
CS 332: Theory of Computation Prof. Mark Bun
Boston University November 29, 2022

Homework 9 – Due Thursday, December 8, 2022 at 11:59 PM

Reminder Collaboration is permitted, but you must write the solutions by yourself without as-
sistance, and be ready to explain them orally to the course staff if asked. You must also identify
your collaborators and write “Collaborators: none” if you worked by yourself. Getting solutions from
outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Note You may use various generalizations of the Turing machine model we have seen in class, such as
TMs with two-way infinite tapes, stay-put, or multiple tapes. If you choose to use such a generalization,
state clearly and precisely what model you are using.

Problems There are 5 required problems.

1. (Hierarchy Theorems) For this problem, you can assume without proof that any reasonable-
looking function is time-constructible.

(a) Show that P ⊆ TIME(2n).

(b) Use the time hierarchy theorem to show that EXP ̸⊆ TIME(2n).

(c) Combine parts (b) and (c) to conclude that P ̸= EXP.

2. (Protein Folding) In the translation stage of protein biosynthesis, a ribosome decodes mRNA to
produce a chain of amino acids (a polypeptide). This polypeptide then folds into an active protein
in order to perform a biological function in the cell.

Here we describe a massive simplification of the problem of determining whether a polypeptide can
fold into a stable protein. For us, a polypeptide is a string s ∈ {0, 1}k for some natural number
k. (The 1’s correspond to hydrophobic amino acids and the 0’s correspond to hydrophilic ones.)
A folding is an embedding of the indices 1, . . . , k into a two-dimensional k × k grid. Formally, a
folding is a function f : [k] → [k]× [k] with the following two properties:

1) Consecutive indices always map to adjacent grid cells. Formally, for every i = 1, 2, . . . , k − 1, if
f(i) = (x, y) we have f(i+ 1) ∈ {(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)}, and
2) The function f is one-to-one (injective), i.e., it never maps two different indices to the same grid
cell. Formally, for every i ̸= j, we have f(i) ̸= f(j).

If you’ve ever played the game “snake”, all this is saying is that the sequence of cells f(1), f(2), . . . , f(k)
form a snake that does not intersect itself.

(a) Is the function f : [4] → [4] × [4] defined by f(1) = (2, 2), f(2) = (2, 3), f(3) = (3, 3), f(4) =
(3, 4) a valid folding? It may help to draw the picture and see if it forms a snake.

(b) Let s ∈ {0, 1}k be a polypeptide, f : [k] → [k]× [k] be a folding, and d be a natural number.
We say f is a d-stable folding if there are at least d “hydrophobic bonds,” which are distinct
pairs of indices i < j such that si = sj = 1 and f(i) and f(j) are adjacent cells in the grid.

For example, let s = 10110 and let f(1) = (1, 2), f(2) = (1, 3), f(3) = (2, 3), f(4) = (2, 2), f(5) =
(2, 1). Explain why f is a 2-stable folding for s.

1

(c) Define the language SF = {⟨s, d⟩ | there exists a d-stable folding of s}. Prove that SF is in
NP by showing that it can be decided by nondeterministic TM in polynomial time. Be sure to
describe your NTM, explain why it is correct, and explain why it halts in poly-time on every
computational branch.

3. (NP-Completeness Mad-Libs) Given m nutrients and a menu of n food items supplying those
nutrients, you wish to determine whether there is a small set of food items that will supply you
with all of the nutrition you need. Specifically, each food item i = 1, . . . , n supplies you with
a set Si ⊆ [m] of nutrients. A valid diet is a collection T of foods that, taken together, sup-
ply you with all m nutrients: ∪i∈TSi = [m]. Define the language DIET = {⟨S1, . . . , Sn, k⟩ |
there exists a valid diet T ⊆ [n] of size |T | ≤ k}.
This problem will walk you through a proof that DIET is NP-complete.

(a) We’ll first argue that DIET ∈ NP by describing a poly-time verifier. A certificate is (i) .
On input ⟨S1, . . . , Sn, k⟩, the verifier checks that |T | ≤ k and that ∪i∈TSi = [m] and accepts if
and only if this is the case. (For brevity, we’re omitting the proof of correctness and runtime
analysis that would ordinarily go here.)

