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Nondeterministic TMs

At any point in computation, may nondeterministically
branch. Accepts iff there exists an accepting branch.

Transition function§ : Q XT' - P(Q XTI’ x {L,R,S})

Transition function can ...or give multiple ...or both
lead to multiple states write/movement
instructions
a - bR @ a - bR @
a — b,R
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Nondeterministic TMs
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1) Scan tape left-to-right. At some point, nondeterministically go to step 2
2) a) Read the next symbol s and cross it off
b) Move the head left repeatedly until a non-x symbol is found. If
it matches s, cross it off. Else, reject.
c) Move the head right until a non-x symbol is found. If blank is hit,

go to step 3.
d) Go back to 2a)
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3) Check that the entire tape consists of x’s. If so, accept. Else, reject.
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Nondeterministic TMs

Ex. Given TMs M; and M,, construct an NTM recognizing
L(M;) U L(M;)
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Nondeterministic TMs NonnTT

Ex. NTM for L = {w |w is a binary number representing
( £,0)> ()€

the product of two integers a, b = 2} @Du S
J->0,R

High-Level Description:
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Nondeterministic TMs

An NTM N accepts input w if when run on w it accepts on
at least one computational branch

L(N) = {w | N accepts input w}
N fogne [ nrass’
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An NTM N is a decider if on every input, it halts on every

computational branch
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Nondeterministic TMs @ nee

Theorem: Every nondeterministic TM can be simulated by
an equivalent deterministic TM

Proof idea: Explore “tree ossible computations”
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Simulating NTMs [ILEI#FEI
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Which of the following algorithms is always appropriate
for searching the tree of possible computations for an
accepting configuration?

a) Depth-first search: Explore as far as possible down
each branch before backtracking
Wak £ NN N o decdo—

@ Breadth-first search: Explore all configurations at
depth 1, then all configurations at depth 2, etc.
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c) Both algorithms will always work
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Nondeterministic TMs

Theorem: Every nondeterministic TM has an equivalent
deterministic TM

Proof idea: Simulate an NTM N using a 3-tape TM
(See Sipser for full description)

wy |wy (ws |w, InputwtoN(rM
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Finite Simulation tape (run N on w using
W1 U H W3 | Wy e e e .
control nondeterministic choices from tape 3)
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TMs are equivalent to...

* TMs with “stay put”

* TMs with 2-way infinite tapes
* Multi-tape TMs

* Nondeterministic TMs

* Random access TMs

* Enumerators

* Finite automata with access to an unbounded queue
* Primitive recursive functions

e Cellular automata




Church-Turing Thesis

The equivalence of these models is a mathematical
theorem (you can prove that each can simulate another)

Church-Turing Thesis v1: The basic TM (hence all of these
models) captures our intuitive notion of algorithms

PrUv o | aeravkiy

Church-Turing Thesis v2: Any physically realizable model
of computation can be simulated by the basic TM

ngxtla‘

The Church-Turing Thesis is not a mathematical
statement! Can’t be mathematically proved
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Decidable Languages
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1928 — The Entscheidungsproblem

The “Decision Problem” molematfal  Glabuat
TW
Is there awhich takes as input@ formula (in first-
order logicland-decides whether it’s logically valid?
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Questions about regular languages
* Given a DFA D and a string w, does D accept input w?
* Given a DFA D, does D recognize the empty language?

* Given DFAs D4, D,, do they recognize the same
language?

(Same questions apply to NFAs, regexes)

Goal: Formulate each of these questions as a language,
and decide them using Turing machines



Questions about regular languages

Design a TM which takes as input a DFA D and a string w,
and determines whether D accepts w

How should the input to this TM be represented?

Let D = (Q, %, §, qo, F). List each component of the tuple
separated by #

* Represent Q by ,-separated binary strings
* Represent X by ,-separated binary strings

* Represent 0 : Q X X — Q by a ,-separated list of triples
(v aq), .. Yo Ghing ()

Denote the encoding of D,w by (D, w)
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Representation independence

Computability (i.e., decidability and recognizability) is not
affected by the precise choice of encoding
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From now on, we’ll take { ) to mean “any reasonable
encoding” p—
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A “universal” algorithm for recognizing regular
languages (omphotmal quMew .

‘ T Ay o
A = {(D,w) |DFA D accepts w} G\ A DB, S,
DFA = ) | p } 195 0 acd o

Theorem: Appp is decidable

Proof: Define a (high-level) 3-tape TM M on input (D, w):
1. Check if (D, w) is a valid encoding (reject if notB o 1o

oM ¥
2. Simulate D onw, i.e.,

* Tape 2: Maintain w and head locationof D T Jol 2[1] |
e Tape 3: Maintain state of D, update according to —

3. Acceptif D ends in an accept state, reject otherwise
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