
CS 332: Theory of Computation Prof. Mark Bun
Boston University September 22, 2022

Homework 3 – Due Thursday, September 29, 2022 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without as-
sistance, and be ready to explain them orally to the course staff if asked. You must also identify
your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from
outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Problems There are 6 required problems and one bonus problems.

1. (Closure properties)

(a) Given languages A,B, define the language MIX(A,B) by

MIX(A,B) = {x1y1x2y2 . . . xnyn | n ≥ 0, xi ∈ A, yi ∈ B}.

Note that each xi, yi is a string. Show that the class of regular languages is closed under MIX.
Hint: You don’t need to construct an NFA recognizing MIX(A,B) if you can find a way to
express it in terms of other operations.

(b) Given a language A over alphabet Σ, define the language TAIL(A) = {y ∈ Σ∗ | xy ∈
A for some x ∈ Σ∗}. Show that the regular languages are closed under TAIL.

2. (Regex to description) Give plain English descriptions of the languages generated by each of the
following regular expressions

(a) (a ∪ b)∗ ∪ c∗

(b) 1(000)∗1

(c) a(ba)∗b

(d) ∅∗

(e) (∅ ∪ ε)∗

3. (Regular expressions vs. finite automata) Please log on to AutomataTutor to submit solutions
for this question.

(a) (Description to regex) Give regular expressions generating the following languages:

i. {w ∈ {0, 1}∗ | w has exactly two 0’s and at least one 1}
ii. {w ∈ {0, 1}∗ | w is not the string 01}
iii. {w ∈ {0, 1}∗ | the number of 1’s in w is divisible by 3}.

(b) (Regex to NFA) Use the procedure described in class (also in Sipser, Lemma 1.55) to convert
(AT ∪ TA ∪ CG ∪ GC)∗ to an equivalent NFA. Simplify your NFA.

(c) (NFA to regex) Convert the following NFA to an equivalent regular expression.

1



q2

q0start q1

ε

B

A
A

A

4. (Conversion procedures as algorithms) Consider the following pseudocode describing an algo-
rithm taking as input a regex and outputting the description of an equivalent NFA.

RegexToNFA(R)
Input : Regular expression R
Output: Equivalent NFA N
if R = ∅ then

return NFA.emptyLanguage();
else if R = ε then

return NFA.emptyString();
else if R = a then

return NFA.symbol(a);
else if R = R1 ∪R2 then

return NFA.union(RegexToNFA(R1), RegexToNFA(R2));
else if R = R1 ◦R2 then

return NFA.concatenate(RegexToNFA(R1), RegexToNFA(R2));
else if R = R∗

1 then
return NFA.star(RegexToNFA(R1));

Here, you can assume that the subroutines NFA.emptyLanguage(), NFA.emptyString(), and NFA.symbol(a)
return NFAs recognizing the languages ∅, {ε}, {a}, respectively, as described in Sipser’s proof of
Lemma 1.55 or in Lecture 6, slide 5. Moreover, NFA.union(N1, N2) takes as input two NFAs
and outputs the NFA recognizing L(N1) ∪ L(N2) described in Sipser’s proof of Theorem 1.45, and
similarly for NFA.concatenate and NFA.star.

(a) IfN1 andN2 are NFAs with s1 and s2 states, respectively, how many states does NFA.union(N1,
N2) have? How about NFA.concatenate(N1, N2)? NFA.star(N1)?

(b) Define the size of a regular expression R to be the number of appearances of ∅, ε,∪, ◦,∗ and
alphabet symbols in R. If R is a regular expression of size 1, what is the maximum number
of states in RegexToNFA(R)?

(c) For a natural number k, let S(k) be the maximum number of states RegexToNFA(R) can have
over all regexes R of size k. Prove by (strong) induction on k that S(k) ≤ 2k.

Now consider the following pseudocode describing an algorithm taking as input an NFA and out-
putting an equivalent regex.

(d) Suppose the starting NFA N has exactly one symbol labeling each transition present in its
state diagram. (This simplifying assumption makes the calculations cleaner, and in particular,
independent of the alphabet size.)

2



NFAtoRegex(N)
Input : NFA N
Output: Equivalent regular expression R
M0 ← NFAtoGNFA(N);
k ← number of states of M0;
for i← 1 to k − 2 do

Obtain Mi from Mi−1 by ripping out state qi and updating transitions appropriately;
end
return the regex labeling the transition from q0 to qaccept in Mk−2;

Let ℓ(i) be the maximum possible size of a regular expression appearing on any transition in
Mi. Prove by induction on i that ℓ(i) ≤ 4i+1 − 3.

(e) Show that if N is an NFA with s states, then NFAtoRegex(N) is a regular expression of size
at most 4s+1.

5. (Distinguishing set method)

(a) Let REP2 = {ww | w ∈ {0, 1}2}. Show that S = {00, 01, 10, 11} is pairwise distinguishable by
REP2. That is, for every pair x, y ∈ S, argue that there is a string z such that exactly one of
xz and yz is in REP2.

(b) What does part (a) tell you about the smallest number of states a DFA recognizing REP2 can
have? Explain your answer.

(c) For any k ≥ 1, let REPk = {ww | w ∈ {0, 1}k}. Show that every DFA recognizing REPk

requires at least 2k states.

(d) Show that every NFA recognizing REPk requires at least k states.

6. (Individual Review: NO COLLABORATION PERMITTED) Let S be the set of all lan-
guages L such that every string in L has length at least 2. Define the operation swap(L) that
produces a new language by swapping the first and last characters of every string in L. For exam-
ple, swap({aab, bbb, abbab}) = {baa, bbb, bbbaa}.
For each of the following statements, either provide a proof or give a counterexample and justify
why it’s a counterexample.

(a) For all L ∈ S, swap(L) ∈ S.

(b) For all L ∈ S, swap(LR) = (swap(L))R.

(c) For all L1, L2,∈ S, swap(L1 ◦ L2) = swap(L2) ◦ swap(L1).

7. (Bonus Problem) Prove that for every natural number n, there is a language Bn such that a) Bn

is recognizable by an NFA with n + 1 states, but b) If Bn = A1 ∪ · · · ∪ Ak for regular languages
A1, . . . , Ak, then at least one of the languages Ai requires a DFA with at least 2n/k states.

3


