BU CS 332 – Theory of Computation

https://forms.gle/z3CYEiw9CpKv6ghK6

Lecture 13:

- More decidable languages
- Universal Turing Machine
- Countability

Mark Bun October 25, 2022

Reading:

Sipser Ch 4.1, 4.2

Last Time

Church-Turing Thesis

v1: The basic TM (and all equivalent models) capture our intuitive notion of algorithms

v2: Any physically realizable model of computation can be simulated by the basic TM

Decidable languages (from language theory)

 $A_{\text{DFA}} = \{\langle D, w \rangle \mid \text{DFA } D \text{ accepts input } w\}, \text{ etc.}$

Today: More decidable languages

What languages are undecidable? How can we prove so?

A "universal" algorithm for recognizing regular languages (A_{DFA}) of pair (A_{DFA}) is decidable

Proof: Define a (high-level) 3-tape TM M on input $\langle D, w \rangle$:

- 1. Check if $\langle D, w \rangle$ is a valid encoding (reject if not)
- 2. Simulate D on w, i.e.,
 - Tape 2: Maintain w and head location of D
 - Tape 3: Maintain state of D, update according to δ
- 3. Accept if *D* ends in an accept state, reject otherwise

Other decidable languages

$$A_{DFA} = \{\langle D, w \rangle \mid DFA D \text{ accepts } w\}$$

$$A_{NFA} = \{\langle N, w \rangle \mid NFA \ N \text{ accepts } w\}$$

 $A_{REX} = \{\langle R, w \rangle \mid \text{regular expression } R \text{ generates } w\}$

NFA Acceptance

Which of the following describes a **decider** for $A_{NFA} = \{\langle N, w \rangle \mid NFA \ N \text{ accepts } w\}$?

a) Using a deterministic TM, simulate N on w, always making the first nondeterministic choice at each step. Accept if it accepts, and reject otherwise.

accepts, and reject otherwise.

| Doesn't name because |
| LN, a) should be accepted, but it's right if
| b) Using a deterministic TM, simulate all possible choices of explore

b) Using a deterministic TM, simulate all possible choices of N on N on N for 1 step of computation, 2 steps of computation, etc. Accept whenever some simulation accepts.

Exi N = - ORE On input CN, a), TM described

[00] S free => TM : 3 med

Use the subset construction to convert N to an equivalent DFA M. Simulate M on w, accept if it accepts, and reject otherwise. We have Subset construction can be implanted

Regular Languages are Decidable

Theorem: Every regular language L is decidable

Proof 1: If L is regular, it is recognized by a DFA D. Convert this DFA to a TM M. Then M decides L.

Proof 2: If L is regular, it is recognized by a DFA D. The

following TM M_D decides L.

On input w: [IS WEL or not?]

- 1. Run the decider for A_{DFA} on input $\langle D, w \rangle$
- 2. Accept if the decider accepts; reject otherwise

Classes of Languages

More Decidable Languages: Emptiness Testing

Theorem: $E_{\mathrm{DFA}} = \{\langle D \rangle \mid D \text{ is a DFA such that } L(D) = \emptyset \}$ is decidable (signal and policies Given a DFA D, does D) Proof: The following TM decides E_{DFA} and E_{DFA} are the second E_{DFA} and E_{DFA} and E_{DFA} are the second E_{DFA} are the second E_{DFA} are the second E_{DFA} and E_{DFA} are the second $E_{\mathrm{DFA$

- 1. Perform k steps of breadth-first search on state diagram of D to determine if an accept state is reachable from the start state
- 2. Reject if a DFA accept state is reachable; accept otherwise

E_{DFA} Example

- 2) 9₂
 3) 9₇
 - 4) 9, 95
 - 5) Nothing rew
 - 6) Nothing res
 - => (anclude acourt states are not reachable
 - -> <0>.E.EDFA

Stutes

New Deciders from Old: Equality Testing the same

$$EQ_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$$

Theorem: EQ_{DFA} is decidable

ADB=3W WEA and web?

