BU CS 332 – Theory of Computation

https://forms.gle/gsUoYPKnehDafk3dA

Lecture 8:

- More on non-regularity
- Turing Machines

Reading:

"Myhill-Nerode" note

Sipser Ch 3.1, 3.3

Mark Bun September 29, 2022

Last Time: Distinguishing Set Method

Definition: Strings x and y are distinguishable by L if there exists a "distinguishing extension" z such that exactly one of xz or yz is in L.

Definition: A set of strings S is **pairwise distinguishable** by L if every pair of distinct strings $x, y \in S$ is distinguishable by L.

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

Now you try!

Use the distinguishing set method to show that the following languages are not regular

$$L_3 = \{ 1^{n^2} \mid n \ge 0 \}$$

Reusing a Proof

Reduce Reduce

Finding a distinguishing set can take some work... Let's try to reuse that work!

How might we show that $BALANCED = \{w \mid w \text{ has an equal } \# \text{ of } 0\text{s and } 1\text{s} \}$ is not regular?

 $\{0^n1^n \mid n \geq 0\} = BALANCED \cap \{w \mid \text{all 0s in } w \text{ appear before all 1s}\}$

Using Closure Properties

If A is not regular, we can show a related language B is not regular

any of $\{\circ, \cup, \cap\}$ or, for one language, $\{\neg, R, *\}$

By contradiction: If B is regular, then $B \cap C (= A)$ is regular. But A is not regular so neither is B!

Prove $B = \{0^i 1^j | i \neq j\}$ is not regular using

nonregular language

$$A = \{0^n 1^n | n \ge 0\}$$
 and

regular language

$$C = \{w \mid \text{all } 0\text{s in } w \text{ appear before all } 1\text{s} \}$$

Which of the following expresses A in terms of B and C?

a)
$$A = B \cap C$$

c)
$$A = B \cup C$$

b)
$$A = \overline{B} \cap C$$

d)
$$A = \bar{B} \cup C$$

Proof that B is nonregular

Assume for the sake of contradiction that B is regular We know: $A = \overline{B} \cap C$

!DANGER!

Let $B = \{0^i 1^j | i \neq j\}$ and write $B = A \cup C$ where

nonregular language

$$A = \{0^i 1^j | i > j \ge 0\}$$
 and

nonregular language

$$C = \{0^i 1^j | j > i \ge 0\}$$
 and

Does this let us conclude B is nonregular?

Turing Machines

Turing Machines – Motivation

We've seen finite automata as a restricted model of computation

Finite Automata / Regular Expressions

- Can do simple pattern matching (e.g., substrings), check parity, addition
- Can't perform unbounded counting
- Can't recognize palindromes

Somewhat more powerful (not in this course):

Pushdown Automata / Context-Free Grammars

- Can count and compare, parse math expressions
- Can't recognize $\{a^nb^nc^n \mid n \ge 0\}$

Turing Machines – Motivation

Goal:

Define a model of computation that is

- 1) General purpose. Captures <u>all</u> algorithms that can be implemented in any programming language.
- 2) Mathematically simple. We can hope to prove that things are <u>not</u> computable in this model.

A Brief History

1900 – Hilbert's Tenth Problem

Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

David Hilbert 1862-1943

1928 – The Entscheidungsproblem

The "Decision Problem"

Is there an algorithm which takes as input a formula (in first-order logic) and decides whether it's logically valid?

Wilhelm Ackermann 1896-1962

David Hilbert 1862-1943

1936 – Solution to the Entscheidungsproblem

Alonzo Church 1903-1995

"An unsolvable problem of elementary number theory"

Model of computation: λ -calculus (CS 320)

Alan Turing 1912-1954

"On computable numbers, with an application to the *Entscheidungsproblem*"

Model of computation: Turing Machine

Turing Machines

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

What does this TM do on input 000?

- a) Halt and accept
- b) Halt and reject
- c) Halt in state q_3
- d) Loop forever without halting

Three Levels of Abstraction

High-Level Description

An algorithm (like CS 330)

Implementation-Level Description

Describe (in English) the instructions for a TM

- How to move the head
- What to write on the tape

Low-Level Description

State diagram or formal specification

Determine if a string $w \in \{0\}^*$ is in the language

$$A = \{0^{2^n} \mid n \ge 0\}$$

High-Level Description

Repeat the following forever:

- If there is exactly one 0 in w, accept
- If there is an odd (>1) number of 0s in w, reject
- Delete half of the 0s in w

Determine if a string $w \in \{0\}^*$ is in the language

$$A = \{0^{2^n} \mid n \ge 0\}$$

Implementation-Level Description

- 1. While moving the tape head left-to-right:
 - a) Cross off every other 0
 - b) If there is exactly one 0 when we reach the right end of the tape, accept
 - c) If there is an odd (> 1) number of 0s when we reach the right end of the tape, reject
- 2. Return the head to the left end of the tape
- 3. Go back to step 1

Determine if a string $w \in A = \{0^{2^n} \mid n \ge 0\}$

Low-Level Description

TMs vs. Finite Automata

Formal Definition of a TM

A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- Q is a finite set of states
- ∑ is the input alphabet (does not include □)
- Γ is the tape alphabet (contains \sqcup and Σ)
- δ is the transition function

...more on this later

- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state $(q_{\text{reject}} \neq q_{\text{accept}})$

TM Transition Function

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

L means "move left" and R means "move right"

$$\delta(p, a) = (q, b, R)$$
 means:

- Replace a with b in current cell
- Transition from state p to state q
- Move tape head right

$$\delta(p,a) = (q,b,L)$$
 means:

- Replace a with b in current cell
- Transition from state p to state q
- Move tape head left UNLESS we are at left end of tape, in which case don't move

Configuration of a TM

A string that captures the **state** of a TM together with the **contents of the tape**

Configuration of a TM: Formally

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by infinitely many blanks \sqcup)
- Current state = q
- Tape head on first symbol of v

Example: $101q_50111$

How a TM Computes

Start configuration: q_0w

One step of computation:

- If $\delta(q, b) = (q', c, R)$, then $ua \ q \ bv$ yields $uac \ q' \ v$
- If $\delta(q,b) = (q',c,L)$, then $ua \ q \ bv$ yields $u \ q' \ acv$
- If we are at the left end of the tape in configuration q bv, what configuration do we reach if $\delta(q,b)=(q',c,L)$?
 - a) cq'v
 - b) q'cv
 - c) $q' \sqcup cv$
 - d) q'cbv

How a TM Computes

Start configuration: q_0w

One step of computation:

- If $\delta(q, b) = (q', c, R)$, then $ua \ q \ bv$ yields $uac \ q' \ v$
- If $\delta(q,b) = (q',c,L)$, then $ua \ q \ bv$ yields $u \ q' \ acv$
- If $\delta(q,b) = (q',c,L)$, then q bv yields q' cv

Accepting configuration: $q = q_{accept}$

Rejecting configuration: $q = q_{reject}$

How a TM Computes

M accepts input w if there exists a sequence of configurations C_1, \ldots, C_k such that:

- $C_1 = q_0 w$
- C_i yields C_{i+1} for every i
- C_k is an accepting configuration

L(M) = the set of all strings w which M accepts A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever

Recognizers vs. Deciders

L(M) = the set of all strings w which M accepts

A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever

A is (Turing-)decidable if A = L(M) for some TM M which halts on every input

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject}

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?

L =

• *L* is Turing-recognizable

• L is **not** decidable (1949-70)

