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Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

1. &, ®,and a are regular expressions for every a € X

2. If R{ and R, are regular expressions, then so are
(R1UR3), (R1° R3), and (Ry)

Examples: (over £ = {a, b,c}) (with simplified notation)
ab ab*c U (a*b)* 1)
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Regular Expressions — Semantics

L(R) = the language a regular expression describes

L(©®) =0

L(e) = {¢}

L(a) = {a}foreverya € X
L((RiUR3)) =L(Ry) U L(R3)
L((Ri° Ry)) = L(Rq) ° L(R3)
L((R)) = (L(Ry))"

O U1 W

Example: L(a*bh*) = {a™b"™ | m,n = 0}
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Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is

described by a regular expression ‘
Ve‘Oconﬂ:ci \79 o fJFA
(= N‘Otj v ed \73 A N\EA
Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Base cases:
R =0
R =¢
R =a
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Regular expression -> NFA 'FT'E:.-L_'E.
Theorem 1: Every regex has an equivalent NFA I'.-.-;.i'r;;,.-.

O

Proof: Induction on size of a regex
namyer D-{’ cher wc e, ( a, Qb, G'; (. ), *‘. J) °3

ma ke M ap He 0>
What should ’%he inductive hypothesis be? ? ¢

a) Suppose some regular expression of length k can be
converted to an NFA (@ VA

b) Suppose every regular expression of length k can be
converted to an NFA |

\c/H Suppose every regular expression of length at most k
~— can be converted to an NFA

d) None of the above =5 By wgu W €Y Pressn o
g WHL oS an NEA
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Aosawe ety r9tx of (eyh € W hey o equv Vi A
Moy erqg rgeq of ‘w,Ha kel alss hay an equn MFA
Inductive step:

L(Ml\ - L—( 0\!)
R = (RURy) ™ )lﬂ'\" Y ey Ly
r‘ —) W C Ly o LR,y vl
R=(RRy) - - U@
oV

. pl—fol. @

R = (Ry)
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Example
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Convert (1(0 U 1))* to an NFA

Evn |G«qh'\ Stavg g J/ e w o postims
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Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA

Theorem 2: Every NFA has an equivalent regular expression
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NFA -> Regular expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by “ripping out” states one at a
time and replacing with regexes

00



Generalized NFAs (GN\‘?AsB

* Every transition is labeled by a regex

* One start state with only outgoing transitions

* Only one accept state with only incoming transitions
 Start state and accept state are distinct ]

a Ub ‘@Y@o\

~(O— @*.



Generalized NFA Example

an

~(O—= @*.

R(q, q) = Ao
R(qwq) = gb
R(q,qs) = #



Which of these strings is accepted?

Which of the following strings is accepted by this GNFA?

a Ub
O @*.
byaabb- AT
b ° @ E;ii'I ke

—d) bba ‘Iz.“aq/’“’q"” %o
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NFA -> Regular expression

‘

k + 2 states
k states
k + 1 states
@ 6 ; “ 2 states

Regex
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NFA -> GNFA

&
N
%

 Add a new start state with no incoming arrows.
 Make a unique accept state with no outgoing arrows.



GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state
‘ G
e
ﬂ



GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state aUb

a) a*b(a U b)a b n
b) a*b(a U b)*a & a
c) a'hbu(aub)Ua @

d) None of the above

rr'."!'l' o :
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GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state aUb

O
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GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state R,
R, ‘ | R,
ﬁ #

R,
(L‘Q‘l’ ‘L’D U Kb‘
ﬂ
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Non-Regular Languages
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Motivating Questions

* We've seen techniques for showing that languages are
regular i (nddiedd a0 DEA o UR loyue pofties

o (onshud e NTA
¢ (omelnd 0 Agulaf evplginn

e How can we tell if we’ve found the smallest DFA
recognizing a language?

* Are all languages regular? How can we prove that a
language is not regular?

9/22/2022 CS332 - Theory of Computation 22



An Example () ——(=

A={w € {0,1} | wends with 01}
Claim: Every DFA recognizing A needs at least 3 states
Proof: Let M be any DFA recognizing A. Consider running

Moneachofx—ey—OW—Ol | Geal: Shaw

LQ" Qr-( - S“d“e M e'dg uf ™ VU\X/\ 'eq&ﬂh.’ < gx,q»q, 4.
qﬁo > | ‘f' Y al (l_f_{-(erm
. ST

C\Q"W\"“_ (11( -%q,,.a ond 0.|»‘0¥ a5 w‘ ;
ey G o atypt GhE, hd g od a, € aa"fys

Clam2- 4.7 %y
d” Bsam fy cubrode ke, Med 4,79, O\‘W
fan Mon <l =1 &L 4”"“‘9’%
3[:0‘CL -)QL., MQC\.Q‘"LC{U‘E 9&
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A General Technique A ={w € {0,1}" | w ends with 01}

Definition: Strings x and y are distinguishable by L if there
exists a string z such that exactly one of xz or yzisin L.

Ex. x =¢, y=0 2= | xzzCl=1 &L
4z Of e L

Definition: A set of strings S is pairwise distinguishable by

L if every pair of distinct strings x, y € § is distinguishable
by L.

Ex. S = {¢,0,01}
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