
BU CS 332 – Theory of Computation

Lecture 19:

• Time/Space Hierarchies

• Complexity Class P

Reading:

Sipser Ch 9.1, 7.2

Mark Bun

November 16, 2021

https://forms.gle/zQ6NcWNc98FhDGnH9

https://forms.gle/zQ6NcWNc98FhDGnH9

Last Time

• Asymptotic notation

• Analyzing time / space usage of Turing machines
(algorithms)

• Multi-tape TMs can solve problems faster than single-
tape TMs

E.g., 𝐴 = 0𝑚1𝑚 𝑚 ≥ 0} can be decided in 𝑂(𝑛) time on a 2-
tape TM, but cannot be decided in 𝑜(𝑛 log 𝑛) time on a basic
TM

11/16/2021 CS332 - Theory of Computation 2

Time complexity

Time complexity of a TM (algorithm) = maximum number of
steps it takes on a worst-case input

Formally: Let 𝑓 ∶ ℕ → ℕ. A TM 𝑀 runs in time 𝑓(𝑛) if on
every input 𝑤 ∈ Σ𝑛, 𝑀 halts on 𝑤 within at most 𝑓(𝑛) steps

A language 𝐴 ∈ TIME(𝑓(𝑛)) if there exists a basic single-tape
(deterministic) TM 𝑀 that

1) Decides 𝐴, and

2) Runs in time 𝑂(𝑓(𝑛))

11/16/2021 CS332 - Theory of Computation 3

Single vs. Multi-Tape

Theorem: Let 𝑡 𝑛 ≥ 𝑛 be a function. Every multi-tape
TM running in time 𝑡 𝑛 has an equivalent single-tape TM
running in time 𝑂 𝑡 𝑛 2

11/16/2021 CS332 - Theory of Computation 4

Suppose 𝐵 is decidable in time 𝑂(𝑛2) on a 42-tape TM.
What is the best upper bound you can give on the
runtime of a basic single-tape TM deciding 𝐵?

a) 𝑂 𝑛2

b) 𝑂(𝑛4)

c) 𝑂 𝑛84

d) 2𝑂(𝑛)

Single vs. Multi-Tape

Theorem: Let 𝑡 𝑛 ≥ 𝑛 be a function. Every multi-tape
TM running in time 𝑡 𝑛 has an equivalent single-tape TM
running in time 𝑂(𝑡 𝑛 2)

Proof idea:

We already saw how to simulate a multi-tape TM with a
single-tape TM

Need a runtime analysis of this construction

11/16/2021 CS332 - Theory of Computation 5

Simulating Multiple Tapes

(Implementation-Level Description)

On input 𝑤 = 𝑤1𝑤2 …𝑤𝑛

1. Format tape into # ሶ𝑤1𝑤2…𝑤𝑛# ሶ⊔ # ሶ⊔ #…#

2. For each move of 𝑀:

Scan left-to-right, finding current symbols

Scan left-to-right, writing new symbols,

Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank

If a tape head goes off left end, move back right

11/16/2021 CS332 - Theory of Computation 6

Single vs. Multi-Tape

Theorem: Let 𝑡 𝑛 ≥ 𝑛 be a function. Every multi-tape
TM running in time 𝑡 𝑛 has an equivalent single-tape TM
running in time 𝑂(𝑡 𝑛 2)

Proof: Time analysis of simulation

• Time to initialize (i.e., format tape): 𝑂 𝑛 + 𝑘

• Time to simulate one step of multi-tape TM: 𝑂 𝑘 ⋅ 𝑡 𝑛

• Number of steps to simulate: 𝑡 𝑛

⇒ Total time:

11/16/2021 CS332 - Theory of Computation 7

Extended Church-Turing Thesis

Every “reasonable” (physically realizable) model of
computation can be simulated by a basic, single-tape TM
with only a polynomial slowdown.

E.g., doubly infinite TMs, multi-tape TMs, RAM TMs

Does not include nondeterministic TMs (not reasonable)

Possible counterexamples? Randomized computation,
parallel computation, DNA computing, quantum
computation

11/16/2021 CS332 - Theory of Computation 8

Space complexity

Space complexity of a TM (algorithm) = maximum number of
tape cells it uses on a worst-case input

Formally: Let 𝑓 ∶ ℕ → ℕ. A TM 𝑀 runs in space 𝑓(𝑛) if on
every input 𝑤 ∈ Σ𝑛, 𝑀 halts on 𝑤 using at most 𝑓(𝑛) cells

A language 𝐴 ∈ SPACE(𝑓(𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀 that

1) Decides 𝐴, and

2) Runs in time 𝑂(𝑓(𝑛))

11/16/2021 CS332 - Theory of Computation 9

How does space relate to time?

