BU CS 332 - Theory of Computation

https://forms.gle/gsUoYPKnehDafk3dA

Lecture 8:

- More on non-regularity
- Turing Machines

Reading:
"Myhill-Nerode" note
Sipser Ch 3.1, 3.3

Mark Bun
September 29, 2022

Last Time: Distinguishing Set Method

Definition: Strings x and y are distinguishable by L if there exists a "distinguishing extension" z such that exactly one of $x z$ or $y z$ is in L.

Definition: A set of strings S is pairwise distinguishable by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least $|S|$ states

Now you try!
Use the distinguishing set method to show that the following languages are not regular

$$
L_{3}=\left\{1^{n^{2}} \mid n \geq 0\right\}
$$

Reusing a Proof

Finding a distinguishing set can take some work... Let's try to reuse that work!

How might we show that

$$
B A L A N C E D=\{w \mid w \text { has an equal } \# \text { of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\}
$$ is not regular?

$\left\{0^{n} 1^{n} \mid n \geq 0\right\}=B A L A N C E D \cap\{w \mid$ all 0 s in w appear before all 1 s$\}$

Using Closure Properties

If A is not regular, we can show a related language B is not regular

any of $\{0, U, \cap\}$ or, for one language, $\left\{\neg,{ }^{R},{ }^{*}\right\}$
By contradiction: If B is regular, then $B \cap C(=A)$ is regular. But A is not regular so neither is B !

Example

Prove $B=\left\{0^{i} 1^{j} \mid i \neq j\right\}$ is not regular using

- nonregular language

$$
A=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \text { and }
$$

- regular language

$$
C=\{w \mid \text { all } 0 \mathrm{~s} \text { in } w \text { appear before all } 1 \mathrm{~s}\}
$$

Which of the following expresses A in terms of B and C ?
a) $A=B \cap C$
c) $A=B \cup C$
b) $A=\bar{B} \cap C$
d) $A=\bar{B} \cup C$

Proof that B is nonregular

Assume for the sake of contradiction that B is regular We know: $\quad A=\bar{B} \cap C$

!DANGER!

Let $B=\left\{0^{i} 1^{j} \mid i \neq j\right\}$ and write $B=A \cup C$ where

- nonregular language

$$
A=\left\{0^{i} 1^{j} \mid i>j \geq 0\right\} \text { and }
$$

- nonregular language

$$
C=\left\{0^{i} 1^{j} \mid j>i \geq 0\right\} \text { and }
$$

Does this let us conclude B is nonregular?

Turing Machines

Turing Machines - Motivation

We've seen finite automata as a restricted model of computation

Finite Automata / Regular Expressions

- Can do simple pattern matching (e.g., substrings), check parity, addition
- Can't perform unbounded counting
- Can't recognize palindromes

Somewhat more powerful (not in this course):
Pushdown Automata / Context-Free Grammars

- Can count and compare, parse math expressions
- Can't recognize $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Turing Machines - Motivation

Goal:

Define a model of computation that is

1) General purpose. Captures all algorithms that can be implemented in any programming language.
2) Mathematically simple. We can hope to prove that things are not computable in this model.

A Brief History

1900 - Hilbert's Tenth Problem

Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

David Hilbert 1862-1943

1928 - The Entscheidungsproblem

Wilhelm Ackermann 1896-1962

The "Decision Problem"

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it's logically valid?

David Hilbert 1862-1943

1936 - Solution to the Entscheidungsproblem

"An unsolvable problem of elementary number theory"

Model of computation: λ-calculus (CS 320)

Alonzo Church 1903-1995

"On computable numbers, with an application to the Entscheidungsproblem"

Model of computation: Turing Machine

Turing Machines

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

Example

Example

Example

What does this TM do on input 000?
a) Halt and accept
b) Halt and reject
c) Halt in state q_{3}

d) Loop forever without halting

Three Levels of Abstraction

High-Level Description
An algorithm (like CS 330)

Implementation-Level Description
Describe (in English) the instructions for a TM

- How to move the head
- What to write on the tape

Low-Level Description
State diagram or formal specification

Example

Determine if a string $w \in\{0\}^{*}$ is in the language $A=\left\{0^{2^{n}} \mid n \geq 0\right\}$

High-Level Description

Repeat the following forever:

- If there is exactly one 0 in w, accept
- If there is an odd (>1) number of 0 s in w, reject
- Delete half of the 0 s in w

