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Everything from Midterms 1 and 2

* Midterm 1 topics: DFAs, NFAs, regular expressions,
distinguishing set method

(more detail in lecture 8 notes)

* Midterm 2 topics: Turing machines, TM variants, Church-
Turing thesis, decidable languages, countable and
uncountable sets, undecidability, reductions,
unrecognizability

(more detail in lecture 16 notes)
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Mapping Reducibility (5.3)

* Understand the definition of a computable function
* Understand the definition of a mapping reduction

* Know how to use mapping reductions to prove
decidability, undecidability, recognizability, and
unrecognizability

A e, n S vecoguaahle =58 ecoguiable

[A, \lmvt(‘a?nla‘o‘e => /b UN recogn tdhle
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Time aggComplexity (7.1)
* Asymptotic notation: Big-Oh, little-oh

* Know the definition of running time for a TM and of
time complexity classes (TIME / NTIME)

* Understand how to simulate multi-tape TMs and NTMs

using single-tape TMs and know how to analyze the
running time overhead



Pand NP (7.2, 7.3)

* Know the definitions of P and NP as time complexity
classes

* Know how to analyze the running time of algorithms to
show that languages are in P / NP

e Understand the verifier interpretation of NP and why it
is equivalent to the NTM definition

* Know how to construct verifiers and analyze their
runtime



NP-Completeness (7.4, 7.5)

* Know the definition of poly-time reducibility

 Understand the definitions of NP-hardness and NP-
completeness

e Understand the statement of the Cook-Levin theorem
(don’t need to know its proof) <Sax =~ NP- conde e

* Understand several canonical NP-complete problems
and the relevant reductions: SAT, 3SAT, CLIQUE,
INDEPENDENT-SET, VERTEX-COVER, HAMPATH, SUBSET-

SUM



Space Complexity (8.1, 8.2)

* Know the definition of running space for a TM and of
space complexity classes (SPACE / NSPACE)

e Understand the known relationships between space
7comp|exity classes and time complexity classes

e Understand the statement of Savitch’s Theorem

e Know the definitions of PSPACE and NPSPACE and the
relationship between them (:¢. rsrace = NPspAcE)

TTme () € SPACE(LM < TImel 20@"’”)

NGpACE () € SUACE ((im)°)
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Hierarchy Theorems (9.1)

* Formal statements of time and space hierarchy
theorems and how to apply them

* How to use hierarchy theorems to prove statements like
P + EXP

Eg. THT  flw: o2 ) =

|03 9 (n)
TIME(£)) < TImE(g (n)) and

TIme! glay) 7{ T e (£in)

i N@ef coapacHy’s T Twme (€1a)) g}_ Timl:‘(q(w)):}
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Things we didn’t get to talk about

e Additional classes between NP and PSPACE (polynomial
hierarchy)

* Logarithmic space

 Relativization and the limits of diagonalization
* Boolean circuits

* Randomized algorithms / complexity classes

* Interactive and probabilistic proof systems

* Complexity of counting

https://cs-people.bu.edu/mbun/courses/535 F20/
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Theory and Algorithms Courses after 332

* Algorithms

e CS530/630 (Advanced algorithms)
e CS 531 (Optimization algorithms)
e CS 537 (Randomized algorithms)

* Complexity

e CS 535 (Complexity theory)
* Cryptography

e CS 538 (Foundations of crypto)
* Topics (CS 591)

E.g., Privacy in machine learning, algorithms and society,
sublinear algorithms, new developments in theory of
computing, communication complexity



Algorithms and Theory Research Group

e https://www.bu.edu/cs/research/theory/

* Weekly seminar: Mondays at 11
https://www.bu.edu/cs/algorithms-and-theory-seminar/

Great way to learn about research in theory of
computation!
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Tips for Preparing Exam
Solutions
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Designing (nondeterministic) time/space-
bounded deciders

The following algorithm decides EC in polynomial time:

Hi‘-l\'\ \Q\e\ “On input (A, C, e, p), four binary integers:

