Lecture 13:

- More decidable languages
- Universal Turing Machine
- Countability

Reading:
Sipser Ch 4.1, 4.2

Mark Bun
October 25, 2022
Last Time

Church-Turing Thesis
v1: The basic TM (and all equivalent models) capture our intuitive notion of algorithms
v2: Any physically realizable model of computation can be simulated by the basic TM

Decidable languages (from language theory)
\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts input } w \} \], etc.

Today: More decidable languages
What languages are undecidable? How can we prove so?
A “universal” algorithm for recognizing regular languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

Theorem: \(A_{\text{DFA}} \) is decidable

Proof: Define a (high-level) 3-tape TM \(M \) on input \(\langle D, w \rangle \):

1. Check if \(\langle D, w \rangle \) is a valid encoding (reject if not)
2. Simulate \(D \) on \(w \), i.e.,
 - Tape 2: Maintain \(w \) and head location of \(D \)
 - Tape 3: Maintain state of \(D \), update according to \(\delta \)
3. Accept if \(D \) ends in an accept state, reject otherwise
Other decidable languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid \text{NFA } N \text{ accepts } w \} \]

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid \text{regular expression } R \text{ generates } w \} \]
NFA Acceptance

Which of the following describes a decider for \(A_{NFA} = \{ \langle N, w \rangle \mid \text{NFA } N \text{ accepts } w \} \)?

a) Using a deterministic TM, simulate \(N \) on \(w \), always making the first nondeterministic choice at each step. Accept if it accepts, and reject otherwise.

b) Using a deterministic TM, simulate all possible choices of \(N \) on \(w \) for 1 step of computation, 2 steps of computation, etc. Accept whenever some simulation accepts.

c) Use the subset construction to convert \(N \) to an equivalent DFA \(M \). Simulate \(M \) on \(w \), accept if it accepts, and reject otherwise.
Regular Languages are Decidable

Theorem: Every regular language L is decidable

Proof 1: If L is regular, it is recognized by a DFA D. Convert this DFA to a TM M. Then M decides L.

Proof 2: If L is regular, it is recognized by a DFA D. The following TM M_D decides L.

On input w:

1. Run the decider for A_{DFA} on input $\langle D, w \rangle$
2. Accept if the decider accepts; reject otherwise
Classes of Languages

- Regular
- Decidable
- Recognizable
More Decidable Languages: Emptiness Testing

Theorem: \(E_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA such that } L(D) = \emptyset \} \) is decidable

Proof: The following TM decides \(E_{DFA} \)

On input \(\langle D \rangle \), where \(D \) is a DFA with \(k \) states:

1. Perform \(k \) steps of breadth-first search on state diagram of \(D \) to determine if an accept state is reachable from the start state

2. Reject if a DFA accept state is reachable; accept otherwise
Example
New Deciders from Old: Equality Testing

\[EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

Theorem: \(EQ_{\text{DFA}} \) is decidable

Proof: The following TM decides \(EQ_{\text{DFA}} \)

On input \(\langle D_1, D_2 \rangle \), where \(\langle D_1, D_2 \rangle \) are DFAs:

1. Construct DFA \(D \) recognizing the **symmetric difference** \(L(D_1) \triangle L(D_2) \)
2. Run the decider for \(E_{\text{DFA}} \) on \(\langle D \rangle \) and return its output
Symmetric Difference

\[A \bigtriangleup B = \{ w \mid w \in A \text{ or } w \in B \text{ but not both} \} \]
Universal Turing Machine
Meta-Computational Languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid \text{DFA } D \text{ accepts } w \} \]
\[A_{\text{TM}} = \{ \langle M, w \rangle \mid \text{TM } M \text{ accepts } w \} \]

\[E_{\text{DFA}} = \{ \langle D \rangle \mid \text{DFA } D \text{ recognizes the empty language } \emptyset \} \]
\[E_{\text{TM}} = \{ \langle M \rangle \mid \text{TM } M \text{ recognizes the empty language } \emptyset \} \]

\[EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs, } L(D_1) = L(D_2) \} \]
\[EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs, } L(M_1) = L(M_2) \} \]
The Universal Turing Machine

\[A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that accepts input } w \} \]

Theorem: \(A_{TM} \) is Turing-recognizable

The following “Universal TM” \(U \) recognizes \(A_{TM} \)

On input \(\langle M, w \rangle \):

1. Simulate running \(M \) on input \(w \)
2. If \(M \) accepts, accept. If \(M \) rejects, reject.
Universal TM and A_{TM}

Why is the Universal TM not a decider for A_{TM}?

The following “Universal TM” U recognizes A_{TM}

On input $\langle M, w \rangle$:
1. Simulate running M on input w
2. If M accepts, accept. If M rejects, reject.

a) It may reject inputs $\langle M, w \rangle$ where M accepts w
b) It may accept inputs $\langle M, w \rangle$ where M rejects w
c) It may loop on inputs $\langle M, w \rangle$ where M loops on w
d) It may loop on inputs $\langle M, w \rangle$ where M accepts w
More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine \(U \) is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine \(M \), then \(U \) will compute the same sequence as \(M \)."

- Turing, “On Computable Numbers...” 1936

• Foreshadowed general-purpose programmable computers
• No need for specialized hardware: Virtual machines as software

Harvard architecture:
Separate instruction and data pathways

von Neumann architecture:
Programs can be treated as data
Undecidability

A_{TM} is Turing-recognizable via the Universal TM

...but it turns out A_{TM} (and E_{TM}, EQ_{TM}) is **undecidable**

i.e., computers cannot solve these problems no matter how much time they are given

How can we prove this?