Example

Determine if a string $w \in\{0\}^{*}$ is in the language $A=\left\{0^{2^{n}} \mid n \geq 0\right\}$

Implementation-Level Description

1. While moving the tape head left-to-right:
a) Cross off every other 0
b) If there is exactly one 0 when we reach the right end of the tape, accept
c) If there is an odd (>1) number of $0 s$ when we reach the right end of the tape, reject
2. Return the head to the left end of the tape
3. Go back to step 1

Example

Determine if a string $w \in A=\left\{0^{2^{n}} \mid n \geq 0\right\}$ Low-Level Description

TMs vs. Finite Automata

Formal Definition of a TM

A TM is a 7-tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$

- Q is a finite set of states
- Σ is the input alphabet (does not include \sqcup)
- Γ is the tape alphabet (contains \sqcup and Σ)
- δ is the transition function
...more on this later
- $q_{0} \in Q$ is the start state
- $q_{\text {accept }} \in Q$ is the accept state
- $q_{\text {reject }} \in Q$ is the reject state $\left(q_{\text {reject }} \neq q_{\text {accept }}\right)$

TM Transition Function

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}
$$

L means "move left" and R means "move right"
$\delta(p, a)=(q, b, R)$ means:

- Replace a with b in current cell
- Transition from state p to state q
- Move tape head right
$\delta(p, a)=(q, b, L)$ means:
- Replace a with b in current cell
- Transition from state p to state q
- Move tape head left UNLESS we are at left end of tape, in which case don't move

Configuration of a TM

A string that captures the state of a TM together with the contents of the tape

Configuration of a TM: Formally

A configuration is a string $u q v$ where $q \in Q$ and $u, v \in \Gamma^{*}$

- Tape contents $=u v$ (followed by infinitely many blanks \sqcup)
- Current state $=q$
- Tape head on first symbol of v

Example: $101 q_{5} 0111$

How a TM Computes

Start configuration: $q_{0} w$
One step of computation:

- If $\delta(q, b)=\left(q^{\prime}, c, R\right)$, then $u a q$ bv yields uac $q^{\prime} v$
- If $\delta(q, b)=\left(q^{\prime}, c, L\right)$, then $u a q b v$ yields $u q^{\prime} a c v$
- If we are at the left end of the tape in configuration $q b v$, what configuration do we reach if $\delta(q, b)=\left(q^{\prime}, c, L\right)$?
a) $c q^{\prime} v$
b) $q^{\prime} c v$
c) $q^{\prime} \sqcup c v$
d) $q^{\prime} c b v$

How a TM Computes

Start configuration: $q_{0} w$
One step of computation:

- If $\delta(q, b)=\left(q^{\prime}, c, R\right)$, then $u a q$ bv yields uac $q^{\prime} v$
- If $\delta(q, b)=\left(q^{\prime}, c, L\right)$, then $u a q$ bv yields $u q^{\prime} a c v$
- If $\delta(q, b)=\left(q^{\prime}, c, L\right)$, then q bv yields $q^{\prime} c v$

Accepting configuration: $q=q_{\text {accept }}$
Rejecting configuration: $q=q_{\text {reject }}$

How a TM Computes

M accepts input w if there exists a sequence of configurations C_{1}, \ldots, C_{k} such that:

- $C_{1}=q_{0} w$
- C_{i} yields C_{i+1} for every i
- C_{k} is an accepting configuration
$L(M)=$ the set of all strings w which M accepts A is Turing-recognizable if $A=L(M)$ for some TM M :
- $w \in A \Rightarrow M$ halts on w in state $q_{\text {accept }}$
- $w \notin A \Rightarrow M$ halts on w in state $q_{\text {reject }}$ OR M runs forever

Recognizers vs. Deciders
$L(M)=$ the set of all strings w which M accepts
A is Turing-recognizable if $A=L(M)$ for some TM M :

- $w \in A \Rightarrow M$ halts on w in state $q_{\text {accept }}$
- $w \notin A \Rightarrow M$ halts on w in state $q_{\text {reject }}$ OR M runs forever
A is (Turing-)decidable if $A=L(M)$ for some TM M which halts on every input
- $w \in A \Rightarrow M$ halts on w in state $q_{\text {accept }}$
- $w \notin A \Rightarrow M$ halts on w in state $q_{\text {reject }}$

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?
$L=$

- L is Turing-recognizable
- L is not decidable (1949-70)

