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NP-completeness

“The hardest languages in NP”
Definition: A language B is NP-complete if
1) B € NP, and

2) B is NP-hard: Every language A € NP is poly-time
reducibleto B, i.e.,, A <, B

Last time: There exists an NP-complete language

TMSAT = {{N,w, 1%) |
NTM N accepts input w within t steps} is NP-complete
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Cook-Levin Theorem and
NP-Complete Problems
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Cook-Levin Theorem

Theorem: SAT (Boolean satisfiability) is NP-complete

“Proof”: Already know SAT € NP. (Much) harder direction:
Need to show every problem in NP reduces to SAT

) #°

Stephen A. Cook (1971) Leonid Levin (1973)

12/2/2021 CS332 - Theory of Computation 4



New NP-complete problems from old

Lemma: If A <pBandB <, (,thenA <, C
(poly-time reducibility is transitive)

Theorem: If B <, C for some NP-hard language B, then C
is also NP-hard

Corollary: If € € NP and B <, C for some NP-complete
language B, then C is also NP-complete
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New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

by definition of NP-completeness

SAT

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP
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3SAT (3-CNF Satisfiability) g‘

Definitions:
* A literal either a variable of its negation Xs, X7
* A clause is a disjunction (OR) of literals  Ex. x5 VX7 V X,

* A 3-CNF is a conjunction (AND) of clauses where each
clause contains exactly 3 literals

EX. ClACZ/\/\Cm =
(s VX7 VX)) NGV X VX )N NAN(Xy VXLV X)

3SAT = {{p)|@ is a satisfiable 3 — CNF}
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3SAT is NP-complete [=] 7 [m]

L I
Theorem: 3SAT is NP-complete 47542

e
Proof idea: 1) 3SAT is in NP (why?) Er".';ﬁ
2) Show that SAT <, 35AT

Your classmate suggests the following reduction from SAT to
3SAT: “On input @, a 3-CNF formula (an instance of 3SAT),

output @, which is already an instance of SAT.” Is this
reduction correct?

a) Yes, this is a poly-time reduction from SAT to 3SAT
b) No, because ¢ is not an instance of the SAT problem
c) No, the reduction does not run in poly time

d) No, this is a reduction from 3SAT to SAT; it goes in the
wrong direction



3SAT is NP-complete
Theorem: 3SAT is NP-complete
Proof idea: 1) 3SAT is in NP (why?)

2) Show that SAT <, 3SAT

ldea of reduction: Give a poly-time algorithm converting
an arbitrary formula ¢ into a 3CNF 1 such that ¢ is
satisfiable iff Y is satisfiable
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lllustration of conversion from @ to
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Some general reduction strategies

* Reduction by simple equivalence
Ex. IND — SET <, VERTEX — COVER
VERTEX — COVER <, IND — SET

* Reduction from special case to general case
Ex. VERTEX — COVER <, SET — COVER
3SAT <, SAT

* “Gadget” reductions
Ex. SAT <, 3SAT
3SAT <, IND — SET
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Independent Set

An independent set in an undirected graph G is a set of vertices that
includes at most one endpoint of every edge.

IND — SET = {{(G, k)|G is an undirected graph containing an

independent set with > k vertices}

Which of the following are
independent sets in this graph?

a) (1) (=]t [2]
b) {1,5) g A

. e
c) {2,3,6} it
d) {3,4,6} E?t'ﬁ




Independent Set is NP-complete

1) IND — SET € NP
2) Reduce 3SAT <, IND — SET

Proof of 1) The following gives a poly-time verifier for IND — SET
Certificate: Vertices v4, ..., Vg

Verifier:
“Oninput (G, k; v4, ..., vx), Wwhere G is a graph, k is a natural number,

1. Check that v4, ... v are distinct vertices in G

2. Check that there are no edges between the v;’s.”
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Independent Set is NP-complete

1) IND — SET € NP
2) Reduce 3SAT <, IND — SET

Proof of 2) The following TM computes a poly-time reduction.
“Oninput (@), where @ is a 3CNF formula,
1. Construct graph G from @

* (G contains 3 vertices for each clause, one for each literal.

e Connect 3 literals in a clause in a triangle.
e Connect every literal to each of its negations.

2. Output (G, k), where k is the number of clauses in ¢.”



Example of the reduction

@ =@V Vag) Ay VI Vx3) AV xyVxs)
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Proof of correctness for reduction

Let k = # clauses and [ = # literals in ¢
Correctness: @ is satisfiable iff G has an independent set of size k

= Given a satisfying assignment, select one true literal from each
triangle. This is an independent set of size k

< Let S be an independent set in G of size k
* S must contain exactly one vertex in each triangle
» Set these literals to true, and set all other variables arbitrarily

* Truth assignment is consistent and all clauses are satisfied

Runtime: O (k + %) which is polynomial in input size



Some general reduction strategies

* Reduction by simple equivalence
EX.|IND — SET <, VERTEX — COVER
VERTEX — COVER <, IND — SET

* Reduction from special case to general case
Ex. VERTEX — COVER <, SET — COVER
3SAT <, SAT

* “Gadget” reductions
Ex. SAT <, 3SAT
3SAT <, IND — SET
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Vertex Cover

Given an undirected graph G, a vertex cover in G is a subset of
nodes which includes at least one endpoint of every edge.

VERTEX — COVER ={{(G, k) | G is an undirected graph which has a

vertex cover with < k vertices}

12/2/2021
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Independent Set and Vertex Cover

Claim. S is an independent set iff IV \ S is a vertex cover.

— Let S be any independent set.
* Consider an arbitrary edge (u, v).
* Sisindependent = u g SorveS§S > ueV\ Sorvel'\ S.
* Thus, V' \ S covers (u, v).

— Let V' \ S be any vertex cover.

* Considertwonodesu € Sandv € S.
* Then (u,v) ¢ E since V' \ S is a vertex cover.
* Thus, no two nodes in S are joined by an edge = S is an independent set.
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INDEPENDENT SET reduces to VERTEX COVER

-II:' -
Theorem. IND-SET <, VERTEX-COVER. %'%_EE'
What do we need to do to prove this theorem? i, it e
"L
EI‘!.'-I"—‘I

a) Construct a poly-time nondet. TM deciding IND-SET
b) Construct a poly-time deterministic TM deciding IND-SET

c) Construct a poly-time nondet. TM mapping instances of IND-
SET to instances of VERTEX-COVER

d) Construct a poly-time deterministic TM mapping instances of
IND-SET to instances of VERTEX-COVER

e) Construct a poly-time nondet. TM mapping instances of
VERTEX-COVER to instances of IND-SET

f) Construct a poly-time deterministic TM mapping instances of
VERTEX-COVER to instances of IND-SET



INDEPENDENT SET reduces to VERTEX COVER

Theorem. IND-SET <, VERTEX-COVER.

Proof. The following TM computes the reduction.

“On input (G, k), where G is an undirected graph and k is an
integer,

1. Output (G,n — k), where n is the number of nodes in G.”

Correctness:

* ( has an independent set of size at least k iff it has a vertex
cover of size at most n — k.

Runtime:
e Reduction runs in linear time.
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VERTEX COVER reduces to INDEPENDENT SET

Theorem. VERTEX-COVER <., IND-SET
Proof. The following TM computes the reduction.

“On input (G, k), where G is an undirected graph and k is an
integer,

1. Output (G,n — k), where n is the number of nodes in G.”

Correctness:

* ( has a vertex cover of size at most k iff it has an
independent set of size at least n — k.

Runtime:
e Reduction runs in linear time.
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