BU CS 332 – Theory of Computation

https://forms.gle/z4RnBWnou8DU9Dsu8

Lecture 24:

- NP-completeness example
- Space complexity

Reading:

Sipser Ch 7.4-7.5,

8.1-8.2

Mark Bun

December 7, 2021

NP-completeness review

Definition: A language B is NP-complete if

- 1) $B \in NP$, and
- 2) Every language $A \in NP$ is poly-time reducible to B, i.e., $A \leq_p B$ ("B is NP-hard")

The usual way to prove NP-completeness:

lf

- 1) $C \in NP$, and
- 2) There is an NP-complete language B (e.g., SAT, VERTEX-COVER, IND-SET, ...) such that $B \leq_p C$ then C is NP-complete.

Subset Sum

SUBSET-SUM = $\{\langle w_1, ..., w_m, t \rangle \mid$ there exists a subset of natural numbers $w_1, ..., w_m$ that sum to $t\}$

Theorem: SUBSET-SUM is NP-complete

Claim 1: SUBSET-SUM is in NP

Claim 2: SUBSET-SUM is NP-hard

$3SAT \leq_p SUBSET-SUM$

Goal: Given a 3CNF formula φ on v variables and k clauses, construct a SUBSET-SUM instance w_1, \ldots, w_m, t such that φ is satisfiable iff there exists a subset of w_1, \ldots, w_m that sum to t

First attempt: Encode each literal ℓ of φ as a k-digit decimal number $w_{\ell} = c_1 \dots c_k$ where

$$c_i = \begin{cases} 1 & \text{if } \ell \text{ appears in clause } i \\ 0 & \text{otherwise} \end{cases}$$

Example of the first attempt reduction

$$\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3)$$

$3SAT \leq_p SUBSET-SUM$

First attempt: Encode each literal ℓ of φ as a k-digit decimal number $w_{\ell} = c_1 \dots c_k$ where

$$c_i = \begin{cases} 1 & \text{if } \ell \text{ appears in clause } i \\ 0 & \text{otherwise} \end{cases}$$

Claim: If φ is satisfiable, then there exists a subset of the w_ℓ 's that "digit-wise" add up to "at least" $111 \dots 11$

Two issues:

- 1) Need to enforce that exactly one of ℓ , $\overline{\ell}$ is set to 1
- 2) Need the subset to add up to exactly some target

$3SAT \leq_p SUBSET-SUM$

Actual reduction: Encode each literal ℓ of φ as a (v+k)-digit decimal number $w_{\ell}=b_1\dots b_v | c_1\dots c_k$ where

$$b_i = \begin{cases} 1 \text{ if } \ell \in \{x_i, \overline{x_i}\} \\ 0 \text{ otherwise} \end{cases} \quad c_i = \begin{cases} 1 \text{ if } \ell \text{ appears in clause } i \\ 0 \text{ otherwise} \end{cases}$$

Also, include two copies each of 000...0 | 100...0, 000...0 | 010...0, ... 000...0 | 0...01

Claim: φ is satisfiable if and only if there exists a subset of the numbers that add up to $t = 111 \dots 11 | 333 \dots 33$

Example of the reduction

$$\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3)$$

Reduction: Encode each literal ℓ of φ as a (v+k)-digit decimal number $w_{\ell}=b_1\dots b_v | c_1\dots c_k$ where

$$b_i = \begin{cases} 1 \text{ if } \ell \in \{x_i, \overline{x_i}\} \\ 0 \text{ otherwise} \end{cases} \quad c_i = \begin{cases} 1 \text{ if } \ell \text{ appears in clause } i \\ 0 \text{ otherwise} \end{cases}$$

Also, include two copies each of 000...0|100...0, 000...0|010...0, ... 000...0|0...01

Example of the reduction

$$\varphi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3)$$

A Brief Tour of Space (Complexity)

Space analysis

Space complexity of a TM (algorithm) = maximum number of tape cells it uses on a worst-case input

Formally: Let $f : \mathbb{N} \to \mathbb{N}$. A TM M runs in space f(n) if on every input $w \in \Sigma^n$, M halts on w using at most f(n) cells

For nondeterministic machines: Let $f : \mathbb{N} \to \mathbb{N}$. An NTM N runs in space f(n) if on every input $w \in \Sigma^n$, N halts on w using at most f(n) cells on every computational branch

Space complexity classes

Let
$$f: \mathbb{N} \to \mathbb{N}$$

A language $A \in SPACE(f(n))$ if there exists a basic single-tape (deterministic) TM M that

