BU CS 332 — Theory of Computation

https://forms.gle/7nNmaviGGh2QpFzYA

Lecture 22:

* NP

Mark Bun
November 23, 2021

[m] 5 [m]

2

Reading:

Sipser Ch 7.3-7.4

Ml 9
Wedwaday 1\'.s? M

Nondeterministic time and NP
letf: N—> N
ANTM M runs in time f(n) if on every input w € ",

M halts on w within at most f (n) steps on every
computational branch

NTIME(f (n)) is a class (i.e., set) of languages:
A language A € NTIME(f (n)) if there exists an NTM M that

1) Decides 4, and
2) Runsin time O(f (n))

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM

NP = Uy, NTIME(n"®)

11/23/2021 CS332 - Theory of Computation

Speeding things up with nondeterminism

eV
HW 5 Problem 3: ‘\,\/7 \m

TRIANGLE = {{G)|digraph G contains a triangle}

Deterministic algorithm: G:(v,e)
Tor Pach w eV 4 b
‘ . ‘e s
Y'w eo\ck '\re\/ 5 Luntwe A 'V\-S wrhes Nl
V=iy, . u_s
r"w QGLV\ V\‘Q\j '. , \‘;thj da“n o #
Cvech @\.‘ﬂ, (v,)Cw,\k‘) € é Viedoeon ' ond L dales
Nondeterministic algorithm: L9, by

\\N o.nc\.akfn.\'\h\{gq\\ﬂ Yw.es5 (“\'V,V))J bwes 0(‘%"/') b\\k
1) Ceck 4 (o‘-v\/ ('\/‘.,J\l (d)v\’}e E

11/23/2021 CS332 - Theory of Computation 3

Hamiltonian Path

HAMPATH = {(G, s, t) |G is a directed graph and there

is a path from s to t that passes
through every vertex exactly once}

11/23/2021 CS332 - Theory of Computation 4

HAMPATH € NP

The following nondeterministic algorithm decides
HAMPATH in polynomial time:

On input (G, s, t): (Vertices of G are numbers 1, ..., k)
1. Nondeterministically guess a sequence
C1, Co, ..., C Of nUmMbers 1, ..., k

2. Check that ¢4, ¢, ..., C is @ permutation: Every
number 1, ..., k appears exactly once

3. Check that ¢c; = s, ¢, = t, and there is an edge
from every c; to ¢; 1

4. Accept if all checks pass, otherwise, reject.

Analyzing the algorithm

Need to check:

1) Correctness
o) 15 £6,5,t7 € Y Aa(AH] o HamiMoran gath C,, . Ce

w) 1{ 6,5, ¢ HMMTH) Hen Sy Ci,-a2lg 19 sk
Haw\Ma:on @Aﬂr\ fomm 9 ¥ . =7 (2\4&9 (Wuhiﬂﬂ brqodﬂ reyech <

2) Running time
Gwosiwy (4 ,ms (u Yoo Ok loyl) Hhwe
Cleck b qeemabhar fales O(@.lo.,ui‘) hwe

C‘/uwuo (h“‘)(&{, g ON ¢'"l' (\d“ﬂ -lﬂLes O(IA) IOalc..(s
o oy m%‘z./ ady. 1o of 6

11/23/2021 CS332 - Theory of Computation 6

An alternative characterization of NP

“Languages with polynomial-time verifiers”
How did we design an NTM for HAMPATH?

* Given a candidate path, it is easy (poly-time) to check
whether this path is a Hamiltonian path

* We designed a poly-time NTM by nondeterministically
guessing this path and then checking it

* Lots of problems have this structure (CLIQUE, 3-COLOR,
COMPOSITE,...). They might be hard to solve, but a
candidate solution is easy to check.

An alternative characterization of NP

“Languages with polynomial-time verifiers”

such that w € L iff there exists a string c such that

V({w, c))@ccepts 7
" ictance “eadkibealt” Cwileess proof

A verifier for a language L is a deterministic algorithm V]

Running time of a verifier is only measured in terms of |w/|

V' is a polynomial-time verifier if it runs in time polynomiaj
in |w| on every input (w, c)

(Without loss of generality, |c| is polynomial in |w|, i.e.,
lc| = O(Jw|*) for some constant k)

