BU CS 332 – Theory of Computation

https://forms.gle/44vcjAzahbobkuAQ8

Lecture 10:

- Turing Machines
- TM Variants and Closure Properties

Reading:

Sipser Ch 3.1-3.3

Mark Bun October 13, 2022

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

Three Levels of Abstraction

High-Level Description

An algorithm (like CS 330)

Implementation-Level Description

Describe (in English) the instructions for a TM

- How to move the head
- What to write on the tape

Low-Level Description

State diagram or formal specification

Example

Determine if a string $w \in \{0\}^*$ is in the language

$$A = \{0^{2^n} \mid n \ge 0\}$$

High-Level Description

Repeat the following forever:

- If there is exactly one 0 in w, accept
- If there is an odd (> 1) number of 0s in w, reject
- Delete half of the 0s in w

Example

Determine if a string $w \in \{0\}^*$ is in the language

$$A = \{0^{2^n} \mid n \ge 0\}$$

Implementation-Level Description

- 1. While moving the tape head left-to-right:
 - a) Cross off every other 0
 - b) If there is exactly one 0 when we reach the right end of the tape, accept
 - c) If there is an odd (> 1) number of 0s when we reach the right end of the tape, reject
- 2. Return the head to the left end of the tape
- 3. Go back to step 1

Example

Determine if a string $w \in A = \{0^{2^n} \mid n \ge 0\}$

Low-Level Description

Differences between TMs and Finite Automata

Formal Definition of a TM

A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- Q is a finite set of states
- ∑ is the input alphabet (does not include □)
- Γ is the tape alphabet (contains \sqcup and Σ)
- δ is the transition function

...more on this later

- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state $(q_{\text{reject}} \neq q_{\text{accept}})$

TM Transition Function

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

L means "move left" and R means "move right"

$$\delta(p, a) = (q, b, R)$$
 means:

- Replace a with b in current cell
- Transition from state p to state q
- Move tape head right

$$\delta(p,a) = (q,b,L)$$
 means:

- Replace a with b in current cell
- Transition from state p to state q
- Move tape head left UNLESS we are at left end of tape, in which case don't move

Configuration of a TM

A string that captures the **state** of a TM together with the **contents of the tape**

Configuration of a TM: Formally

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by infinitely many blanks \sqcup)
- Current state = q
- Tape head on first symbol of v

How a TM Computes

Start configuration: q_0w

One step of computation:

- If $\delta(q, b) = (q', c, R)$, then $ua \ q \ bv$ yields $uac \ q' \ v$
- If $\delta(q,b) = (q',c,L)$, then $ua \ q \ bv$ yields $u \ q' \ acv$
- If we are at the left end of the tape in configuration q bv, what configuration do we reach if $\delta(q,b)=(q',c,L)$?
 - a) cq'v
 - b) q'cv
 - c) $q' \sqcup cv$
 - d) q'cbv

How a TM Computes

Start configuration: q_0w

One step of computation:

- If $\delta(q, b) = (q', c, R)$, then $ua \ q \ bv$ yields $uac \ q' \ v$
- If $\delta(q,b) = (q',c,L)$, then $ua \ q \ bv$ yields $u \ q' \ acv$
- If $\delta(q,b) = (q',c,L)$, then q bv yields q' cv

Accepting configuration: $q = q_{accept}$

Rejecting configuration: $q = q_{reject}$

How a TM Computes

M accepts input w if there exists a sequence of configurations C_1, \ldots, C_k such that:

- $C_1 = q_0 w$
- C_i yields C_{i+1} for every i
- C_k is an accepting configuration

L(M) = the set of all strings w which M accepts A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w

Recognizers vs. Deciders

L(M) = the set of all strings w which M accepts

A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever on w

A is (Turing-)decidable if A = L(M) for some TM M which halts on every input

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject}

Recognizers vs. Deciders

Which of the following is true about the relationship between decidable and recognizable languages?

- a) The decidable languages are a subset of the recognizable languages
- b) The recognizable languages are a subset of the decidable languages
- c) They are incomparable: There might be decidable languages which are not recognizable and vice versa

Example: Arithmetic on a TM

The following TM decides MULT = $\{a^ib^jc^k \mid i \times j = k\}$: On input string w:

- 1. Check w is formatted correctly
- 2. For each a appearing in w:
- 3. For each b appearing in w:
- 4. Attempt to cross off a c. If none exist, reject.
- 5. If all c's are crossed off, accept. Else, reject.

