Lecture 5:

• Closure Properties
• Regular Expressions

Reading:
Sipser Ch 1.2-1.3

Mark Bun
September 20, 2022
Last Time

• Nondeterministic Finite Automata
• NFAs vs. DFAs
 • Subset construction: NFA -> DFA
Closure Properties
An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures.

Example: The integers \(\mathbb{Z} = \{ ... -2, -1, 0, 1, 2, ... \} \) are closed under:

- Addition: \(x + y \)
- Multiplication: \(x \times y \)
- Negation: \(-x \)
- ...but NOT Division: \(x / y \)

We’d like to investigate similar closure properties of the class of regular languages.
Operations on languages

Let \(A, B \subseteq \Sigma^* \) be languages. Define

Regular Operations

\[
\begin{align*}
\text{Union: } A \cup B &= \{ x \mid x \in A \text{ or } x \in B \} \\
\text{Concatenation: } A \circ B &= \{ xy \mid x \in A, y \in B \} \\
\text{Star: } A^* &= \{ w_1w_2...w_n \mid n \geq 0 \text{ and } w_i \in A \} \\
\text{Complement: } \overline{A} &= \{ x \mid x \notin A \} \\
\text{Intersection: } A \cap B \\
\text{Reverse: } A^R &= \{ a_1a_2...a_n \mid a_n...a_1 \in A \}
\end{align*}
\]

Theorem: The class of regular languages is closed under all six of these operations, i.e., if \(A \) and \(B \) are regular, applying any of these operations yields a regular language.
Proving Closure Properties

- Digression: $\exists a^n b^n | n \geq 0$ is not regular
Complement

Complement: $\overline{A} = \{ w \mid w \notin A \}$

Theorem: If A is regular, then \overline{A} is also regular

Proof idea: If A is regular, there exists a DFA M recognizing A. Construct a new DFA M' recognizing \overline{A}. Switch accept and non-accept states.
Complement, Formally

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing a language A. Which of the following represents a DFA recognizing \overline{A}?

- a) $(F, \Sigma, \delta, q_0, Q)$
- b) $(Q, \Sigma, \delta, q_0, Q \setminus F)$, where $Q \setminus F$ is the set of states in Q that are not in F
- c) $(Q, \Sigma, \delta', q_0, F)$ where $\delta'(q, s) = p$ such that $\delta(p, s) = q$
- d) None of the above
Closure under Concatenation

Concatenation: \(A \circ B = \{ xy \mid x \in A, y \in B \} \)

Theorem. If \(A \) and \(B \) are regular, then \(A \circ B \) is also regular.

Proof idea: Given DFAs \(M_A \) and \(M_B \), construct NFA by

- Connecting all accept states in \(M_A \) to the start state in \(M_B \).
- Make all states in \(M_A \) non-accepting.
Closure under Concatenation

Concatenation: \(A \circ B = \{ xy \mid x \in A, y \in B \} \)

Theorem. If \(A \) and \(B \) are regular, then \(A \circ B \) is also regular.

Proof idea: Given DFAs \(M_A \) and \(M_B \), construct NFA by
- Connecting all accept states in \(M_A \) to the start state in \(M_B \).
- Make all states in \(M_A \) non-accepting.
A Mystery Construction

Given DFAs M_A recognizing A and M_B recognizing B, what does the following NFA recognize?

- a) $A \cup B$
- b) $A \circ B$
- c) $A \cap B$
- d) $\{\varepsilon\} \cup A \cup B$
Closure under Star

Star: $A^* = \{ a_1 a_2 \ldots a_n \mid n \geq 0 \text{ and } a_i \in A \}$

Theorem. If A is regular, then A^* is also regular.
Closure under Star

Star: $A^* = \{ a_1 a_2 ... a_n \mid n \geq 0 \text{ and } a_i \in A \}$

Theorem. If A is regular, then A^* is also regular.
On proving your own closure properties

You’ll have homework/test problems of the form “show that the regular languages are closed under some operation”

What would Sipser do?
- Give the “proof idea”: Explain how to take machine(s) recognizing regular language(s) and create a new machine
- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works
Regular Expressions
Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

“Simple” languages: \emptyset, $\{\varepsilon\}$, $\{a\}$ for some $a \in \Sigma$

Regular operations:

- **Union:** $A \cup B$

- **Concatenation:** $A \circ B = \{ab \mid a \in A, b \in B\}$

- **Star:** $A^* = \{a_1a_2...a_n \mid n \geq 0 \text{ and } a_i \in A\}$
Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

1. ε, \emptyset, and a are regular expressions for every $a \in \Sigma$

2. If R_1 and R_2 are regular expressions, then so are

$$(R_1 \cup R_2), (R_1 \circ R_2), \text{ and } (R_1^*)$$

Examples: (over $\Sigma = \{a, b, c\}$)

$$(a \circ b), (((a \circ (b^*)) \circ c) \cup (((a^*) \circ b))^{*})), (\emptyset^*)$$
Regular Expressions – Semantics

$L(R)$ = the language a regular expression describes

1. $L(\emptyset) = \emptyset$
2. $L(\varepsilon) = \{\varepsilon\}$
3. $L(a) = \{a\}$ for every $a \in \Sigma$
4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
6. $L((R_1^*) = (L(R_1))^*$
Regular Expressions – Example

\[L((a^*) \circ (b^*)) = \]

\(\begin{align*}
\text{a)} & \quad \{a^n b^n \mid n \geq 0\} \\
\text{b)} & \quad \{a^m b^n \mid m, n \geq 0\} \\
\text{c)} & \quad \{(ab)^n \mid n \geq 0\} \\
\text{d)} & \quad \{a, b\}^* \\
\end{align*}\)
Simplifying Notation

• Omit \(\circ \) symbol: \((ab) = (a \circ b)\)

• Omit many parentheses, since union and concatenation are associative:

\[
(a \cup b \cup c) = (a \cup (b \cup c)) = ((a \cup b) \cup c)
\]

• Order of operations: Evaluate star, then concatenation, then union

\[
ab^* \cup c = (a(b^*)) \cup c
\]
Examples

Let \(\Sigma = \{0, 1\} \)

1. \(\{w \mid w \text{ contains exactly one } 1\} = L \left(0^* \mathchar'26410^* \right) \)

2. \(\{w \mid w \text{ has length at least } 3 \text{ and its third symbol is } 0\} = L \left(0 \Sigma \Sigma \right) \)

3. \(\{w \mid \text{every odd position of } w \text{ is } 1\} = L \left(\left(1 \left(0 \Sigma \right)^* \right) 1^* \right) \)
Syntactic Sugar

• For alphabet Σ, the regex Σ represents $L(\Sigma) = \Sigma$

• For regex R, the regex $R^+ = RR^*$

(one or more copies from $L(R)$)
Regexes in the Real World

grep = globally search for a regular expression and print matching lines

```bash
$ grep '^xy*z' myfile
xyz
xyzde
xz
xy
xyy
xyzz
$ grep '^x.*z' myfile
xyz
xyzde
xxz
xxz
x\z
x*z
xz
x z
xy
xyy
xyzz
$ grep '^x\*z' myfile
x*z
$ grep '\\' myfile
x\z
$ 
```