11/23/2021 CS332 - Theory of Computation 8

HAMPATH has a polynomial-time verifier

Certificate c: CCuy o Cu) o combidale palhy

. tatne : A yakd e € Yas feaghh
Verifier V: , _enake gy, v B

. S ™M Frow ‘eioe . Clec ha C klke
Oninput (G, s, t;c): (Vertices of G are numbers 1 k)

pa\
1. Check that ¢4, ¢5, ..., ¢i is a permutation: Every

number 1, ..., k appears exactly once

2. Check that ¢c; = s, ¢, = t, and there is an edge
from every ¢; to ¢; 41

3. Accept if all checks pass, otherwise, reject.
(gm(-\wsﬁ;

NIf (6, t7€el, 3 Hampoh Coyla fom § b ¢
2 3 ¢ st. V(Cob,s,t,€7) awets

3 t H h =5 VC
W) 1F C6,5,67¢L, Hen Ceg C O wak a Hamwf VLot Q)m;«h_

11/23/2021 CS332 - Theory of Computation

NP is the class of languages with polynomial-
time verifiers

Theorem: A language L € NP iff there is a polynomial-
time verifier for L

11/23/2021 CS332 - Theory of Computation

10

Alternative proof of NP € EXP = f_q.
n“i"‘*‘“)‘? Eirwﬁ

One can prove NP € EXP as follows. Let V be a verifier for a
language L running in time T'(n). We can construct a

20(T(M) time algorithm for L as follows.
P \
;4 On input (w, ¢), run V on (w, ¢) and output the result

b) Oninputw, runV on all possible (w, c), where c is a
certificate. Accept if any run accepts.

@ On input w, run V on all possible (w, c¢), where c is a
certificate of length at most T (|w]). Accept if any run
accepts.

d) Oninputw, runV on all possible (x, c), where x is a string
of length |w| and c is a certificate of length at most
T(|w|). Accept if any run accepts.

NP is the class of languages with polynomial-
time verifiers

Theorem: A language L € NP iff there is a polynomial-
time verifier for L Fae TCw)

Proof: < Let L have a poly-time verifier V({w, c))

Idea: Design NTM N for L that nondeterministically
guesses a certificate
NTM N
/ Rd
o‘l\ N\‘M\’ N ‘-
1) Nonded. qusa ¢ of leagh € (1)

1) e V(Ccw,M. T4 owph, awgt T4 wiech “pegecd

————

_ l Lo it

(oatchﬂﬁ : ,L*:L o

— e ' 1l ® p\.’.oq.d n /0\\‘

Ml & o, 1 eTlu) sd. V(. () acoh ke b T gy Hine
= '\] auph W N SO C o . harach U e ‘\o\j '3‘7"'(‘. =

11/23/2021 CS332 - Theory of Computation QQP 2 oa(‘s "\’M 12

NP is the class of languages with polynomial-
time verifiers

= Let L be decided by an NTM N running in time T'(n)
and making up to b nondeterministic choices in each step

Idea: Design verifier V for L where certificate is sequence
of “good” nondeterministic choices o) 2 L

Cecvifnate * ((u)CT(“)) éib]
/C{’_::\—‘M qaod nondet Choe @ hwe ke ¢ /‘\ /’\\

V(€ S AN
_ oGt

) Gindlale N on syt @, e ol ey
Yiae <3P 1, wde unded. (v Co

1) T cmalabmn Rocdes acep) , acpt
a reject re et .

11/23/2021 CS332 - Theory of Computation 13

WARNING: Don’t mix-and-match the NTM and

verifier interpretations of NP
To show a language L is in NP, do exactly one:

1) Exhibit a poly-time NTM for L
N =“On input w:
<Do some nondeterministic stuff>...”
OR

2) Exhibit a poly-time (deterministic) verifier for L
IV = “On input w and certificate c:
<Do some deterministic stuff>...”

11/23/2021 CS332 - Theory of Computation 14

Examples of NP languages: SAT

“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”

 Boolean variable: Variable that can take on the value
true/false (encoded as 0/1) €%. %, 2. %, KG9,t

* Boolean operations: A (AND), v (OR), = (NOT)

* Boolean formula: Expression made of Boolean variables
and operations. Ex: (x1 xz) /\&» Ex X,z), 1421, Xy =)

* An assignment of Os and ls to the variables satisfies a

(590 A &
formula ¢ if it makes the formula evaluate to 1 Cokoloig o'

* A formula @ is satisfiable if there exists an assighment *°
that satisfies it (v TaIATy

11/23/2021 CS332 - Theory of Computation 15

Examples of NP languages: SAT

Ex: (X1 VX;) AXxz Mes weme (W0 Satisfiable?

—

19 o yat 0\35"“{'

Ex: (X1 VX)) AXT AX; = (1w x)A (191 Satisfiable?
ND* Qd’l:S“'ah'e C‘O ‘lOﬁ‘,ML{ Sﬁ\ . assm'.})

SAT = {{(p)|@ is a satisfiable formula}

Claim: SAT € NP
NN\ Lo ¢AT

Bon snput O(yy Am) "
1) Nsonded. quees (C,,..‘)(,,\)é 19,14

1.) EV“‘WR q(cl)“)rm).
;(Trve - .QLﬂl'

\

o)y~ dne rerfer {fo <7
Tonkwale C =C(C,, -, Cm) €39,1%"
On mpet C.‘P, [y
\) evamde €Ccy, - lm).
T Teg. otk
TfL TFole . Y_S_)EC‘"__

Cale " rejed
11/23/2021 "‘L‘_' CS332 - Theory of Computation 16

