BU CS 332 – Theory of Computation

https://forms.gle/gsUoYPKnehDafk3dA

Lecture 8:

- More on non-regularity
- Turing Machines

Reading:

"Myhill-Nerode" note

Sipser Ch 3.1, 3.3

Mark Bun September 29, 2022

Last Time: Distinguishing Set Method

Definition: Strings x and y are **distinguishable** by L if there exists a "distinguishing extension" z such that exactly one of xz or yz is in L.

Definition: A set of strings S is pairwise distinguishable by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

Now you try!

Use the distinguishing set method to show that the following languages are not regular

$$L_{3} = \{1^{n^{2}} \mid n \geq 0\}$$

$$1 \mid 1 \mid \ell \downarrow_{3}$$

$$5 = \{1^{n^{2}} \mid n \geq 0\}$$

$$Let \quad \chi = 1^{n^{2}} \quad y = 1^{m^{2}} \quad Assume \quad \text{wlog} \quad m \geq n$$

$$Set \quad \mathcal{Z} = 1^{n^{2}} \quad 2^{n+1} \quad m^{2} + 2^{n+1} = 1^{n+1} \quad \ell \downarrow_{3}$$

$$1 \mid 1 \mid \ell \downarrow_{3}$$

$$2^{n+1} \quad \chi = 1^{n^{2}} \quad 2^{n+1} \quad m^{2} + 2^{n+1} = 1^{n+1} \quad \ell \downarrow_{3}$$

$$1 \mid 1 \mid \ell \downarrow_{3}$$

$$2^{n+1} \quad \chi = 1^{n^{2}} \quad 2^{n+1} \quad m^{2} + 2^{n+1} \quad \ell \downarrow_{3}$$

$$1 \mid 1 \mid \ell \downarrow_{3}$$

$$2^{n+1} \quad \chi = 1^{n^{2}} \quad 2^{n+1} \quad m^{2} + 2^{n+1} \quad \ell \downarrow_{3}$$

$$2^{n+1} \quad \chi = 1^{n^{2}} \quad 2^{n+1} \quad m^{2} + 2^{n+1} \quad \ell \downarrow_{3}$$

$$2^{n+1} \quad \chi = 1^{n^{2}} \quad 2^{n+1} \quad m^{2} \quad m^{2$$

Reusing a Proof

Finding a distinguishing set can take some work... Let's try to reuse that work!

How might we show that OOLOOIII & SALAMED $BALANCED = \{w \mid w \text{ has an equal } \# \text{ of } 0s \text{ and } 1s\}$ is not regular? No Regular $\{0^n1^n \mid n \geq 0\} = BALANCED \cap \{w \mid \text{all } 0s \text{ in } w \text{ appear before all } 1s\}$ Claim BALANCED is not regular Assume F+SOC BALANCED is rigular => BALANCEDA & u | all o's appear before all 1's} is regular => &0"1" | n7,03 is regular × conclude BALANCED not 9/29/2022 CS332 - Theory of Computation

Using Closure Properties on n. a. reverse, complement,

If A is not regular, we can show a related language B is not regular

any of $\{\circ, \cup, \cap\}$ or, for one language, $\{\neg, R, *\}$

By contradiction: If B is regular, then $B \cap C (= A)$ is regular. But A is not regular so neither is B!

Prove $B = \{0^i 1^j | i \neq j\}$ is not regular using

$$A = \{0^n 1^n | n \ge 0\}$$
 and

regular language

lar language
$$C = \{w \mid \text{all 0s in } w \text{ appear before all 1s} \}$$

a)
$$A = B \cap C$$

b)
$$A = \overline{B} \cap C$$

c)
$$A = B \cup C$$

C= L(0")

d)
$$A = \overline{B} \cup C$$

Proof that B is nonregular

Assume for the sake of contradiction that B is regular

We know: $A = \overline{B} \cap C$

!DANGER!

nonequiar are closed

Let $B = \{0^i 1^j | i \neq j\}$ and write $B = A \cup C$ where

nonregular language

$$A = \{0^i 1^j | i > j \ge 0\}$$
 and

nonregular language

$$C = \{0^i 1^j | j > i \ge 0\}$$
 and

Does this let us conclude B is nonregular?

Let
$$A$$
 be any honrywlar language

Let $C = \overline{A}$ nonregular [why? If \overline{A} we regular,
then \overline{A} usuald be regular, but $A = \overline{A}$]

 $B = A \cup C \Rightarrow B = \overline{A}$ is regular.

Turing Machines

Turing Machines – Motivation

We've seen finite automata as a restricted model of computation

Finite Automata / Regular Expressions

- Can do simple pattern matching (e.g., substrings), check parity, addition
- Can't perform unbounded counting

30" 1" | nzo3

Can't recognize palindromes

Somewhat more powerful (not in this course):

Pushdown Automata / Context-Free Grammars

- Can count and compare, parse math expressions
- Can't recognize $\{a^nb^nc^n \mid n \ge 0\}$

Turing Machines – Motivation

Goal:

Define a model of computation that is

- 1) General purpose. Captures <u>all</u> algorithms that can be implemented in any programming language.
- 2) Mathematically simple. We can hope to prove that things are <u>not</u> computable in this model.

A Brief History

1900 – Hilbert's Tenth Problem

Given.
$$p(x, y, z) = 2x^2y + 4z - 2x$$

Oser thre exist $(x, y, z) \in \mathbb{Z}^3$ s.s.

 $p(x, y, z) = 0$?

 $x = 1, y = 1, z = 0$

Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

David Hilbert 1862-1943

1928 – The Entscheidungsproblem

The "Decision Problem"

Is there an algorithm which takes as input a formula (imfirst-order logic) and decides whether it's logically valid?

Matternatical statement

Is the math statement

Wilhelm Ackermann 1896-1962

the or false?

David Hilbert 1862-1943

1936 – Solution to the *Entscheidungsproblem*

Alonzo Church 1903-1995

"An unsolvable problem of elementary number theory"

Model of computation: λ -calculus (CS 320)

Alan Turing 1912-1954

"On computable numbers, with an application to the Entscheidungsproblem"

Model of computation: Turing Machine

Turing Machines

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

000 4040 ...

What does this TM do on input 000?

- a) Halt and accept
- b) Halt and reject
- c) Halt in state q_3
- d) Loop forever without halting

Three Levels of Abstraction

Mayrumm. ray

High-Level Description

An algorithm (like CS 330)

Pythan, Taro

Implementation-Level Description

Describe (in English) the instructions for a TM

- How to move the head
- What to write on the tape

Low-Level Description

State diagram or formal specification

Determine if a string $w \in \{0\}^*$ is in the language

$$A = \{0^{2^n} \mid n \ge 0\}$$

High-Level Description

Repeat the following forever:

- If there is exactly one 0 in w, accept
- If there is an odd (> 1) number of 0s in w, reject
- Delete half of the 0s in w

Determine if a string $w \in \{0\}^*$ is in the language

$$A = \left\{ 0^{2^n} \mid n \ge 0 \right\}$$

Implementation-Level Description

- 1. While moving the tape head left-to-right:
 - a) Cross off every other 0 (i.e. relace o with X)
 - b) If there is exactly one 0 when we reach the right end of the tape, accept
 - c) If there is an odd (> 1) number of 0s when we reach the right end of the tape, reject
- 2. Return the head to the left end of the tape
- 3. Go back to step 1

Determine if a string $w \in A = \{0^{2^n} \mid n \ge 0\}$

Low-Level Description

