BU CS 332 – Theory of Computation

Lecture 22:
• NP

Reading:
Sipser Ch 7.3-7.4

Mark Bun
November 23, 2021
Nondeterministic time and NP

Let \(f : \mathbb{N} \to \mathbb{N} \)

A NTM \(M \) runs in time \(f(n) \) if on every input \(w \in \Sigma^n \), \(M \) halts on \(w \) within at most \(f(n) \) steps on every computational branch.

\(\text{NTIME}(f(n)) \) is a class (i.e., set) of languages:

A language \(A \in \text{NTIME}(f(n)) \) if there exists an NTM \(M \) that

1) Decides \(A \), and
2) Runs in time \(O(f(n)) \)

Definition: NP is the class of languages decidable in polynomial time on a nondeterministic TM

\[
\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k)
\]
Speeding things up with nondeterminism

HW 5 Problem 3:

\[TRIANGLE = \{ \langle G \rangle | \text{digraph } G \text{ contains a triangle} \} \]

Deterministic algorithm:

\[G = (V, E) \]

For each \(u \in V : \)

For each \(v \in V : \)

For each \(w \in V : \)

Check: \((u,v), (v,w), (w,u) \in E \)

Runtime \(\geq |V|^3 \)

\# vertices = \(|V| \)

\(V = \{1, \ldots, n\} \)

Write down a \(\# \) between 1 and \(n \) takes \(\log_2 n \) bits

Nondeterministic algorithm:

1) Nondeterministically guess \((u,v,w) \)

2) Check if \((u,v), (v,w), (w,u) \in E \)

Guess \(O(\log |V|) \) bits
Hamiltonian Path

\[HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph and there is a path from } s \text{ to } t \text{ that passes through every vertex exactly once} \} \]
HAMPATH ∈ NP

The following **nondeterministic** algorithm decides **HAMPATH** in polynomial time:

On input \(\langle G, s, t \rangle \): (Vertices of \(G \) are numbers 1, \(... \), \(k \))

1. **Nondeterministically** guess a sequence \(c_1, c_2, ... , c_k \) of numbers 1, \(... \), \(k \)

2. Check that \(c_1, c_2, ... , c_k \) is a permutation: Every number 1, \(... \), \(k \) appears exactly once

3. Check that \(c_1 = s \), \(c_k = t \), and there is an edge from every \(c_i \) to \(c_{i+1} \)

4. **Accept** if all checks pass, otherwise, **reject**.
Analyzing the algorithm

Need to check:

1) Correctness
 a) If \((s,t) \in \text{HAMPATH} \), \(s \) a Hamiltonian path \(c_1, \ldots, c_k \)
 \(\Rightarrow \) branch of computation that guesses this path leads NTM to accept
 b) If \((s,t) \notin \text{HAMPATH} \), then every \(c_1, \ldots, c_k \) is not a Hamiltonian path from \(s \) to \(t \).
 \(\Rightarrow \) Every computation branch rejects

2) Running time
 Guessing \(c_1, \ldots, c_k \) takes \(\Theta(k \log k) \) time
 Checking permutation takes \(O(k \log^2 k) \) time
 Checking \(c_1, \ldots, c_k \) is an s-t path takes \(O(k) \) lookups
to adj. matrix / adj. list of \(G \)
An alternative characterization of \textbf{NP}

“Languages with polynomial-time verifiers”

How did we design an NTM for HAMPATH?

• Given a candidate path, it is easy (poly-time) to check whether this path is a Hamiltonian path

• We designed a poly-time NTM by nondeterministically guessing this path and then checking it

• Lots of problems have this structure (CLIQUE, 3-COLOR, COMPOSITE,...). They might be hard to solve, but a candidate solution is easy to check.
An alternative characterization of NP

“Languages with polynomial-time verifiers”

A verifier for a language L is a deterministic algorithm V such that $w \in L$ iff there exists a string c such that $V(\langle w, c \rangle)$ accepts.

Running time of a verifier is only measured in terms of $|w|$

V is a polynomial-time verifier if it runs in time polynomial in $|w|$ on every input $\langle w, c \rangle$.

(Without loss of generality, $|c|$ is polynomial in $|w|$, i.e., $|c| = O(|w|^k)$ for some constant k)
HAMPATH has a polynomial-time verifier

Certificate c: (c_1, \ldots, c_n) a candidate path

Verifier V:

On input $\langle G, s, t; c \rangle$: (Vertices of G are numbers 1, ..., k)

1. Check that c_1, c_2, \ldots, c_k is a permutation: Every number 1, ..., k appears exactly once

2. Check that $c_1 = s$, $c_k = t$, and there is an edge from every c_i to c_{i+1}

3. **Accept** if all checks pass, otherwise, **reject**.

