## BU CS 332 - Theory of Computation

https://forms.gle/z3CYEiw9CpKv6ghK6

## Lecture 13:

- More decidable languages
- Universal Turing Machine
- Countability

Mark Bun
October 25, 2022

## Last Time

Church-Turing Thesis
v1: The basic TM (and all equivalent models) capture our intuitive notion of algorithms
v2: Any physically realizable model of computation can be simulated by the basic TM

Decidable languages (from language theory)
$A_{\mathrm{DFA}}=\{\langle D, w\rangle \mid$ DFA $D$ accepts input $w\}$, etc.

Today: More decidable languages
What languages are undecidable? How can we prove so?

A "universal" algorithm for recognizing regular languages
$A_{\text {DFA }}=\{\langle D, w\rangle \mid$ DFA $D$ accepts $w\}$
Theorem: $A_{\text {DFA }}$ is decidable

Proof: Define a (high-level) 3 -tape TM $M$ on input $\langle D, w\rangle$ :

1. Check if $\langle D, w\rangle$ is a valid encoding (reject if not)
2. Simulate $D$ on $w$, i.e.,

- Tape 2: Maintain $w$ and head location of $D$
- Tape 3: Maintain state of $D$, update according to $\delta$

3. Accept if $D$ ends in an accept state, reject otherwise

## Other decidable languages

$A_{\mathrm{DFA}}=\{\langle D, w\rangle \mid$ DFA $D$ accepts $w\}$
$A_{\mathrm{NFA}}=\{\langle N, w\rangle \mid$ NFA $N$ accepts $w\}$
$A_{\text {REX }}=\{\langle R, w\rangle \mid$ regular expression $R$ generates $w\}$

## NFA Acceptance

Which of the following describes a decider for $A_{\text {NFA }}=$ $\{\langle N, w\rangle \mid$ NFA $N$ accepts $w\}$ ?
a) Using a deterministic TM, simulate $N$ on $w$, always making the first nondeterministic choice at each step. Accept if it accepts, and reject otherwise.
b) Using a deterministic TM, simulate all possible choices of $N$ on $w$ for 1 step of computation, 2 steps of computation, etc. Accept whenever some simulation accepts.
c) Use the subset construction to convert $N$ to an equivalent DFA $M$. Simulate $M$ on $w$, accept if it accepts, and reject otherwise.

## Regular Languages are Decidable

Theorem: Every regular language $L$ is decidable
Proof 1: If $L$ is regular, it is recognized by a DFA $D$. Convert this DFA to a TM $M$. Then $M$ decides $L$.
Proof 2: If $L$ is regular, it is recognized by a DFA $D$. The following TM $M_{D}$ decides $L$.
On input $w$ :

1. Run the decider for $A_{\text {DFA }}$ on input $\langle D, w\rangle$
2. Accept if the decider accepts; reject otherwise

## Classes of Languages



More Decidable Languages: Emptiness Testing
Theorem: $E_{\mathrm{DFA}}=\{\langle D\rangle \mid D$ is a DFA such that $L(D)=\varnothing\}$ is decidable
Proof: The following TM decides $E_{\text {DFA }}$
On input $\langle D\rangle$, where $D$ is a DFA with $k$ states:

1. Perform $k$ steps of breadth-first search on state diagram of $D$ to determine if an accept state is reachable from the start state
2. Reject if a DFA accept state is reachable; accept otherwise

## $E_{D F A}$ Example



New Deciders from Old: Equality Testing
$E Q_{\text {DFA }}=\left\{\left\langle D_{1}, D_{2}\right\rangle \mid D_{1}, D_{2}\right.$ are DFAs and $\left.L\left(D_{1}\right)=L\left(D_{2}\right)\right\}$
Theorem: $E Q_{\text {DFA }}$ is decidable
Proof: The following TM decides $E Q_{\text {DFA }}$
On input $\left\langle D_{1}, D_{2}\right\rangle$, where $\left\langle D_{1}, D_{2}\right\rangle$ are DFAs:

1. Construct DFA $D$ recognizing the symmetric difference $L\left(D_{1}\right) \Delta L\left(D_{2}\right)$
2. Run the decider for $E_{\mathrm{DFA}}$ on $\langle D\rangle$ and return its output

