#### BU CS 332 – Theory of Computation

https://forms.gle/aCxHoyMogZNUpLw96



#### Lecture 5:

- Closure Properties
- Regular Expressions

Reading:

Sipser Ch 1.2-1.3

Mark Bun September 20, 2022

#### Last Time

- Nondeterministic Finite Automata
- NFAs vs. DFAs
  - Subset construction: NFA -> DFA

## Closure Properties

#### An Analogy

In algebra, we try to identify operations which are common to many different mathematical structures

**Example:** The integers  $\mathbb{Z} = \{... - 2, -1, 0, 1, 2, ...\}$  are **closed** under

- Addition: x + y 3 + (-7) = -4
- Multiplication:  $x \times y$   $u \times (-2) = -8$
- Negation: -x -(-2) = 2
- ...but NOT Division: x/y 2/3 is not an integer

We'd like to investigate similar closure properties of the class of regular languages

# Operations on languages

Let  $A, B \subseteq \Sigma^*$  be languages. Define

```
Regular Operations  \begin{cases} \text{Union: } A \cup B = \{ x \mid x \in A \text{ so } x \in S \} \\ \text{Concatenation: } A \circ B = \{ xy \mid x \in A, y \in B \} \\ \text{Star: } A^* = \{ w_1w_2...w_n \mid n \geq 0 \text{ and } w_i \in A \} \end{cases} 
A= 3x 6Z, 1x4A3 Complement: A U A OA U A OA OA U ...
                                  Intersection: A \cap B
                                  Reverse: A^R = \{ a_1 a_2 ... a_n | a_n ... a_1 \in A \}
```

**Theorem:** The class of regular languages is closed under all six of these operations, i.e., if A and B are regular, applying any of these operations yields a regular language

Digression: { a b n n = 0} is not regular

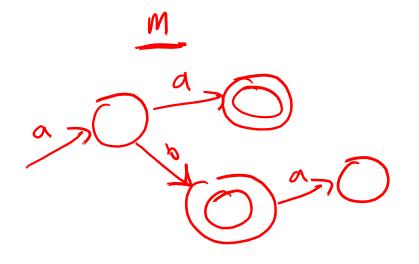
### Proving Closure Properties

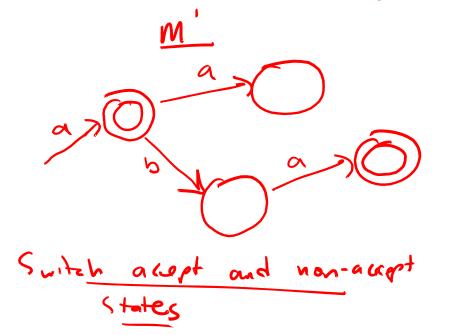
#### Complement

Complement:  $\bar{A} = \{ w \mid w \notin A \}$ 

**Theorem:** If A is regular, then  $\overline{A}$  is also regular

Proofidea: If A is regular, there exists a NFA M recognizing A. Construct rew NFA M' recognizing A.





#### Complement, Formally



Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA recognizing a language A. Which of the following represents a DFA recognizing A? Everything except sol of accept states same

- a)  $(F, \Sigma, \delta, q_0, Q)$  suitches note of accept a non-accept ob)  $(Q, \Sigma, \delta, q_0, Q \setminus F)$ , where  $Q \setminus F$  is the set of states in
- Q that are not in F
  - c)  $(Q, \Sigma, \delta', q_0, F)$  where  $\delta'(q, s) = p$  such that  $\delta(p,s) = q$
  - d) None of the above

#### Closure under Concatenation

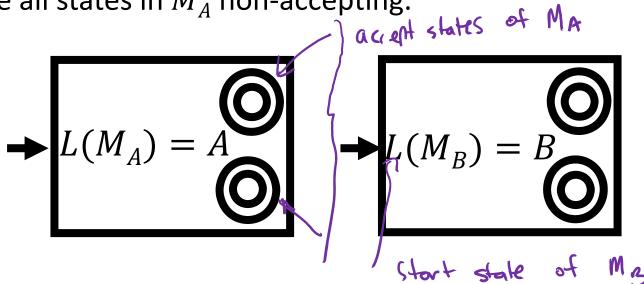
Concatenation:  $A \circ B = \{ xy \mid x \in A, y \in B \}$ 

Theorem. If A and B are regular, then  $A \circ B$  is also regular.