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct DFA D recognizing the symmetric difference $L(D_1) \triangle L(D_2) = \{ \omega \mid \omega \in M \text{ exactly one of } (O_1) \text{ or } (O_2) \text{ on } (O_2) \text{ on } (O_1) \text{ or } (O_2) \text{ on } (O_2) \text{ or } (O_2$
- 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output Analysis.

Symmetric Difference

 $A \triangle B = \{ w \mid w \in A \text{ or } w \in B \text{ but not both} \}$

Universal Turing Machine

Meta-Computational Languages

```
A_{\text{DFA}} = \{\langle D, w \rangle \mid \text{DFA } D \text{ accepts } w\}
A_{\text{TM}} = \{\langle M, w \rangle \mid \text{TM } M \text{ accepts } w\}
```

 $E_{\text{DFA}} = \{\langle D \rangle \mid \text{DFA } D \text{ recognizes the empty language } \emptyset\}$ $E_{\text{TM}} = \{\langle M \rangle \mid \text{TM } M \text{ recognizes the empty language } \emptyset\}$

```
EQ_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs, } L(D_1) = L(D_2)\}

EQ_{\mathrm{TM}} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs, } L(M_1) = L(M_2)\}
```

The Universal Turing Machine

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Theorem: A_{TM} is Turing-recognizable

The following "Universal TM" U recognizes A_{TM} On input $\langle M, w \rangle$:

- 1. Simulate running *M* on input *w*
- 2. If *M* accepts, accept. If *M* rejects, reject.

THE CM, with Aim: In simulation, M allots w, so U algots

The CM, with Aim then M does not allot w

(age 1: M respects w => smalation rejects => U respects of the control of the control

Universal TM and A_{TM}

Why is the Universal TM not a decider for $A_{\rm TM}$?

The following "Universal TM" U recognizes $A_{ au\mathsf{M}}$

On input $\langle M, w \rangle$:

- 1. Simulate running *M* on input *w*
- 2. If M accepts, accept. If M rejects, reject.
- a) It may reject inputs $\langle M, w \rangle$ where M accepts w
- b) It may accept inputs $\langle M, w \rangle$ where M rejects w
- (c) It may loop on inputs $\langle M, w \rangle$ where M loops on w
 - d) It may loop on inputs $\langle M, w \rangle$ where M accepts w

More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine **U** is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine **M**, then **U** will compute the same sequence as **M**."

- Turing, "On Computable Numbers..." 1936

- Foreshadowed general-purpose programmable computers
- No need for specialized hardware: Virtual machines as software

Harvard architecture: Separate instruction and data pathways

von Neumann architecture: Programs can be treated as data

Undecidability

 A_{TM} is Turing-recognizable via the Universal TM

...but it turns out $A_{\rm TM}$ (and $E_{\rm TM}$, $EQ_{\rm TM}$) is **undecidable**

i.e., computers cannot solve these problems no matter how much time they are given

How can we prove this?

First, a mathematical interlude...

Countability and Diagonalization

What's your intuition?

Which of the following sets is the "biggest"?

- a) The natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- b) The even numbers: $E = \{2, 4, 6, ...\}$
- c) The positive powers of 2: $POW2 = \{2, 4, 8, 16, ...\}$
- d) They all have the same size

Set Theory Review

A function $f: A \rightarrow B$ is

• 1-to-1 (injective) if $f(a) \neq$ f(a') for all $a \neq a'$

• onto (surjective) if for all $b \in B$, there exists $a \in A$ such that f(a) = b

 a correspondence (bijective) if it is 1-to-1 and onto, i.e., every $b \in B$ has a unique $a \in A$ with f(a) = b

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them

A set is countable if

- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers

Examples of countable sets

```
• Ø
• {0,1}
• {0,1,2,...,8675309}
```

•
$$E = \{2, 4, 6, 8, ...\}$$
 $f(i) = 2i$

•
$$SQUARES = \{1, 4, 9, 16, 25, ...\}$$
 f(3)= i^2

•
$$POW2 = \{2, 4, 8, 16, 32, ...\}$$
 $\mathfrak{C}(1) = 2^{5}$

$$|E| = |SQUARES| = |POW2| = |\mathbb{N}|$$