## BU CS 332 – Theory of Computation

https://forms.gle/z4Ydo8MQfj5dWYiZ7



#### Lecture 23:

More NP-completeness

Reading:

Sipser Ch 7.4-7.5

Mark Bun
December 2, 2021

## NP-completeness

"The hardest languages in NP"

**Definition:** A language *B* is NP-complete if

- 1)  $B \in NP$ , and
- 2) B is NP-hard: Every language  $A \in NP$  is poly-time reducible to B, i.e.,  $A \leq_p B$

Last time: There exists an NP-complete language

$$TMSAT = \{\langle N, w, 1^t \rangle \mid$$
 NTM  $N$  accepts input  $w$  within  $t$  steps $\}$  is NP-complete

# Cook-Levin Theorem and NP-Complete Problems

#### Cook-Levin Theorem

Theorem: SAT (Boolean satisfiability) is NP-complete

"Proof": Already know  $SAT \in NP$ . (Much) harder direction: Need to show every problem in NP reduces to SAT



Stephen A. Cook (1971)



Leonid Levin (1973)

## New NP-complete problems from old

Lemma: If  $A \leq_p B$  and  $B \leq_p C$ , then  $A \leq_p C$  (poly-time reducibility is <u>transitive</u>)

Theorem: If  $B \leq_p C$  for some NP-hard language B, then C is also NP-hard

Corollary: If  $C \in NP$  and  $B \leq_p C$  for some NP-complete language B, then C is also NP-complete



## New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!



## 3SAT (3-CNF Satisfiability)



#### **Definitions:**

- A literal either a variable of its negation  $x_5$  ,  $\overline{x_7}$
- A clause is a disjunction (OR) of literals Ex.  $x_5 \vee \overline{x_7} \vee x_2$
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

Ex. 
$$C_1 \wedge C_2 \wedge ... \wedge C_m = (x_5 \vee \overline{x_7} \vee x_2) \wedge (\overline{x_3} \vee x_4 \vee x_1) \wedge \cdots \wedge (x_1 \vee x_1 \vee x_1)$$

 $3SAT = \{\langle \varphi \rangle | \varphi \text{ is a satisfiable } 3 - \text{CNF} \}$ 

## 3SAT is NP-complete

Theorem: 3SAT is NP-complete

Proof idea: 1) 3SAT is in NP (why?)







- a) Yes, this is a poly-time reduction from SAT to 3SAT
- b) No, because  $\varphi$  is not an instance of the SAT problem
- c) No, the reduction does not run in poly time
- (d) No, this is a reduction from 3SAT to SAT; it goes in the wrong direction

## 3SAT is NP-complete

Theorem: 3SAT is NP-complete

Proof idea: 1) 3SAT is in NP (why?)

2) Show that  $SAT \leq_p 3SAT$ 

Idea of reduction: Give a poly-time algorithm converting an arbitrary formula  $\varphi$  into a 3CNF  $\psi$  such that  $\varphi$  is satisfiable iff  $\psi$  is satisfiable

Illustration of conversion from  $\varphi$  to  $\psi$ 



$$\Psi (\chi_1, \chi_2, \chi_3, \alpha, b, c)$$
=  $C \wedge (C = \alpha \vee b) \wedge$ 

$$(\alpha = \chi_1 \vee \chi_2) \wedge (b = \chi_2 \wedge \chi_3)$$
[\*\*udoclauses\*

Thui Every  $f: 30, 13^3 \rightarrow 90, 13$ Can be written as a 3(N) i.e.  $f(x,y,t) = (l, vl_2vl_3) \wedge ... \wedge (l_{21}vl_{23})$ where each l: 3 a  $vl_{24}$  l.teral over x, y, t

Obtain 11 from to by alding them to each "pseudoclause"

## Some general reduction strategies

Reduction by simple equivalence

Ex. 
$$IND - SET \le_{p} VERTEX - COVER$$
  
 $VERTEX - COVER \le_{p} IND - SET$ 

Reduction from special case to general case

Ex. 
$$VERTEX - COVER \leq_p SET - COVER$$

$$3SAT \leq_p SAT \qquad \text{(a) is also an instance of SAT}$$
then  $\text{(b) also an instance of SAT}$ 

"Gadget" reductions

Ex. 
$$SAT \le_{p} 3SAT$$

$$3SAT \le_{p} IND - SET$$

## Independent Set

An **independent set** in an undirected graph G is a set of vertices that includes at most one endpoint of every edge.

$$IND - SET = \{\langle G, k \rangle | G \text{ is an undirected graph containing an } \}$$

independent set with  $\geq k$  vertices}



Which of the following are independent sets in this graph?



## Independent Set is NP-complete

- 1)  $IND SET \in NP$
- 2) Reduce  $3SAT \leq_{p} IND SET$

Proof of 1) The following gives a poly-time verifier for IND - SET

Certificate: Vertices  $v_1, ..., v_k$ 

#### Verifier:

"On input  $\langle G, k; v_1, ..., v_k \rangle$ , where G is a graph, k is a natural number,

- 1. Check that  $v_1, \dots v_k$  are distinct vertices in G
- 2. Check that there are no edges between the  $v_i$ 's."