Proof idea: Given DFAs  $M_A$  and  $M_B$ , construct NFA by

• Connecting all accept states in  $M_A$  to the start state in  $M_B$ .

• Make all states in  $M_A$  non-accepting.



#### Closure under Concatenation

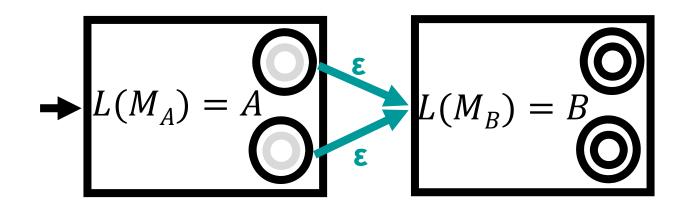
1 37 ] I X 6A, I Y 6B 7 7 2 x y 3

Concatenation:  $A \circ B = \{ xy \mid x \in A, y \in B \}$ 

Theorem. If A and B are regular, then  $A \circ B$  is also regular.

Proof idea: Given DFAs  $M_A$  and  $M_B$ , construct NFA by

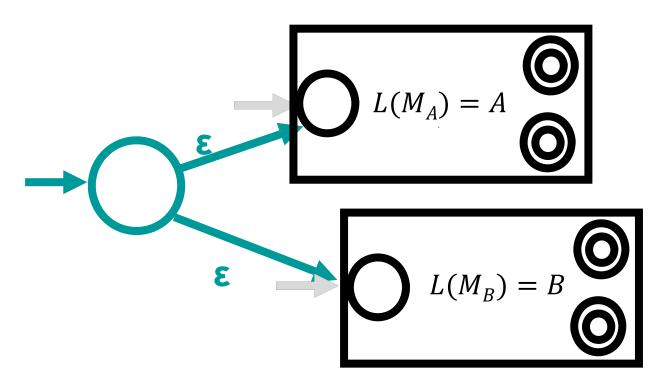
- Connecting all accept states in  $M_A$  to the start state in  $M_B$ .
- Make all states in  $M_A$  non-accepting.



#### A Mystery Construction

Given DFAs  $M_A$  recognizing A and  $M_B$  recognizing B, what does the

following NFA recognize?



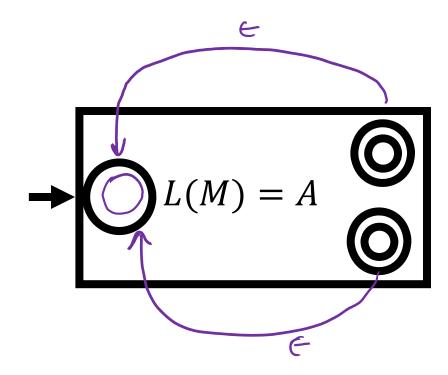


- a)  $A \cup B$
- b) A B
- c)  $A \cap B$
- d)  $\{\varepsilon\} \cup A \cup B$

#### Closure under Star

Star:  $A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$ 

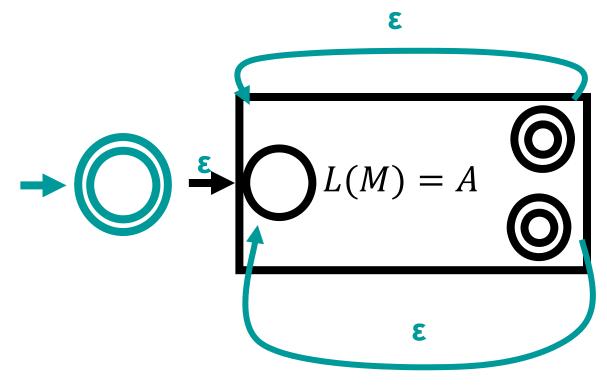
Theorem. If A is regular, then  $A^*$  is also regular.



