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$

"ATM is the hardest recognizable
Recognizability and A_{TM} les " Am is complete for RE:
Theorem: L is recognizable if and only if $L \leq_m A_{TM}$ is recognizable if and only if $L \leq_m A_{TM}$. Some same and that that
=> Suppose L is recognitable by TM M.
Claim: 3 a mapping reduction of from L to Am
Want WEL (S) F(W) E ATM. Compute of using the following TM R:
"On imput w:
Output LM; w>;
Comethous: WEL => M accepts w => (M, w) & ATM

Example: Another reduction to EQ_{TM}

 $EQ_{\mathrm{TM}} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem: $A_{\mathrm{TM}} \leq_{\mathrm{m}} EQ_{\mathrm{TM}}$ $A_{\mathrm{TM}} = \{\langle M_1, M_2 \rangle \mid TM \}$ $A_{\mathrm{mod}} = \{\langle M_1, M_2 \rangle \mid TM \}$

Proof: The following TM N computes the reduction f:

$$\langle M, \omega \rangle \in A_{TM} \Rightarrow f(\langle M, \omega \rangle) = \langle M, M_2 \rangle \in EQ_{TM}$$

 $\langle M, \omega \rangle \notin A_{TM} \Rightarrow f(\langle M, \omega \rangle) = \langle M, M_2 \rangle \notin EQ_{TM}$

What should the inputs and outputs to f be?

- a) f should take as input a pair $\langle M_1, M_2 \rangle$ and output a pair $\langle M, w \rangle$
- (b) f should take as input a pair $\langle M, w \rangle$ and output a pair $\langle M_1, M_2 \rangle$
- c) f should take as input a pair $\langle M_1, M_2 \rangle$ and either accept or reject
- d) f should take as input a pair $\langle M, w \rangle$ and either accept or reject

Example: Another reduction to EQ_{TM}

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$

Proof: The following TM computes the reduction:

ZMW>E Am
$$\rightleftharpoons$$
 $< M_1, M_2 \in EQ_{TM}$ \downarrow $L(M_1): \begin{cases} Z^* & \text{if } M \text{ alcepts } \omega \\ M \text{ alcepts } \omega & \text{if } M \text{ does not alcepts } \omega \end{cases}$ On input $\langle M, W \rangle$:

1. Construct TMs M_1 , M_2 as follows: $L(M_2) = Z^{\prime *}$

$$M_1$$
 = "On input x , M_2 = "On input x , M_3 = "On input x , M_4 = "On input x , M_4 = "On input x , M_5 = "On input x

- acent, acent. If
- 2. Output $\langle M_1, M_2 \rangle$

(Inectress of reduction:

(I) If (M, J) EATM => L(M,) = L(M2) = I''

7) If (M, J) EATM => L(M,) = Ø # I'' = L(M2)

(CS332-Theory of Computation LM, M27 E EQ1 M 18

Consequences of $A_{TM} \leq_{m} EQ_{TM}$

1. Since A_{TM} is undecidable, EQ_{TM} is also undecidable

2. $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$ implies $\overline{A_{\text{TM}}} \leq_{\text{m}} \overline{EQ_{\text{TM}}}$ Since $\overline{A_{\text{TM}}}$ is unrecognizable, $\overline{EQ_{\text{TM}}}$ is unrecognizable

EQ_{TM} itself is also unrecognizable

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: $\overline{A_{TM}} \leq_{\text{m}} EQ_{TM}$ hence EQ_{TM} is unrecognizable

Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1$$
 = "On input x ,

- 1. Ignore x
- 2. Run M on input w
- 3. If *M* accepts, accept. Otherwise, reject."

2. Output $\langle M_1, M_2 \rangle$

$$M_2$$
 = "On input x ,

1. Ignore x and reject"

(orrectives)

 $(M_1, M_2) \in G_{2m}$