Homework 3 – Due Thursday, September 29, 2022 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without assistance, and be ready to explain them orally to the course staff if asked. You must also identify your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Problems There are 6 required problems and one bonus problem.

1. **(Closure properties)**

 (a) Given languages A, B, define the language $MIX(A, B)$ by

 $$MIX(A, B) = \{x_1y_1x_2y_2 \ldots x_ny_n \mid n \geq 0, x_i \in A, y_i \in B\}.$$

 Note that each x_i, y_i is a *string*. Show that the class of regular languages is closed under MIX.

 Hint: You don’t need to construct an NFA recognizing $MIX(A, B)$ if you can find a way to express it in terms of other operations.

 (b) Given a language A over alphabet Σ, define the language $TAIL(A) = \{y \in \Sigma^* \mid xy \in A \text{ for some } x \in \Sigma^*\}$. Show that the regular languages are closed under $TAIL$.

2. **(Regex to description)**

 (a) Give plain English descriptions of the languages generated by each of the following regular expressions

 (b) $1(000)^*1$

 (c) $a(ba)^*b$

 (d) \emptyset^*

 (e) $(\emptyset \cup \varepsilon)^*$

3. **(Regular expressions vs. finite automata)**

 Please log on to AutomataTutor to submit solutions for this question.

 (a) **(Description to regex)**

 i. $\{w \in \{0, 1\}^* \mid w \text{ has exactly two 0’s and at least one 1}\}$

 ii. $\{w \in \{0, 1\}^* \mid w \text{ is not the string 01}\}$

 iii. $\{w \in \{0, 1\}^* \mid \text{the number of 1’s in } w \text{ is divisible by 3}\}$

 (b) **(Regex to NFA)**

 Use the procedure described in class (also in Sipser, Lemma 1.55) to convert $(AT \cup TA \cup CG \cup GC)^*$ to an equivalent NFA. Simplify your NFA.

 (c) **(NFA to regex)**

 Convert the following NFA to an equivalent regular expression.
4. (Conversion procedures as algorithms) Consider the following pseudocode describing an algorithm taking as input a regex and outputting the description of an equivalent NFA.

\[\text{RegexToNFA}(R) \]

Input: Regular expression \(R \)

Output: Equivalent NFA \(N \)

if \(R = \emptyset \) then
 return NFA.emptyLanguage();
else if \(R = \varepsilon \) then
 return NFA.emptyString();
else if \(R = a \) then
 return NFA.symbol(a);
else if \(R = R_1 \cup R_2 \) then
 return NFA.union(RegexToNFA(R_1), RegexToNFA(R_2));
else if \(R = R_1 \circ R_2 \) then
 return NFA.concatenate(RegexToNFA(R_1), RegexToNFA(R_2));
else if \(R = R_1^* \) then
 return NFA.star(RegexToNFA(R_1));

Here, you can assume that the subroutines NFA.emptyLanguage(), NFA.emptyString(), and NFA.symbol(a) return NFAs recognizing the languages \(\emptyset \), \(\{\varepsilon\} \), \(\{a\} \), respectively, as described in Sipser’s proof of Lemma 1.55 or in Lecture 6, slide 5. Moreover, NFA.union\((N_1, N_2)\) takes as input two NFAs and outputs the NFA recognizing \(L(N_1) \cup L(N_2) \) described in Sipser’s proof of Theorem 1.45, and similarly for NFA.concatenate and NFA.star.

(a) If \(N_1 \) and \(N_2 \) are NFAs with \(s_1 \) and \(s_2 \) states, respectively, how many states does NFA.union\((N_1, N_2)\) have? How about NFA.concatenate\((N_1, N_2)\)? NFA.star\((N_1)\)?

(b) Define the size of a regular expression \(R \) to be the number of appearances of \(\emptyset, \varepsilon, \cup, \circ, * \) and alphabet symbols in \(R \). If \(R \) is a regular expression of size 1, what is the maximum number of states in RegexToNFA\((R)\)?

(c) For a natural number \(k \), let \(S(k) \) be the maximum number of states RegexToNFA\((R)\) can have over all regexes \(R \) of size \(k \). Prove by (strong) induction on \(k \) that \(S(k) \leq 2k \).

Now consider the following pseudocode describing an algorithm taking as input an NFA and outputting an equivalent regex.

(d) Suppose the starting NFA \(N \) has exactly one symbol labeling each transition present in its state diagram. (This simplifying assumption makes the calculations cleaner, and in particular, independent of the alphabet size.)
NFAtoRegex(N)

Input: NFA N

Output: Equivalent regular expression R

\[M_0 \leftarrow \text{NFAtoGNFA}(N); \]

\[k \leftarrow \text{number of states of } M_0; \]

\[\text{for } i \leftarrow 1 \text{ to } k - 2 \text{ do} \]

\[\text{Obtain } M_i \text{ from } M_{i-1} \text{ by ripping out state } q_i \text{ and updating transitions appropriately;} \]

\[\text{end} \]

return the regex labeling the transition from \(q_0 \) to \(q_{\text{accept}} \) in \(M_{k-2} \);

Let \(\ell(i) \) be the maximum possible size of a regular expression appearing on any transition in \(M_i \). Prove by induction on \(i \) that \(\ell(i) \leq 4^{i+1} - 3 \).

(e) Show that if \(N \) is an NFA with \(s \) states, then NFAtoRegex(\(N \)) is a regular expression of size at most \(4^s + 1 \).

5. **(Distinguishing set method)**

(a) Let \(REP_2 = \{ww \mid w \in \{0,1\}^2\} \). Show that \(S = \{00,01,10,11\} \) is pairwise distinguishable by \(REP_2 \). That is, for every pair \(x, y \in S \), argue that there is a string \(z \) such that exactly one of \(xz \) and \(yz \) is in \(REP_2 \).

(b) What does part (a) tell you about the smallest number of states a DFA recognizing \(REP_2 \) can have? Explain your answer.

(c) For any \(k \geq 1 \), let \(REP_k = \{ww \mid w \in \{0,1\}^k\} \). Show that every DFA recognizing \(REP_k \) requires at least \(2^k \) states.

(d) Show that every NFA recognizing \(REP_k \) requires at least \(k \) states.

6. **(Individual Review: NO COLLABORATION PERMITTED)** Let \(S \) be the set of all languages \(L \) such that every string in \(L \) has length at least 2. Define the operation \(\text{swap}(L) \) that produces a new language by swapping the first and last characters of every string in \(L \). For example, \(\text{swap}\{aab, bbb, abbab\} = \{bba, bbb, bbbaa\} \).

For each of the following statements, either provide a proof or give a counterexample and justify why it’s a counterexample.

(a) For all \(L \in S \), \(\text{swap}(L) \in S \).

(b) For all \(L \in S \), \(\text{swap}(L^R) = (\text{swap}(L))^R \).

(c) For all \(L_1, L_2, \in S \), \(\text{swap}(L_1 \circ L_2) = \text{swap}(L_2) \circ \text{swap}(L_1) \).

7. **(Bonus Problem)** Prove that for every natural number \(n \), there is a language \(B_n \) such that a) \(B_n \) is recognizable by an NFA with \(n + 1 \) states, but b) If \(B_n = A_1 \cup \cdots \cup A_k \) for regular languages \(A_1, \ldots, A_k \), then at least one of the languages \(A_i \) requires a DFA with at least \(2^{n/k} \) states.