First, a mathematical interlude...
Countability and Diagonalization
What’s your intuition?

Which of the following sets is the “biggest”?

a) The natural numbers: $\mathbb{N} = \{1, 2, 3, \ldots \}$

b) The even numbers: $E = \{2, 4, 6, \ldots \}$

c) The positive powers of 2: $POW2 = \{2, 4, 8, 16, \ldots \}$

d) They all have the same size
Set Theory Review

A function \(f: A \to B \) is

• 1-to-1 (injective) if \(f(a) \neq f(a') \) for all \(a \neq a' \)

• onto (surjective) if for all \(b \in B \), there exists \(a \in A \) such that \(f(a) = b \)

• a correspondence (bijective) if it is 1-to-1 and onto, i.e., every \(b \in B \) has a unique \(a \in A \) with \(f(a) = b \)
How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them.

A set is **countable** if

- it is a finite set, or
- it has the same size as \(\mathbb{N} \), the set of natural numbers.
Examples of countable sets

- \emptyset
- $\{0, 1\}$
- $\{0, 1, 2, \ldots, 8675309\}$
- $E = \{2, 4, 6, 8, \ldots\}$
- $SQUARES = \{1, 4, 9, 16, 25, \ldots\}$
- $POW2 = \{2, 4, 8, 16, 32, \ldots\}$

$|E| = |SQUARES| = |POW2| = |\mathbb{N}|$
How to show that $\mathbb{N} \times \mathbb{N}$ is countable?

$(1, 1)$ $(2, 1)$ $(3, 1)$ $(4, 1)$ $(5, 1)$...

$(1, 2)$ $(2, 2)$ $(3, 2)$ $(4, 2)$ $(5, 2)$...

$(1, 3)$ $(2, 3)$ $(3, 3)$ $(4, 3)$ $(5, 3)$...

$(1, 4)$ $(2, 4)$ $(3, 4)$ $(4, 4)$ $(5, 4)$...

$(1, 5)$ $(2, 5)$ $(3, 5)$ $(4, 5)$ $(5, 5)$...
How to argue that a set S is countable

• Describe how to “list” the elements of S, usually in stages:

Ex:
- Stage 1) List all pairs (x, y) such that $x + y = 2$
- Stage 2) List all pairs (x, y) such that $x + y = 3$
 ...
- Stage n) List all pairs (x, y) such that $x + y = n + 1$
 ...

• Explain why every element of S appears in the list

Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage $x + y - 1$

• Define the bijection $f: \mathbb{N} \to S$ by $f(n) =$ the n’th element in this list (ignoring duplicates if needed)
More examples of countable sets

- \{0,1\} *
- \{\langle M \rangle \mid M \text{ is a Turing machine}\}
- \mathbb{Q} = \{\text{rational numbers}\}

- If \(A \subseteq B \) and \(B \) is countable, then \(A \) is countable
- If \(A \) and \(B \) are countable, then \(A \times B \) is countable

- \(S \) is countable if and only if there exists a surjection (an onto function) \(f : \mathbb{N} \rightarrow S \)
Another version of the dovetailing trick

Ex: Show that $\mathcal{F} = \{L \subseteq \{0, 1\}^* \mid L \text{ is finite}\}$ is countable
So what isn’t countable?
Cantor’s Diagonalization Method

- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...

Some praise for his work:

“Scientific charlatan...renegade...corruptor of youth”
–L. Kronecker

“Set theory is wrong...utter nonsense...laughable”
–L. Wittgenstein
Uncountability of the reals

Theorem: The real interval \([0, 1]\) is uncountable.

Proof: Assume for the sake of contradiction it were countable, and let \(f: \mathbb{N} \rightarrow [0,1]\) be onto (surjective)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0.d_1^1 d_2^1 d_3^1 d_4^1 d_5^1 \ldots)</td>
</tr>
<tr>
<td>2</td>
<td>(0.d_1^2 d_2^2 d_3^2 d_4^2 d_5^2 \ldots)</td>
</tr>
<tr>
<td>3</td>
<td>(0.d_1^3 d_2^3 d_3^3 d_4^3 d_5^3 \ldots)</td>
</tr>
<tr>
<td>4</td>
<td>(0.d_1^4 d_2^4 d_3^4 d_4^4 d_5^4 \ldots)</td>
</tr>
<tr>
<td>5</td>
<td>(0.d_1^5 d_2^5 d_3^5 d_4^5 d_5^5 \ldots)</td>
</tr>
</tbody>
</table>

Construct \(b \in [0,1]\) which does not appear in this table – contradiction!

\(b = 0.\ b_1 b_2 b_3 \ldots\) where \(b_i \neq d_i^i\) (digit \(i\) of \(f(i)\))
Uncountability of the reals

A concrete example of the contradiction construction:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8675309...</td>
</tr>
<tr>
<td>2</td>
<td>0.1415926...</td>
</tr>
<tr>
<td>3</td>
<td>0.7182818...</td>
</tr>
<tr>
<td>4</td>
<td>0.4444444...</td>
</tr>
<tr>
<td>5</td>
<td>0.1337133...</td>
</tr>
</tbody>
</table>

Construct $b \in [0,1]$ which does not appear in this table – contradiction!

$b = 0.b_1b_2b_3...$ where $b_i \neq d_i^i$ (digit i of $f(i)$)
This process of constructing a counterexample by “contradicting the diagonal” is called diagonalization.