Example: Arithmetic on a TM

The following TM decides MULT = $\{a^ib^jc^k \mid i \times j = k\}$: On input string w:

- 1. Scan the input from left to right to determine whether it is a member of $L(a^*b^*c^*)$
- 2. Return head to left end of tape
- 3. Cross off an a if one exists. Scan right until a b occurs. Shuttle between b's and c's crossing off one of each until all b's are gone. Reject if all c's are gone but some b's remain.
- 4. Restore crossed off b's. If any a's remain, repeat step 3.
- 5. If all c's are crossed off, accept. Else, reject.

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?

L =

• *L* is Turing-recognizable

• *L* is **not** decidable (1949-70)

TM Variants

How Robust is the TM Model?

Does changing the model result in different languages being recognizable / decidable?

So far we've seen...

- We can require that NFAs have a single accept state
- Adding nondeterminism does not change the languages recognized by finite automata

Other modifications possible too: E.g., allowing DFAs to have multiple passes over their input does not increase their power

Turing machines have an astonishing level of robustness

TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators
- Finite automata with access to an unbounded queue
- Primitive recursive functions
- Cellular automata

. . .

Equivalent TM models

 TMs that are allowed to "stay put" instead of moving left or right

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

TMs with stay put are at least as powerful as basic TMs (Every basic TM is a TM with stay put that never stays put)

How would you show that TMs with stay put are *no more* powerful than basic TMs?

- a) Convert any basic TM into an equivalent TM with stay put
- b) Convert any TM with stay put into an equivalent basic TM
- c) Construct a language that is recognizable by a TM with stay put, but not by any basic TM
- d) Construct a language that is recognizable by a basic TM, but not by any TM with stay put

Equivalent TM models

 TMs that are allowed to "stay put" instead of moving left or right

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

Proof that TMs with stay put are no more powerful:

Simulation: Convert any TM M with stay put into an equivalent basic TM M'

Replace every stay put instruction in M with a move right instruction, followed by a move left instruction in M'

Equivalent TM models

• TMs with a 2-way infinite tape, unbounded left to right

Proof that TMs with 2-way infinite tapes are no more powerful:

Simulation: Convert any TM M with 2-way infinite tape into a 1-way infinite TM M' with a "two-track tape"

Implementation-Level Simulation

Given 2-way TM M construct a basic TM M' as follows.

TM
$$M' =$$
 "On input $w = w_1 w_2 ... w_n$:

1. Format 2-track tape with contents

$$(w_1, \sqcup), (w_2, \sqcup), ..., (w_n, \sqcup)$$

- 2. To simulate one move of M:
- a) If working on upper track, read/write to the first position of cell under tape head, and move in the same direction as M
- b) If working on lower track, read/write to second position of cell under tape head, and move in the opposite direction as M
 - c) If move results in hitting \$, switch to the other track. "

Formalizing the Simulation

Given 2-way TM $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm accept},q_{\rm reject})$, construct $M'=(Q',\Sigma,\Gamma',\delta',q_0',q_{\rm accept}',q_{\rm reject}')$

New tape alphabet: $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$

New state set: $Q' = Q \times \{+, -\}$

(q, -) means "q, working on upper track"

(q, +) means "q, working on lower track"

New transitions:

If
$$\delta(p, a_-) = (q, b, L)$$
, let $\delta'((p, -), (a_-, a_+)) = ((q, -), (b, a_+), R)$

Also need new transitions for moving right, lower track, hitting \$, initializing input into 2-track format

Multi-Tape TMs

Fixed number of tapes *k*

(k can't depend on input or change during computation)

Transition function $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$

Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every k-tape TM M with can be simulated by an equivalent single-tape TM M'

Simulating Multiple Tapes

Implementation-Level Description

```
On input w = w_1 w_2 \dots w_n
```

- 1. Format tape into $\# \dot{w_1} w_2 \dots w_n \# \dot{\sqcup} \# \dot{\sqcup} \# \dots \#$
- 2. For each move of M:

Scan left-to-right, finding current symbols Scan left-to-right, writing new symbols, Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank If a tape head goes off left end, move back right

Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it's enough to construct a multi-tape TM

Often easier to construct multi-tape TMs

Ex. Decider for $\{a^ib^j | i > j\}$

Why are Multi-Tape TMs Helpful?

To show a language is Turing-recognizable or decidable, it's enough to construct a multi-tape TM

Very helpful for proving closure properties

Ex. Closure of recognizable languages under union. Suppose M_1 is a single-tape TM recognizing L_1 , M_2 is a single-tape TM recognizing L_2