Fill in the blank labeled (i) with a description of what a certificate for this problem should
look like.

(b) Now we will argue that DIET is NP-hard by giving a reduction showing V ERTEX −
COV ER ≤p DIET . Recall that a vertex cover of a graph G is a set of vertices T such that
every edge in the graph is incident to at least one vertex in T . The language V ERTEX −
COV ER = {⟨G, k⟩ | G has a vertex cover of size at most k}.
In the reduction described below, fill in the blank labeled (ii) with a description of what the
algorithm computing the reduction should output.

Algorithm: Vertex Cover to Diet Reduction

Input : ⟨G, k⟩ where G = (V,E) is a graph and k ∈ N
1. Relabel the vertices and edges of the graph so that V = [n] and E = [m].

2. For each i = 1, . . . , n:
Let Si = {j ∈ [m] | edge j is incident to vertex i}

3. Output (ii) .

Your job is now done, but here are explanations of correctness and runtime for this reduction.

Correctness: If ⟨G, k⟩ ∈ V ERTEX−COV ER, then there exists a set T of at most k vertices
such that every edge in the graph is incident to a member of T . After relabeling, that means
T is a collection of food items such that every nutrient in [m] appears in at least one of the
sets Si, so T is a valid diet of size at most k. Conversely, if there is a valid diet T of size at
most k in the instance of DIET produced, then T corresponds to a set of vertices such that
every edge in G is incident to a member of T , and hence ⟨G, k⟩ ∈ V ERTEX − COV ER.

Runtime: Suppose for concreteness that we are working with the adjacency list representation
of G. Inside the main loop of step 2, constructing each set Si takes time linear in the m, the
number of edges of the graph. So overall, the algorithm runs in time O(nm+ log k) which is
polynomial in the description length of the input.

2

4. (Satisfiability)

(a) Let φ(x, y, z) = (x ∧ y) ∨ (x ∧ z). Is φ satisfiable? If so, exhibit a satisfying assignment.
Otherwise, explain why it is not satisfiable.

(b) Let ψ(x, y, z) = (x∨ y)∧ (x∨ y)∧ (x∨ z)∧ (x∨ z). Is ψ satisfiable? If so, exhibit a satisfying
assignment. Otherwise, explain why it is not satisfiable.

(c) Define the languageXSAT = {⟨φ1, φ2⟩ | there exists an assignment x satisfying exactly one of φ1, φ2}.
Show that XSAT is in NP by describing a deterministic poly-time verifier. Briefly analyze
its correctness and runtime.

(d) Show that SAT ≤p XSAT . Your reduction should include an explanation of correctness and
an explanation of why it runs in deterministic polynomial time. Finally, explain how you
can conclude from this that XSAT is NP-complete.

5. (Boolean Roots) Let p(x1, . . . , xn) be an n-variate polynomial with integer coefficients. A boolean
root of p is point (b1, . . . , bn) ∈ {0, 1}n such that p(b1, . . . , bn) = 0. For example, (0, 1, 1) is
a boolean root of the polynomial 7x21 + 2x2x3 − 2x83. Define the language BROOT = {⟨p⟩ |
p is an integer polynomial that has at least one boolean root}.

(a) Explain why BROOT ∈ NP by either describing a poly-time NTM or a deterministic veri-
fier. In an effort to keep this assignment from getting too long, you do not need to analyze
correctness or runtime of your algorithm as long as those are reasonably clear.

(b) Show that 3SAT ≤p BROOT and conclude that BROOT is NP-complete.

Hint: First determine how to transform a single clause u ∨ v ∨ w into a polynomial p(u, v, w)
such that p(u, v, w) = 0 iff at least one of u, v, w is set to 1. Then create a polynomial q that
evaluates to 0 if and only if all of its inputs are 0. Finally, use q to combine the individual
polynomials that correspond to the clauses of your 3SAT instance.

6. (Bonus) In a directed graph, the indegree of a node is the number of incoming edges and the
outdegree of a node is the number of outgoing edges. Show that the following problem is NP-
complete. Given an undirected graph G and a subset S of the nodes in G, determine whether it
possible to convert G to a directed graph by assigning directions to each of its edges so that every
node in S has indegree 0 or outdegree 0, and all remaining nodes in G have indegree at least 1.

3

