
CS 332: Theory of Computation Prof. Mark Bun
Boston University October 25, 2022

Homework 6 – Due Thursday, October 28, 2022 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without as-
sistance, and be ready to explain them orally to the course staff if asked. You must also identify
your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from
outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Note You may use various generalizations of the Turing machine model we have seen in class, such as
TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization,
state clearly and precisely what model you are using.

Problems There are 4 required problems.

1. (Midterm feedback survey) Please fill out the mid-semester feedback form here https://forms.
gle/WsL8GHRSw2X9LntD7 to let us know what’s working, what isn’t working, and what we can do
to improve. (You’ll earn a bit of participation credit for acknowledging that you completed it in
response to this question, but the survey is anonymous, so it’s on the honor system.)

2. (Nondeterministic Turing machines)

(a) Give a high-level description of a nondeterministic (multi-tape) TM recognizing the follow-
ing language over {0, 1,#}: {s#a1#a2# . . .#an | where n is a positive integer, a1, . . . , an are
binary integers such that some subset of a1, . . . , an sums to exactly s}.
Note: It is possible to do this with a deterministic TM, but we want to give you practice with
the concept of nondeterminism. So your solution must use an NTM’s ability to nondetermin-
istically guess in a meaningful way.

(b) Given a Turing machine M , give a high-level description of a nondeterministic (multi-tape)
TM recognizing (L(M))∗. Again, your solution must use nondeterminism in a meaningful way.

(c) Explain why part (b) implies that the Turing-recognizable languages are closed under star.

(d) Explain (briefly) how you would modify your previous construction and its analyses to show
that the decidable languages are closed under star.

Hint: Recall that a nondeterministic TM is a decider if it halts on every input, on every
computation branch. The class of languages decided by NTMs is exactly the class of decidable
languages.

1

https://forms.gle/WsL8GHRSw2X9LntD7
https://forms.gle/WsL8GHRSw2X9LntD7


3. (Code as data) The goal of this problem is to help you get comfortable with the idea of Turing
machines taking descriptions of other Turing machines as input. Consider the following description
of a three-tape TM H.

Algorithm 1: H(⟨M,w⟩)
Input : Encoding of a basic single-tape TM M and a string w ∈ {A,B, . . . ,Z}∗

1. Copy the the string w to tape 2.

2. Repeat the following three steps forever:

3. Simulate M for one step on tape 2.

4. Erase the contents of tape 3. Copy the contents of tape 2 to tape 3, and check if the
substring “TURING” appears on tape 3. If it does, accept. Otherwise, continue.

5. If M halts (in either an accept or reject state), reject. Otherwise, continue.

(a) Let M1 be the following (uninteresting) TM. Is ⟨M1, ε⟩ ∈ L(H)? Explain why or why not.

Algorithm 2: M1(x)

Input : String x ∈ {A, . . . ,Z}∗
1. Write “ALANTURINGWASHERE” to the tape and reject.

(b) Let M2 be the following TM. Is ⟨M2,LAMBDA⟩ ∈ L(H)? Explain why or why not.

Algorithm 3: M2(x)

Input : String x ∈ {A, . . . ,Z}∗
1. Scan the input string x left-to-right, replacing every “A” with “U” and every “I” with “O”.

Accept if the last symbol of x is “Z”.
Otherwise, reject.

(c) Is ⟨M2,PUTARINGONIT⟩ ∈ L(H)? Explain why or why not.

(d) What is the language L(H) recognized by H?

(e) Is H a decider for the language L(H)? Explain why or why not.

4. (SUBDFA,REX) Consider the following computational problem: Given a DFA D and a regular
expression R, is the language recognized by D a subset of the language generated by R?

(a) Formulate this problem as a language SUBDFA,REX.

(b) Show that SUBDFA,REX is decidable.

Hint: Following the examples in Sipser Chapter 4.1, you may assume that the procedures
we’ve seen in class for converting back and forth between automata and regular expressions
can be implemented on Turing machines.

2