- 1) Decides A, and
- 2) Runs in space O(f(n))

A language $A \in NSPACE(f(n))$ if there exists a single-tape nondeterministic TM N that

- 1) Decides A, and
- 2) Runs in space O(f(n))

Example: Space complexity of SAT

Theorem: $SAT \in SPACE(n)$

Proof: The following deterministic TM decides SAT using linear space

On input $\langle \varphi \rangle$ where φ is a Boolean formula:

- 1. For each truth assignment to the variables $x_1, ..., x_m$ of φ :
- 2. Evaluate φ on x_1, \dots, x_m
- 3. If any evaluation = 1, accept. Else, reject.

Space vs. Time

$$TIME(f(n)) \subseteq NTIME(f(n))$$
$$\subseteq SPACE(f(n)) \subseteq NSPACE(f(n))$$

How about the opposite direction? Can low-space algorithms be simulated by low-time algorithms?

Reminder: Configurations

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by blanks \sqcup)
- Current state = q
- Tape head on first symbol of v

Example: $101q_50111$

Start configuration: q_0w

Accepting configuration: $q = q_{accept}$

Rejecting configuration: $q = q_{reject}$

Reminder: Configurations

Consider a TM with k states, tape alphabet $\{0, 1\}$, and space bound f(n). How many configurations are possible when this TM is run on an input $w \in \{0,1\}^n$?

- a) 2kn
- b) k+n
- c) $k2^n$
- d) $kn2^n$

Observation: If a TM enters the same configuration twice when run on input w, it loops forever

Corollary: A TM running in space f(n) also runs in time $2^{O(f(n))}$

Space vs. Time

```
TIME(f(n)) \subseteq NTIME(f(n))
\subseteq SPACE(f(n)) \subseteq NSPACE(f(n))
\subseteq TIME(2^{O(f(n))})
```

Now how about the relationship between SPACE and NSPACE?

Savitch's Theorem: Deterministic vs. Nondeterministic Space

Theorem: Let f be a function with $f(n) \ge n$. Then $NSPACE(f(n)) \subseteq SPACE(f(n))^2$.

Proof idea:

- Let N be an NTM deciding A in space f(n)
- We construct a TM M deciding A in space $O\left(\left(f(n)\right)^2\right)$
- Actually solve a more general problem:
 - Given configurations c_1 , c_2 of N and natural number t, decide whether there exists a nondeterministic path N can follow from c_1 to c_2 in $\leq t$ steps.
 - Procedure CANYIELD (c_1, c_2, t)

Savitch's Theorem

Theorem: Let f be a function with $f(n) \ge n$. Then $NSPACE(f(n)) \subseteq SPACE(f(n))^2$.

Proof idea:

• Let N be an NTM deciding A in space f(n)

M = "On input w:

1. Output the result of CANYIELD $(c_1, c_2, 2^{Cf(n)})$ "

Where CANYIELD (c_1, c_2, t) decides whether N can go from configuration c_1 to c_2 in $\leq t$ steps on some nondeterministic path

Savitch's Theorem

CANYIELD (c_1, c_2, t) decides whether N can go from configuration c_1 to c_2 in $\leq t$ steps on some nondeterministic path:

CANYIELD
$$(c_1, c_2, t) =$$

- 1. If t = 1, accept if $c_1 = c_2$ or c_1 yields c_2 in one transition. Else, reject.
- 2. If t > 1, then for each config c_{mid} of N with $\leq f(n)$ cells:
- 3. Run CANYIELD($\langle c_1, c_{mid}, t/2 \rangle$).
- 4. Run CANYIELD($\langle c_{mid}, c_2, t/2 \rangle$).
- 5. If both runs accept, accept.
- 6. Reject.

Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in polynomial space on a basic single-tape (deterministic) TM

$$PSPACE = \bigcup_{k=1}^{\infty} SPACE(n^k)$$

Definition: NPSPACE is the class of languages decidable in polynomial space on a single-tape (nondeterministic) TM

$$NPSPACE = \bigcup_{k=1}^{\infty} NSPACE(n^k)$$

Relationships between complexity classes

1. $P \subseteq NP \subseteq PSPACE \subseteq EXP$ since $SPACE(f(n)) \subseteq TIME(2^{O(f(n))})$

2. P ≠ EXP
 (via time hierarchy)Which containments
 in (1) are proper?
 Unknown!

Course Evaluations

bu.campuslabs.com/courseeval