" 1. Let r « 1.
AOSL (R0

6. If C =r mod p, accept; otherwise reject.”
) /Fhe algorithm is called repeated squaring.

e
=« favakion .
L « Let T(d) denote a polynomial upper bound on the running time of basic procedures
O-(' (W‘M for multiplication and modular operations on d-bit numbers. Then steps 4 and 5 of
h N ‘\ > hoe the algorithm each take at most O(T(log A) + T'(logp)) time because r is never larger
S WA 9 than p. In addition, the total number of multiplication and modular operations is

(1‘ waS haA\ - O(k) = O(loge). Therefore, the total running time of the algorithm is polynomial
- / in O((loge) - (T'(log A) + T'(log p))) which is polynomial in n. Hence, the total running
time is polynomial. Note that without performing mod p operation in Steps 4 and 5,

E 4plaatar of \nyatime

* Key components: High-level description of algorithm, explanation of
correctness, analysis of running time and/or space usage
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Designing NP verifiers

For simplicity in analyzing our algorithm, suppose each S; be encoded as an n bit string,
where the j’th bit is set to 1 if j € S; and is set to 0 otherwise. We will use a similar encoding
for our certificate.

o We give a poly-time verifier for M.S as follows. The certificate is a set T encoded as an n bit
(Q"\-‘ (X | |< string with at most k 1's. Our verifier is as follows.
“On input (Sy,...,! Smsn, k; T):

1. Scan T to check that it encodes a list of at most k distinct elements of [n]. Reject if not.

\[e{' L’v 2 Fori=1,..., m:

3. Scan S; and scan T to check that they intersect. If not, Reject
4. Accept”
T( orrectness: If (Sy,...,S8,.n.k) € MS, then there exists a set T of size at most k that

intersects every set. The certificate which encodes this set will result in the algorithm suc-
cessfully passing every check in step 3, so the algorithm will accept. On the other hand, if
{S1,...,4 Sm.n. k) € M S, then every set of size at most k will fail to intersect at least one S;,
[ so every certificate will lead to rejection.

S’

Ceflawn -Corpechne

Runtime: The encoding we are using for each set ensures that the length of the input is at
least mn. Describing a certificate T takes n bits, which is hence polynomial in the input

-
E‘?‘a W 90‘ 9 length. The loop in step 2 runs for m steps and the loop in step 3 runs for O(n®) steps, so
the total runtime of the algorithm is O(mn?). This is polynomial in the input length, which

v‘ \U\"'\W again, is at least mn.

* Key components: Description of certificate, high-level description of
algorithm, explanation of correctness, analysis of running time
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NP-completeness proofs

To show a language L is NP-complete:
1) Show L is in NP (follow guidelines from previous two slides)

2) Show L is NP-hard (usually) by giving a poly-time reduction
A <, L for some NP-complete language A

* High-level description of algorithm computing reduction

* Explanation of correctness: Why isw € A iff f(w) € L for
your reduction f?

e Analysis of running time
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Practice Problems
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Use a mapping reduction to show that
ALLty = {(M)|MisaTMand L(M) = X*}is
co-unrecognizable
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Use a mapping reduction to show that
ALLty = {(M)|MisaTMand L(M) = X*}is
unrecognizable
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Give examples of the following languages: 1) A language
in P. 2) A decidable language that is notin P. 3) A
language for which it is unknown whether it is in P.
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Give an example of a problem that is solvable in
polynomial-time, but which is not in P
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Let L =
{{wy, w,)|3 strings x, y, z such that w; = xyz
and w, = xyRz}. Show that L € P.
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Which of the following operations is P closed
under? Union, concatenation, star, intersection,
complement.

12/9/2021 CS332 - Theory of Computation 30



Prove that LPATH =
{{G, s, t, k)|G is an directed graph containing
a simple path from s to t of length > k} isin NP
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Prove that LPATH is NP-hard
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Which of the following operations is NP closed
under? Union, concatenation, star, intersection,
complement.
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Which of the following statements are true?

£ ghal
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