Which of the following is true for every function

𝑓 𝑛 ≥ 𝑛?

a) 𝑇𝐼𝑀𝐸 𝑓 𝑛 ⊆ 𝑆𝑃𝐴𝐶𝐸(𝑓 𝑛)

b) 𝑆𝑃𝐴𝐶𝐸 𝑓 𝑛 ⊆ 𝑇𝐼𝑀𝐸(𝑓 𝑛)

c) 𝑇𝐼𝑀𝐸 𝑓 𝑛 = 𝑆𝑃𝐴𝐶𝐸(𝑓 𝑛)

d) None of the above

11/16/2021 CS332 - Theory of Computation 10

Back to our example

𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}

𝑀 = “On input 𝑤:

1. Scan input and reject if not of the form 0∗1∗

2. While input contains both 0’s and 1’s:

Cross off one 0 and one 1

3. Accept if no 0’s and no 1’s left. Otherwise, reject.”

Theorem: Let 𝑠 𝑛 ≥ 𝑛 be a function. Every multi-tape
TM running in space 𝑠 𝑛 has an equivalent single-tape
TM running in space 𝑂(𝑠(𝑛))

11/16/2021 CS332 - Theory of Computation 11

Hierarchy Theorems

11/16/2021 CS332 - Theory of Computation 12

More time, more problems
We know, e.g., that 𝑇𝐼𝑀𝐸 𝑛2 ⊆ 𝑇𝐼𝑀𝐸(𝑛3)

(Anything we can do in quadratic time we can do in cubic time)

Question: Are there problems that we can solve in cubic time
that we cannot solve in quadratic time?

Theorem: There is a language 𝐿 ∈ 𝑇𝐼𝑀𝐸 𝑛3 ,

but 𝐿 ∉ 𝑇𝐼𝑀𝐸(𝑛2)

11/16/2021 CS332 - Theory of Computation 13

“Time hierarchy”:
𝑇𝐼𝑀𝐸 𝑛 𝑇𝐼𝑀𝐸 𝑛2 𝑇𝐼𝑀𝐸 𝑛3 𝑇𝐼𝑀𝐸 𝑛4 …

Diagonalization redux

11/16/2021 CS332 - Theory of Computation 14

TM 𝑀 𝑀(𝑀1)? 𝑀(𝑀2)? 𝑀(𝑀3)? 𝑀(𝑀4)?

𝑀1 Y N Y Y

𝑀2 N N Y Y

𝑀3 Y Y Y N

𝑀4 N N Y N

…

…

𝑈𝐷 = 𝑀 𝑀 is a TM that does not accept input 𝑀 }
𝐿 = 𝑀 𝑀 is a TM that does not accept input 𝑀

within 𝑛2.5 steps}

𝐷(𝐷)?

𝐷

An explicit separating language

Theorem: 𝐿 = 𝑀 𝑀 is a TM that does not accept

input 𝑀 within 𝑛2.5 steps}

is in 𝑇𝐼𝑀𝐸(𝑛3), but not in 𝑇𝐼𝑀𝐸(𝑛2)

Proof Sketch: In 𝑇𝐼𝑀𝐸(𝑛3)

On input 𝑀 :

1. Simulate 𝑀 on input 𝑀 for 𝑛2.5 steps

2. If 𝑀 accepts, reject. If 𝑀 rejects or did not yet
halt, accept.

11/16/2021 CS332 - Theory of Computation 15

An explicit separating language

Theorem: 𝐿 = 𝑀 𝑀 is a TM that does not accept

input 𝑀 within 𝑛2.5 steps}

is in 𝑇𝐼𝑀𝐸(𝑛3), but not in 𝑇𝐼𝑀𝐸(𝑛2)

Proof Sketch: Not in 𝑇𝐼𝑀𝐸(𝑛2)

Suppose for contradiction that 𝐷 decides 𝐿 in time 𝑂(𝑛2)

11/16/2021 CS332 - Theory of Computation 16

Time and space hierarchy theorems

• For every* function 𝑡 𝑛 ≥ 𝑛 log 𝑛 , a language exists that
is decidable in 𝑡(𝑛) time, but not in 𝑜

𝑡 𝑛

log 𝑡 𝑛
time.

• For every* function 𝑠 𝑛 ≥ log 𝑛 , a language exists that is
decidable in 𝑠(𝑛) space, but not in 𝑜 𝑠(𝑛) space.