Check that Vi, , , Vu is actually an independent set of size k

## Independent Set is NP-complete

- 1)  $IND SET \in NP$
- 2) Reduce  $3SAT \leq_{p} IND SET$

Proof of 2) The following TM computes a poly-time reduction.

"On input  $\langle \varphi \rangle$ , where  $\varphi$  is a 3CNF formula,

- 1. Construct graph G from  $\varphi$ 
  - G contains 3 vertices for each clause, one for each literal.
  - Connect 3 literals in a clause in a triangle.
  - Connect every literal to each of its negations.
- 2. Output  $\langle G, k \rangle$ , where k is the number of clauses in  $\varphi$ ."

## Example of the reduction $\frac{E^{-1}}{\sqrt{3}}$



$$\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3})$$





12/2/2021

#### Proof of correctness for reduction

Let k = # clauses and l = # literals in  $\varphi$ 

Correctness:  $\varphi$  is satisfiable iff G has an independent set of size k

 $\implies$  Given a satisfying assignment, select one true literal from each triangle. This is an independent set of size k

 $\leftarrow$  Let S be an independent set in G of size k

- S must contain exactly one vertex in each triangle
- Set these literals to true, and set all other variables arbitrarily
- Truth assignment is consistent and all clauses are satisfied

Runtime:  $O(k + l^2)$  which is polynomial in input size

## Some general reduction strategies

Reduction by simple equivalence

Ex. 
$$IND - SET \le_{p} VERTEX - COVER$$
  
 $VERTEX - COVER \le_{p} IND - SET$ 

Reduction from special case to general case

Ex. 
$$VERTEX - COVER \le_{p} SET - COVER$$

$$3SAT \le_{p} SAT$$

"Gadget" reductions

Ex. 
$$SAT \leq_{p} 3SAT$$

$$3SAT \leq_{p} IND - SET$$

#### Vertex Cover

Given an undirected graph G, a vertex cover in G is a subset of nodes which includes at *least* one endpoint of every edge.

 $VERTEX - COVER = \{\langle G, k \rangle \mid G \text{ is an undirected graph which has a}$   $\text{vertex cover with } \leq k \text{ vertices} \}$ 



### Independent Set and Vertex Cover

**Claim.** S is an independent set iff  $V \setminus S$  is a vertex cover.

- $\Longrightarrow$  Let S be any independent set.
  - Consider an arbitrary edge (u, v).
  - S is independent  $\Longrightarrow u \notin S$  or  $v \notin S \implies u \in V \setminus S$  or  $v \in V \setminus S$ .
  - Thus,  $V \setminus S$  covers (u, v).



 $\leftarrow$  Let  $V \setminus S$  be any vertex cover.

- Consider two nodes  $u \in S$  and  $v \in S$ .
- Then  $(u, v) \notin E$  since  $V \setminus S$  is a vertex cover.
- Thus, no two nodes in S are joined by an edge  $\implies$  S is an independent set.



#### INDEPENDENT SET reduces to VERTEX COVER

**Theorem.** IND-SET  $\leq_p$  VERTEX-COVER.

What do we need to do to prove this theorem?



- a) Construct a poly-time nondet. TM deciding IND-SET
- b) Construct a poly-time deterministic TM deciding IND-SET
- c) Construct a poly-time nondet. TM mapping instances of IND-SET to instances of VERTEX-COVER
- d) Construct a poly-time deterministic TM mapping instances of IND-SET to instances of VERTEX-COVER
- e) Construct a poly-time nondet. TM mapping instances of VERTEX-COVER to instances of IND-SET
- f) Construct a poly-time deterministic TM mapping instances of VERTEX-COVER to instances of IND-SET

#### INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET  $\leq_p$  VERTEX-COVER.

**Proof.** The following TM computes the reduction.

"On input  $\langle G, k \rangle$ , where G is an undirected graph and k is an integer,

Output  $\langle G, n-k \rangle$ , where n is the number of nodes in G."

#### Correctness:

 G has an independent set of size at least k iff it has a vertex cover of size at most n-k. Howe  $(6,4) \in Im$ -st (6, n- LT & VERTEX-BUER

#### Runtime:

Reduction runs in linear time.

#### VERTEX COVER reduces to INDEPENDENT SET

Theorem. VERTEX-COVER  $\leq_p$  IND-SET

Proof. The following TM computes the reduction.

"On input  $\langle G, k \rangle$ , where G is an undirected graph and k is an integer,

1. Output  $\langle G, n-k \rangle$ , where n is the number of nodes in G."

#### Correctness:

• G has a vertex cover of size at most k iff it has an independent set of size at least n-k.

#### Runtime:

Reduction runs in linear time.