B.U. CS 332 – Theory of Computation

Lecture 9:
Test 1 Review

Mark Bun
October 4, 2022
Test 1 Topics
Sets, Strings, Languages (0)

• Know the definition of a string and of a language (and the difference between them)
• Understand operations on strings: Concatenation, reverse
• Understand operations on languages: Union, intersection, concatenation, reverse, star, complement
• Know the difference between \emptyset and ε
Deterministic FAs (1.1)

• Given an English or formal description of a language L, draw the state diagram of a DFA recognizing L (and vice versa)
• Know the formal definition of a DFA (A DFA is a 5 tuple...) and convert between state diagram and formal description
• Know the formal definition of how a DFA computes
• Construction for closure of regular languages under complement
Nondeterministic FAs (1.2)

• Given an English or formal description of a language L, draw the state diagram of an NFA recognizing L (and vice versa)

• Know the formal definition of an NFA

• Know the power set construction for converting an NFA to a DFA

• Proving closure properties: Know the constructions for union, concatenation, star

• Know how to prove your own closure properties
Regular Expressions (1.3)

• Given an English or formal description of a language L, construct a regex generating L (and vice versa)
• Formal definition of a regex
• Know how to convert a regex to an NFA
• Know how to convert a DFA/NFA to a regex

GNFAs "generalized NFA's"
\[V \in GNFAs \text{ "generalized NFA's" } \]
\[i.e. \text{ NFA's that have regular expressions labeling transitions} \]
Non-regular Languages (Myhill-Nerode Note)

- Understand the statements of the distinguishing set method for proving DFA size lower bounds / non-regularity.
- Understand the proof of why the distinguishing set method works, and be able to use it to prove similar statements.
- Know how to apply the method to specific languages.
- Note: I won’t ask you to show anything is non-regular, since you didn’t have any homework problems on this yet.
Test format

Problem 1: “Check your type checker”

E.g., Is $aabba$ a string, language, or a regex?

How about $\{ab\} \cup \{aab\}$?

Problem 2: True/false with justification

Either provide a convincing explanation or a specific counterexample

Problems 3-5(?) Homework-style problems
Test tips

• You may cite without proof any result...
 ▪ Stated in lecture
 ▪ Stated and proved in the main body of the text (Ch. 0-1.3)
 ▪ These include worked-out examples of state diagrams, regexes

• Not included above: homework problems, discussion problems, (solved) exercises/problems in the text

• Showing your work / explaining your answers will help us give you partial credit

• Make sure you’re interpreting quantifiers (for all / there exists) correctly and in the correct order
Practice Problems
Name six operations under which the regular languages are closed
Prove or disprove: All finite languages are regular
Prove or disprove: The **non**-regular languages are closed under union
Give the state diagram of an NFA recognizing the language \((01 \cup 10)^* \circ 1\)
Give an equivalent regular expression for the following NFA

1. Convert to NFA

2. Rip out q₄

3. Rip out q₀

Final regex: \((\text{ou1})^*\text{ou1}\text{ue}\)
For a language L over $\{0, 1\}$, define the operation $\text{split}(L) = \{x \# y \mid x, y \in L\}$. Show that the regular languages are closed under split

Alphabet for \text{split}(L) \in \{0, 1, \#\}

WTS: For every regular L, $\text{split}(L)$ is regular

Strategy 1: express $\text{split}(L)$ in terms of other operations

Strategy 2:

Given a DFA D for L, transform it into a DFA/NFA for $\text{split}(L)$

![Diagram of DFA transformation](image)
Is the following language regular? \(\{a^n a^n \mid n \geq 0\} \)
Is the following language regular?
\{0^n1^n \mid 0 \leq n \leq 2022\}
How many states does a DFA recognizing \(\{0^n1^n \mid 0 \leq n \leq 2022\} \) require?
Sample T/F problem 2c

\[
\exists \text{ a DFA recognizing } A = \{ w \in \{0,1\}^* \mid |w| \text{ is even} \}\] using \(\leq 4 \) states

What is \(A' \)?

\[A' = \{ w \in \{0,1\}^* \mid |w| \text{ is even} \} \]

![DFA diagram]

2 \(\leq 4 \) so there is a DFA recognizing using \(\leq 4 \) states

Alternatively: Construct an NFA with 1 state.

Then using subset construction, \(2^1 = 2 \leq 4 \) states.
If A is recognized by an NFA w/ 3 states, then

there does not exist a pairwise dist. set for A of size 10

Let A be recognized by a 3-state NFA N

Then by subset construction, \exists 8-state NFA O recognizing A

\implies every pairwise dist. set for A has size ≤ 8

Then: if \exists a PO set S for A, then every NFA for A needs ≥ 151 states

(contrapositive): $\neg (\forall y \forall x \neg p(y))$ \implies $\neg (\exists x p(x))$

i.e. $\exists x \neg p(x)$

$\neg (\forall y \forall x \neg p(y))$ \implies $\forall x \neg p(x)$

$\neg (\exists x p(x))$ \implies $\forall x \neg p(x)$

There exists no NFA for A using $< k$ states \implies

every PO set for A has size $< k$
Alternative approach:

- Assume \(\exists \text{ a DTM for } A \) using \(\leq 8 \) states (\(\ast \))

\(\Rightarrow \) every DTM for \(A \) needs \(\geq 10 \) states

Contradicts (\(\ast \))
Given languages A & B.

To form $A \cap B$:

1. Initialize $S = \emptyset$
2. For each $x \in A$:
 - For each $y \in \epsilon_f$:
 - Add xy to S
3. For each $y \in \epsilon_f$:
 - For each $x \in \emptyset$:
 - Add xy to S

Return S
\[\phi^* = \varepsilon \varepsilon^3 \]

\[A^* = \{ w_1, w_2, \ldots, w_n \mid \forall \omega \in A \exists \zeta \in A \} \]

\[= \varepsilon^3 \cup A \cup \lambda \varepsilon^3 \]

\[A_\varepsilon = A \cup \varepsilon \varepsilon^3 \]

\[A^*_\varepsilon = \{ w_1, w_2, \ldots, w_n \mid \forall \omega \in A \varepsilon \exists \zeta \in A_\varepsilon \} \]