#### Closure under Star

Star:  $A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$ 

Theorem. If A is regular, then  $A^*$  is also regular.



#### On proving your own closure properties

You'll have homework/test problems of the form "show that the regular languages are closed under some operation"

#### What would Sipser do?

- Give the "proof idea": Explain how to take machine(s) recognizing regular language(s) and create a new machine
- Explain in a few sentences why the construction works
- Give a formal description of the construction
- No need to formally prove that the construction works

# Regular Expressions

#### Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

"Simple" languages:  $\emptyset$ ,  $\{\varepsilon\}$ ,  $\{a\}$  for some  $a \in \Sigma$ 

Regular operations:

Union:  $A \cup B$ 

Concatenation:  $A \circ B = \{ab \mid a \in A, b \in B\}$ 

Star:  $A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$ 

#### Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

- 1.  $\varepsilon$ ,  $\emptyset$ , and  $\alpha$  are regular expressions for every  $\alpha \in \Sigma$
- 2. If  $R_1$  and  $R_2$  are regular expressions, then so are  $(R_1 \cup R_2)$ ,  $(R_1 \circ R_2)$ , and  $(R_1^*)$

```
Examples: (over \Sigma = \{a, b, c\})

(a \circ b) ((((a \circ (b^*)) \circ c) \cup (((a^*) \circ b))^*)) (\emptyset^*)
```

#### Regular Expressions – Semantics

L(R) = the language a regular expression describes

- 1.  $L(\emptyset) = \emptyset$
- 2.  $L(\varepsilon) = \{\varepsilon\}$
- 3.  $L(a) = \{a\}$  for every  $a \in \Sigma$
- 4.  $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- 5.  $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- 6.  $L((R_1^*)) = (L(R_1))^*$

#### Regular Expressions – Example

$$L(((a^*) \circ (b^*))) =$$

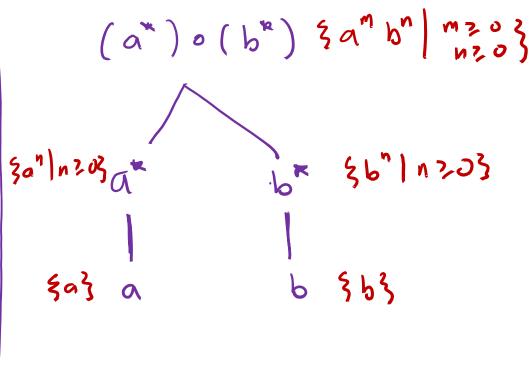


a) 
$$\{a^nb^n \mid n \ge 0\}$$

(b) 
$$\{a^m b^n \mid m, n \ge 0\}$$

c) 
$$\{(ab)^n \mid n \ge 0\}$$

d) 
$$\{a, b\}^*$$



#### Simplifying Notation

• Omit • symbol:  $(ab) = (a \circ b)$ 

 Omit many parentheses, since union and concatenation are associative:

$$(a \cup b \cup c) = (a \cup (b \cup c)) = ((a \cup b) \cup c)$$

 Order of operations: Evaluate star, then concatenation, then union

$$ab^* \cup c = (a(b^*)) \cup c$$

### (((00)))

#### Examples

Let 
$$\Sigma = \{0, 1\}$$

1.  $\{w \mid w \text{ contains exactly one } 1\} = \lfloor (0^* \mid 0^*) \rfloor$ ~ {0}U\$1} 7,20 8080 2 80,13- 7 = L(OUI)

2.  $\{w \mid w \text{ has length at least 3 and its third symbol is } 0\}$ 

3.  $\{w \mid \text{every odd position of } w \text{ is } 1\}$  counting from left  $L\left(\frac{1(001)}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{12345},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{101000}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{1235},\frac{10100}{12$ 

9/20/2022

CS332 - Theory of Computation

#### Syntactic Sugar

• For alphabet  $\Sigma$ , the regex  $\Sigma$  represents  $L(\Sigma) = \Sigma$ 

• For regex R, the regex  $R^+ = RR^*$ 

```
(one or more copies from L(R)
```

#### Regexes in the Real World

grep = globally search for a regular expression and print matching lines