BU CS 332 – Theory of Computation

https://forms.gle/joN5KwcKrauQLFAL7

Lecture 3:

- Deterministic Finite Automata
- Non-deterministic FAs

Reading: Sipser Ch 1.1-1.2

Mark Bun September 13, 2022

Last Time

- Parts of a theory of computation: Model for machines, model for problems, theorems relating machines and problems
- Strings: Finite concatenations of symbols
- Languages: Sets L of strings
- Computational (decision) problem: Given a string x, is it in the language L?

Languages

Languages = computational (decision) problems

Input: String $x \in \Sigma^*$

Output: Is $x \in L$? (YES or NO?)

The language **recognized** by a program is the set of strings $x \in \Sigma^*$ that it *accepts*

Alphabet
$$\Sigma = \{a, b\}$$
 $X = abbab$

on input $x = x_1x_2...x_n$:

flag = FALSE

if and only if On input $x = x_1x_2...x_n$:

flag = FALSE

if $x_i = b$:

If $x_i = b$:

Larguage recognized by flag = !flag

flag = Iflag

 $\{x \in \{a, b\}^{3}\}$
 $\{x \in$

Deterministic Finite Automata

A (Real-Life?) Example

- Example: Kitchen scale
- P = Power button (ON / OFF)

- U = Units button (cycles through g / oz / lb)
 Only works when scale is ON, but units remembered when scale is OFF
- Starts OFF in g mode
- A computational problem: Does a sequence of button presses in $\{P, U\}^*$ leave the scale ON in OZ mode?

Machine Models

• Finite Automata (FAs): Machine with a finite amount of unstructured memory

- 1) How does the control start?
- 2) What are the different "states" that the control can be in?
- 3) When the control reads an new input character, how does it transition to a new state?
- How do I know if I'm in the desired state at the end?

A DFA for the Kitchen Scale Problem

A DFA Recognizing Parity

The language recognized by a DFA is the set of inputs on which it ends in an "accept" state

Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

 $\Sigma = \{a, b\}$ $L = \{w \mid w \text{ contains an even number of } a's\}$

Anatomy of a DFA

9/13/2022

CS332 - Theory of Computation

Some Tips for Thinking about DFAs

Given a DFA, what language does it recognize?

- Try experimenting with it on short strings. Do you notice any patterns?
- What kinds of inputs cause the DFA to get trapped in a state?

Given a language, construct a DFA recognizing it

- Imagine you are a machine, reading one symbol at a time, always prepared with an answer
- What is the essential information that you need to remember? Determines set of states.

What language does this DFA recognize?

Practice!

- Lots of worked out examples in Sipser
- Automata Tutor: https://automata-tutor.model.in.tum.de/

Formal Definition of a DFA

A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Q is the set of states $Q = \{q_0, q_1, q_2\}$

 Σ is the alphabet $\Sigma = \{a,b\}$ $\delta: Q \times \Sigma \to Q$ is the transition function

 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

A DFA for Parity

Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

$$\Sigma = \{a, b\}$$
 $L = \{w \mid w \text{ contains an even number of } a's\}$

State set
$$Q = \{40, 4, \}$$

Alphabet $\Sigma = \{4, 6\}$

Transition function $\delta : \mathcal{O} \times \mathbb{Z} \to \mathcal{O}$

		Sub adobt 24 Miles	
	δ	а	b
1	\overline{q}_0	9,	40
	q_1	90	41

Start state q_0

Set of accept states $F = \{q_{\mathfrak{o}}\}$

Formal Definition of DFA Computation

```
GUYTON AND HALL
TEXTBOOK OF MEDICAL
PHYSIOLOGY
THIRTEENTH EDITION
JOHN E. HALL
```

A DFA $M=(Q,\Sigma,\delta,q_0,F)$ accepts a string $w=w_1w_2\cdots w_n\in\Sigma^*$ (where each $w_i\in\Sigma$) if there exist $r_0,\ldots,r_n\in Q$ such that

- 1. $r_0 = q_0$ 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each i = 0, ..., n-1, and 3. $r_n \in F$
 - L(M) = the language of machine M "the language was a significant of all strings machine M accepts M recognizes the language L(M)

Example: Computing with the Parity DFA

Let
$$w = abba$$
Does M accept w ?

What is $\delta(r_2, w_3)$?

- a) q_0

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string

 $w = w_1 w_2 \cdots w_n \in \Sigma^*$ (where each $w_i \in \Sigma$) if there exist

 $r_0, \ldots, r_n \in Q$ such that

$$-1.$$
 $r_0 = q_0$

 $r_0 = q_0$ $r_1 = S(r_0, w_1) = S(q_0, a) = q_1$ $r_2 = S(r_1, w_2) = S(q_1, b) = q_1$

$$\rightarrow 3. \quad r_n \in F$$

 $5. \quad \delta(r_i, w_{i+1}) = r_{i+1} \text{ for each } i = 0, ..., n-1, \text{ and}$ $5. \quad r_n \in F$ $5. \quad \delta(r_i, w_{i+1}) = r_{i+1} \text{ for each } i = 0, ..., n-1, \text{ and}$ $5. \quad \delta(r_i, w_{i+1}) = r_{i+1} \text{ for each } i = 0, ..., n-1, \text{ and}$ $5. \quad \delta(r_i, w_{i+1}) = r_{i+1} \text{ for each } i = 0, ..., n-1, \text{ and}$ $5. \quad \delta(r_i, w_{i+1}) = r_{i+1} \text{ for each } i = 0, ..., n-1, \text{ and}$ $5. \quad \delta(r_i, w_{i+1}) = r_{i+1} \text{ for each } i = 0, ..., n-1, \text{ and}$ $5. \quad \delta(r_i, w_{i+1}) = r_{i+1} \text{ for each } i = 0, ..., n-1, \text{ and}$ $5. \quad \delta(r_i, w_i) = \delta(r_i, w$ CS332 - Theory of Computatio

9/13/2022

Regular Languages

<u>Definition</u>: A language is regular if it is recognized by a DFA

```
L = \{ w \in \{a, b\}^* \mid w \text{ has an even number of } a'\text{s} \} \text{ is regular}

L = \{ w \in \{0,1\}^* \mid w \text{ contains } 001 \} \text{ is regular}
```

Many interesting problems are captured by regular languages

NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC

Internet Transmission Control Protocol

Let TCPS = $\{ w \mid w \text{ is a complete TCP Session} \}$ Theorem: TCPS is regular

Compilers

Comments:

```
Are delimited by /* */
Cannot have nested /* */
Must be closed by */
*/ is illegal outside a comment
```

COMMENTS = {strings over $\{0,1,/,*\}$ with legal comments}

Theorem: COMMENTS is regular

Genetic Testing

DNA sequences are strings over the alphabet {A, C, G, T}.

A gene g is a special substring over this alphabet.

$$e.q.$$
 $g = CAT$

A genetic test searches a DNA sequence for a gene.

GENETICTEST_g = {strings over {A, C, G, T} containing g as a substring}

Theorem: GENETICTEST $_g$ is regular for every gene g.

Arithmetic

LET
$$\Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$
 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$
 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$

- A string over Σ has three ROWS (ROW₁, ROW₂, ROW₃)
- Each ROW $b_0b_1b_2 \dots b_N$ represents the integer

$$b_0 + 2b_1 + \dots + 2^N b_N$$

• Let ADD = $\{S \in \Sigma^* \mid ROW_1 + ROW_2 = ROW_3\}$

Theorem. ADD is regular.