*“time constructible” and “space constructible”, respectively

11/16/2021 CS332 - Theory of Computation 17

Complexity Class P

11/16/2021 CS332 - Theory of Computation 18

Time and space complexity

The basic questions

1. How do we measure complexity?

2. Asymptotic notation

3. How robust is the TM model when we care about
measuring complexity?

4. How do we mathematically capture our intuitive
notion of “efficient algorithms”?

11/16/2021 CS332 - Theory of Computation 19

Complexity class P

Definition: P is the class of languages decidable in
polynomial time on a basic single-tape (deterministic) TM

P = 𝑘=1ڂ
∞ TIME(𝑛𝑘)

• Class doesn’t change if we substitute in another
reasonable deterministic model (Extended Church-Turing)

• Cobham-Edmonds Thesis: Roughly captures class of
problems that are feasible to solve on computers

11/16/2021 CS332 - Theory of Computation 20

Check your type checker: P

Consider the following computational problem: Given two
numbers 𝑥, 𝑦 (written in binary), output their sum

𝑥 + 𝑦 (in binary). Which of the following is true?

a) This is a problem in P

b) This problem is not in P because it cannot be solved
by a Turing machine (i.e., it’s undecidable)

c) This problem is not in P because it cannot be solved in
polynomial time

d) This problem is not in P because it is not a decision
problem (i.e., does not correspond to a language)

11/16/2021 CS332 - Theory of Computation 21

A note about encodings

We’ll still use the notation for “any reasonable”
encoding of the input to a TM…but now we have to be
more careful about what we mean by “reasonable”

How long is the encoding of a 𝑉-vertex, 𝐸-edge graph…

… as an adjacency matrix?

… as an adjacency list?

How long is the encoding of a natural number 𝑘

… in binary?

… in decimal?

… in unary?

11/16/2021 CS332 - Theory of Computation 22

Describing and analyzing polynomial-time
algorithms

• Due to Extended Church-Turing Thesis, we can still use
high-level descriptions on multi-tape machines

• Polynomial-time is robust under composition: poly(𝑛)
executions of poly(𝑛)-time subroutines run on poly(𝑛)-
size inputs gives an algorithm running in poly(𝑛) time.

⇒ Can freely use algorithms we’ve seen before as
subroutines if we’ve analyzed their runtime

• Need to be careful about size of inputs! (Assume inputs
represented in binary unless otherwise stated.)

11/16/2021 CS332 - Theory of Computation 23

Examples of languages in P

𝑃𝐴𝑇𝐻 =
𝐺, 𝑠, 𝑡 𝐺 is a directed graph with a directed path from 𝑠 to 𝑡}

11/16/2021 CS332 - Theory of Computation 24

Examples of languages in P
𝐸DFA = 𝐷 𝐷 is a DFA that recognizes the empty language}

11/16/2021 CS332 - Theory of Computation 25

Examples of languages in P

• 𝑅𝐸𝐿𝑃𝑅𝐼𝑀𝐸 = 𝑥, 𝑦 𝑥 and 𝑦 are relatively prime}

• 𝑃𝑅𝐼𝑀𝐸𝑆 = 𝑥 𝑥 is prime}

11/16/2021 CS332 - Theory of Computation 26

2006 Gödel Prize citation

The 2006 Gödel Prize for outstanding articles
in theoretical computer science is awarded to
Manindra Agrawal, Neeraj Kayal, and Nitin
Saxena for their paper "PRIMES is in P."

In August 2002 one of the most ancient
computational problems was finally solved….

A polynomial-time algorithm for 𝑃𝑅𝐼𝑀𝐸𝑆?

Consider the following algorithm for 𝑃𝑅𝐼𝑀𝐸𝑆

On input 𝑥 :

For 𝑏 = 2, 3, 4, 5, … , 𝑥:

- Try to divide 𝑥 by 𝑏

- If 𝑏 divides 𝑥, accept

If all 𝑏 fail to divide 𝑥, reject

How many divisions does this algorithm require in terms of
𝑛 = | 𝑥 |? a) 𝑂 𝑛 b) 𝑂(𝑛) c) 2𝑂(𝑛) d) 2𝑂(𝑛)

11/16/2021 CS332 - Theory of Computation 27

Beyond polynomial time

Definition: EXP is the class of languages decidable in
exponential time on a basic single-tape (deterministic) TM

EXP = 𝑘=1ڂ
∞ TIME(2𝑛

𝑘
)

11/16/2021 CS332 - Theory of Computation 28

Why study P ?

Criticism of the Cobham-Edmonds Thesis:

- Algorithms running in time 𝑛100 aren’t really efficient

Response: Runtimes improve with more research

- Does not capture some physically realizable models using
randomness, quantum mechanics

Response: Randomness may not change P, useful principles

11/16/2021 CS332 - Theory of Computation 29

𝑇𝐼𝑀𝐸 𝑛 vs. 𝑇𝐼𝑀𝐸(𝑛2) 𝑃 vs. 𝐸𝑋𝑃
decidable vs.
undecidable

