Lecture 17: Mapping Reductions

Reading: Sipser Ch 5.3

Mark Bun
November 9, 2021
Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine.

If such a reduction exists, we say “A reduces to B”

Positive uses: If A reduces to B and B is decidable, then A is also decidable.

Ex. E_{DFA} is decidable $\Rightarrow E_{Q_{DFA}}$ is decidable

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable.

Ex. E_{TM} is undecidable $\Rightarrow E_{Q_{TM}}$ is undecidable
What’s wrong with the following “proof”?

Bogus “Theorem”: A_{TM} is not Turing-recognizable

Bogus “Proof”: Let R be an alleged recognizer for A_{TM}. We construct a recognizer S for unrecognizable language $\overline{A_{TM}}$:

On input $\langle M, w \rangle$:
1. Run R on input $\langle M, w \rangle$
2. If R accepts, reject. Otherwise, accept.

This sure looks like a reduction from $\overline{A_{TM}}$ to A_{TM}
Mapping Reductions: Motivation

1. How do we formalize the notion of a reduction?
2. How do we use reductions to show that languages are unrecognizable?
3. How do we protect ourselves from accidentally “proving” bogus statements about recognizability?
Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is **computable** if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape. (“Outputs $f(w)$”)
Computable Functions

Definition:
A function $f : \Sigma^* \rightarrow \Sigma^*$ is **computable** if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only $f(w)$ on its tape. ("Outputs $f(w)$")

Example 1: $f(\langle x, y \rangle) = x + y$

Example 2: $f(\langle M, w \rangle) = \langle M' \rangle$ where M is a TM, w is a string, and M' is a TM that ignores its input and simulates running M on w
Mapping Reductions

Definition:

Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$.
Mapping Reductions

Definition:
Language A is mapping reducible to language B, written $A \leq_m B$ if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \iff f(w) \in B$.

If $A \leq_m B$, which of the following is true?

a) $\overline{A} \leq_m B$

b) $A \leq_m \overline{B}$

c) $\overline{A} \leq_m \overline{B}$

d) $\overline{B} \leq_m \overline{A}$
Decidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Proof: Let M be a decider for B and let $f : \Sigma^* \to \Sigma^*$ be a mapping reduction from A to B. Construct a decider for A as follows:

On input w:

1. Compute $f(w)$
2. Run M on input $f(w)$
3. If M accepts, accept. If it rejects, reject.
Undecidability

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable
Old Proof: Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable

Proof: Suppose for contradiction that there exists a decider \(R \) for \(EQ_{TM} \). We construct a decider for \(E_{TM} \) as follows:

On input \(\langle M \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:

 \(M_1 = M \)

 \(M_2 = \text{"On input } x, \text{ 1. Ignore } x \text{ and reject"} \)

2. Run \(R \) on input \(\langle M_1, M_2 \rangle \)

3. If \(R \) accepts, accept. Otherwise, reject.

This is a reduction from \(E_{TM} \) to \(EQ_{TM} \)
New Proof: Equality Testing for TMs

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(E_{TM} \leq_m EQ_{TM} \) hence \(EQ_{TM} \) is undecidable

Proof: The following TM \(N \) computes the reduction \(f \):

On input \(\langle M \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:
 \[M_1 = M \]
 \[M_2 = \text{"On input } x, 1. \text{ Ignore } x \text{ and reject"} \]
2. Output \(\langle M_1, M_2 \rangle \)
Mapping Reductions: Recognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable.

Proof: Let M be a recognizer for B and let $f: \Sigma^* \rightarrow \Sigma^*$ be a mapping reduction from A to B. Construct a recognizer for A as follows:

On input w:
1. Compute $f(w)$
2. Run M on input $f(w)$
3. If M accepts, accept. Otherwise, reject.
Unrecognizability

Theorem: If \(A \leq_m B \) and \(B \) is recognizable, then \(A \) is also recognizable

Corollary: If \(A \leq_m B \) and \(A \) is unrecognizable, then \(B \) is also unrecognizable

Corollary: If \(\overline{A_{TM}} \leq_m B \), then \(B \) is unrecognizable
Recognizability and A_{TM}

Let L be a language. Which of the following is true?

a) If $L \leq_{m} A_{TM}$, then L is recognizable
b) If $A_{TM} \leq_{m} L$, then L is recognizable
c) If L is recognizable, then $L \leq_{m} A_{TM}$
d) If L is recognizable, then $A_{TM} \leq_{m} L$

Theorem: L is recognizable if and only if $L \leq_{m} A_{TM}$
Recognizability and A_{TM}

Theorem: L is recognizable if and only if $L \leq_m A_{TM}$

Proof:
Example: Another reduction to EQ_{TM}

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: $A_{TM} \leq_m EQ_{TM}$

Proof: The following TM N computes the reduction f:

What should the inputs and outputs to f be?

a) f should take as input a pair $\langle M_1, M_2 \rangle$ and output a pair $\langle M, w \rangle$
b) f should take as input a pair $\langle M, w \rangle$ and output a pair $\langle M_1, M_2 \rangle$
c) f should take as input a pair $\langle M_1, M_2 \rangle$ and either accept or reject
d) f should take as input a pair $\langle M, w \rangle$ and either accept or reject
Example: Another reduction to EQ_{TM}

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: $A_{TM} \leq_m EQ_{TM}$

Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

1. Construct TMs M_1, M_2 as follows:
 $$M_1 = \text{“On input } x, \text{ } M_2 = \text{“On input } x,$$

2. Output $\langle M_1, M_2 \rangle$
Consequences of $A_{TM} \leq_m EQ_{TM}$

1. Since A_{TM} is undecidable, EQ_{TM} is also undecidable

2. $A_{TM} \leq_m EQ_{TM}$ implies $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$

Since $\overline{A_{TM}}$ is unrecognizable, $\overline{EQ_{TM}}$ is unrecognizable
\(\text{EQ}_{\text{TM}} \) itself is also unrecognizable

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(\overline{A}_{\text{TM}} \leq_m \text{EQ}_{\text{TM}} \) hence \(\text{EQ}_{\text{TM}} \) is unrecognizable

Proof: The following TM computes the reduction:

On input \(\langle M, w \rangle \):

1. Construct TMs \(M_1, M_2 \) as follows:

 \(M_1 = \) “On input \(x \),
 1. Ignore \(x \)
 2. Run \(M \) on input \(w \)
 3. If \(M \) accepts, accept.
 Otherwise, reject.”

 \(M_2 = \) “On input \(x \),
 1. Ignore \(x \) and reject”

2. Output \(\langle M_1, M_2 \rangle \)