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Last Time

e Deterministic Finite Automata (DFAs)

* Informal description: State diagram
* Formal description: What are they? M = ((CL, 2,6, %, )
* Formal description: How do they compute?

* Alanguage is regular if it is recognized by a DFA
L ( c Z\‘»kB 0 r('gu‘ov‘ o A
3 A DFA M sy Loy HMe language
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Nondeterminism

In a DFA, the machine is always in exactly one state upon
reading each input symbol

In @ nondeterministic FA, the machine can try out many
different ways of reading the same string
- Next symbol may cause an NFA to “branch” into

multiple possible computations
- Next symbol may cause NFA’s computation to fail to

enter any state at all



Nondeterminism
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A Nondeterministic Finite Automaton (NFA) accepts if
there exists a way to make it reach an accept state.



Nondeterminism
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Example: Does this NFA accept the string 11007?
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Nondeterminism
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Example: Does this NFA accept the string 117
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Some special transitions

e-transitions
(don’t consume a symbol)

Multiple
transitions

No transition
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Example
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L(M) =




L(N) — a) {w | w ends with 101} [&] 4,
b) {w | w ends with 11 or 101} Mgy Blas

c) {w | w contains 101} e i o
W | w contains 11 or 101} Eﬁ.ju_,t,
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Formal Definition of a NFA

An NFAisa 5-tuple M = (Q,%,0,q, F)
() is the set of states pl(@)> 3 & | R < @3
v ()Owef b of @

Z ol\§ ;thbee 9,! sh-.a\bg;t 9«‘»&“:1r ren 7 U Z C;,
5: Q XLZ/_;] ~[P(Q))is tﬁe transition function

q, € 0 is the start state
C () is the set of accept states

M accepts a string w if there exists a path from ¢, to
an accept state that can be followed by reading w.
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Example

>

N = (Q.Z5,qF) 5(4p 0) = 1444
Q = {CIO q1 92 93} 6(q9p1) = 74q. 4,3
2= {01} Z :3o0n . ﬁs(‘h»g) = 14,%
< 2 al D-' 5w .
F = {q5} 0(q, 0) = ¢
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Nondeterminism

Deterministic Nondeterministic
Computation Computation
o /‘\ Ways to think about
. nondeterminism
/ 1\ \ * (restricted)
® o o parallel
{ ! \ computation

reject |« tree of possible

computations
0/ \O

e guessing and
g verifying the
“right” choice

accept or reject accept
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Why study NFAs?

* Not really a realistic model of computation: Real
computing devices can’t really try many possibilities in
parallel

But:

» Useful tool for understanding power of DFAs/regular
languages

* NFAs can be simpler than DFAs
* Lets us study “nondeterminism” as a resource
(cf. P vs. NP)



NFAs can be simpler than DFAs

A DFA that recognizes the language Cewy OFA wguces
{w |w starts with 0 and ends with 1}: 2 Y shates

—»OLQiA:)»/@D 1

oo,

An NFA for this language:

~0+~0-0



Equivalence of NFAs and
DFAS
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Equivalence of NFAs and DFAs

Every DFA js an NFA, so NFAs are at least as powerful as

DFAs
QQQ\A\O\/ (awgway,pg _C__ LOMOS‘ o9 - \0,
(Ee‘ \anyl 1 (g P ble NFA ¢
h«j DFAs )
[Theorem: For every NFA N, there is a DFA M such that
L(M) — L(N) =7 re“)"\\af 2 Qangs rteog. \aj NEd ¢
AoryS -

Corollary: A language is regular if and only if it is
recognized by an NFA
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Equivalence of NFAs and DFAs (Proof)
Let N = (0Q,%,0,q, F) be an NFA
Goal: Construct DFAM = (Q',%,9',q,/, F') recognizing L(N)

Intuition: Run all threads of N in
parallel, maintaining the set of
states where all threads are.

Formally: Q° = P(Q)

“The Subset Construction”
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NFA -> DFA Example
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Subset Construction (Formally, first attempt)

Input: NFA N = (0Q,%9,q,F)
Output: DFA M = (Q',%,06',q,,F")

0= P(@) = 2R\ 2« &3

61: Q’XZ RN QI

5'(R, o) = U{L%(r,tr) forallR S Qando €I
re

qo’ = gquf

F' = %lQl Re @, 3 geF s.&’g,ng
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Subset Construction (Formally, for real)

Input: NFA N = (0Q,%9,q,F)
Output: DFA M = (Q',%,06',q,,F")

: - = St of  Slales readhdle
Q — P(Q) C(RB Vie V or woe :—

s:A "Cf\"m A s~|q|e
& : Q'xX - Q' W;\‘:\M(\

0'(R,0) = Uyep E(6(r, 0)> forallR € Q and o € X.

q, =E <{CI0})

F' ={R € Q' | R contains some accept state of N}
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NFA -> DFA Example @

1
*‘-*‘ ©




Proving the Construction Works

Claim: For every string w, running M on w leads to state
(of te NFAD

. . = et of slakeg
{q € Q|There exists a computation path ¢ te nra

of N on input w ending at g}

Proof idea: By induction on |w|
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Historical Note

Subset Construction introduced in Rabin & Scott’s 1959
paper “Finite Automata and their Decision Problems”

- — 1976 ACM Turing Award citation

For their joint paper "Finite Automata and
Their Decision Problem," which introduced
the idea of nondeterministic machines,
which has proved to be an enormously
valuable concept. Their (Scott & Rabin)
classic paper has been a continuous source

of inspiration for subsequent work in this
field.
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EI.’r'a. 40
NFA -> DFA: The Catch e

L

If N is an NFA with s states, how many states does the
DFA obtained using the subset construction have? (In the
worst case.)

@'= P(«)

a) s | ral S
b) 2 ‘G\-'T \9(69\:?, A

c) 2°
d) None of the above
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Is this construction the best we can do?

Subset construction converts an n state NFA into a 2™-state
DFA

Could there be a construction that always produces, say, an
n’-state DFA?

Theorem: For everyn = 1, thereis alanguage L,, such that
1. There is an (n + 1)-state NFA recognizing L.,,.

2. There is no DFA recognizing L,, with fewer than 2"
states.

Conclusion: For finite automata, nondeterminism provides an
exponential savings over determinism (in the worst case).