Correctness:

a) If $\langle G, s, t \rangle \in L$, \exists Hamiltonian path c_1, \ldots, c_n from s to t

 $\Rightarrow \exists$ c s.t. $V(\langle G, s, t; c \rangle)$ accepts

b) If $\langle G, s, t \rangle \notin L$, then every c is not a Hamilton path $\Rightarrow \forall c$

 $V(\langle G, s, t; c \rangle)$ rejects
NP is the class of languages with polynomial-time verifiers

Theorem: A language \(L \in \text{NP} \) iff there is a polynomial-time verifier for \(L \)
Alternative proof of $\text{NP} \subseteq \text{EXP}$

One can prove $\text{NP} \subseteq \text{EXP}$ as follows. Let V be a verifier for a language L running in time $T(n)$. We can construct a $2^{O(T(n))}$ time algorithm for L as follows.

a) On input $\langle w, c \rangle$, run V on $\langle w, c \rangle$ and output the result

b) On input w, run V on all possible $\langle w, c \rangle$, where c is a certificate. Accept if any run accepts.

c) On input w, run V on all possible $\langle w, c \rangle$, where c is a certificate of length at most $T(|w|)$. Accept if any run accepts.

d) On input w, run V on all possible $\langle x, c \rangle$, where x is a string of length $|w|$ and c is a certificate of length at most $T(|w|)$. Accept if any run accepts.
NP is the class of languages with polynomial-time verifiers

Theorem: A language $L \in \text{NP}$ iff there is a polynomial-time verifier for L

Proof: \iff Let L have a poly-time verifier $V((w, c))$

Idea: Design NTM N for L that nondeterministically guesses a certificate

\[
\text{NTM } N: \\
\text{On input } w: \\
\begin{align*}
1) \text{Nondet. guess } c \text{ of length } \leq T(1|w|) \\
2) \text{Run } V((w, c)). \text{ If accepts, accept. If rejects, reject}
\end{align*}
\]

Correctness:

$w \in L \iff \exists$ c, $|c| \leq T(1|w|)$ s.t. $V((w, c))$ accepts

$\iff N$ accepts w on some comp. branch

Runtime:

$|c|$ is polynomial in $|w|$

\iff step 1 is poly-time

V runs in poly-time \iff

step 2 poly-time
NP is the class of languages with polynomial-time verifiers

⇒ Let L be decided by an NTM N running in time $T(n)$ and making up to b nondeterministic choices in each step.

Idea: Design verifier V for L where certificate is sequence of “good” nondeterministic choices.

Certificate: $C = (c_1, ..., c_{T(n)}) \in [b]^{T(n)}$

C_i in the “good” nondet. choice at time step i

$V(<w, C>):$

1) Simulate N on input w, where at every time step i, make nondet. choice c_i

2) If simulation reaches accept, accept; reject, reject.
WARNING: Don’t mix-and-match the NTM and verifier interpretations of NP
To show a language L is in NP, do exactly one:

1) Exhibit a poly-time NTM for L
 $N = “On input w:"
 $<Do some nondeterministic stuff>...”$

 OR

2) Exhibit a poly-time (deterministic) verifier for L
 $V = “On input w and certificate c:"
 $<Do some deterministic stuff>...”$
Examples of **NP** languages: SAT

“Is there an assignment to the variables in a logical formula that make it evaluate to true?”

- **Boolean variable**: Variable that can take on the value true/false (encoded as 0/1) \(\text{Ex: } x_1, x_2, x_3 \)
 \(x, y, z \)

- **Boolean operations**: \(\land \) (AND), \(\lor \) (OR), \(\neg \) (NOT)

- **Boolean formula**: Expression made of Boolean variables and operations. \(\text{Ex: } (x_1 \lor \overline{x_2}) \land x_3 \)

- **An assignment** of 0s and 1s to the variables **satisfies** a formula \(\varphi \) if it makes the formula evaluate to 1 \((1, 1, 1) \) is a **satisfying ass'mt**

- **A formula** \(\varphi \) is **satisfiable** if there exists an assignment that satisfies it
Examples of NP languages: SAT

Ex: \((x_1 \lor \overline{x_2}) \land x_3\)
Yes because \((1,1,1)\) is a sat assmt

Ex: \((x_1 \lor x_2) \land \overline{x_1} \land \overline{x_2}\) = \((x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2})\)
Not satisfiable (no possible sat. assmt)

\[SAT = \{(\varphi) | \varphi \text{ is a satisfiable formula}\} \]

Claim: \(SAT \in NP \)

<table>
<thead>
<tr>
<th>NTM for SAT</th>
<th>Poly-time verifier for SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>On input (\varphi(x_1, \ldots, x_m)):</td>
<td></td>
</tr>
<tr>
<td>1) Nondelet. ques ((C_1, \ldots, C_m) \in {0,1}^m)</td>
<td></td>
</tr>
<tr>
<td>2) Evaluate (\varphi(C_1, \ldots, C_m)).</td>
<td></td>
</tr>
<tr>
<td>If True : accept</td>
<td></td>
</tr>
<tr>
<td>If False : reject</td>
<td></td>
</tr>
</tbody>
</table>

| Certificate \(C = (C_1, \ldots, C_m) \in \{0,1\}^m\) |
| On input \(\varphi, C\): |
| 1) Evaluate \(\varphi(C_1, \ldots, C_m)\). |
| If True : accept |
| If False : reject |