## Symmetric Difference

$$
A \Delta B=\{w \mid w \in A \text { or } w \in B \text { but not both }\}
$$

## Universal Turing Machine

Meta-Computational Languages
$A_{\text {DFA }}=\{\langle D, w\rangle \mid$ DFA $D$ accepts $w\}$
$A_{\mathrm{TM}}=\{\langle M, w\rangle \mid \mathrm{TM} M$ accepts $w\}$
$E_{\text {DFA }}=\{\langle D\rangle \mid$ DFA $D$ recognizes the empty language $\varnothing\}$ $E_{\mathrm{TM}}=\{\langle M\rangle \mid \mathrm{TM} M$ recognizes the empty language $\emptyset\}$
$E Q_{\text {DFA }}=\left\{\left\langle D_{1}, D_{2}\right\rangle \mid D_{1}\right.$ and $D_{2}$ are DFAs, $\left.L\left(D_{1}\right)=L\left(D_{2}\right)\right\}$ $E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and $M_{2}$ are TMs, $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$

The Universal Turing Machine
$A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM that accepts input $w\}$
Theorem: $A_{\text {TM }}$ is Turing-recognizable

The following "Universal TM" $U$ recognizes $A_{\mathrm{TM}}$ On input $\langle M, w\rangle$ :

1. Simulate running $M$ on input $w$
2. If $M$ accepts, accept. If $M$ rejects, reject.

## Universal TM and $A_{\text {TM }}$

Why is the Universal TM not a decider for $A_{\mathrm{TM}}$ ?

The following "Universal TM" $U$ recognizes $A_{\text {TM }}$
On input $\langle M, w\rangle$ :

1. Simulate running $M$ on input $w$
2. If $M$ accepts, accept. If $M$ rejects, reject.
a) It may reject inputs $\langle M, w\rangle$ where $M$ accepts $w$
b) It may accept inputs $\langle M, w\rangle$ where $M$ rejects $w$
c) It may loop on inputs $\langle M, w\rangle$ where $M$ loops on $w$
d) It may loop on inputs $\langle M, w\rangle$ where $M$ accepts $w$

## More on the Universal TM

"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine $\mathbf{U}$ is supplied with a tape on the beginning of which is written the S.D ["standard description"] of some computing machine $\mathbf{M}$, then $\mathbf{U}$ will compute the same sequence as $\mathbf{M}$."

- Turing, "On Computable Numbers..." 1936
- Foreshadowed general-purpose programmable computers
- No need for specialized hardware: Virtual machines as software


Harvard architecture:
Separate instruction and data pathways

von Neumann architecture:
Programs can be treated as data

## Undecidability

$A_{\text {TM }}$ is Turing-recognizable via the Universal TM
...but it turns out $A_{\mathrm{TM}}$ (and $E_{\mathrm{TM}}, E Q_{\mathrm{TM}}$ ) is undecidable
i.e., computers cannot solve these problems no matter how much time they are given

How can we prove this?
First, a mathematical interlude...

## Countability and Diagonalizaiton

What's your intuition?
Which of the following sets is the "biggest"?

a) The natural numbers: $\mathbb{N}=\{1,2,3, \ldots\}$
b) The even numbers: $E=\{2,4,6, \ldots\}$
c) The positive powers of 2: POW2 $=\{2,4,8,16, \ldots\}$
d) They all have the same size

## Set Theory Review

A function $f: A \rightarrow B$ is

- 1-to-1 (injective) if $f(a) \neq$ $f\left(a^{\prime}\right)$ for all $a \neq a^{\prime}$
- onto (surjective) if for all $b \in B$, there exists $a \in A$ such that $f(a)=b$
- a correspondence (bijective) if it is 1-to-1 and onto, i.e., every $b \in B$ has a unique $a \in A$ with $f(a)=b$


How can we compare sizes of infinite sets?
Definition: Two sets have the same size if there is a bijection between them

A set is countable if

- it is a finite set, or
- it has the same size as $\mathbb{N}$, the set of natural numbers


## Examples of countable sets

- $\emptyset$
- $\{0,1\}$
- $\{0,1,2, \ldots, 8675309\}$
- $E=\{2,4,6,8, \ldots\}$
- SQUARES $=\{1,4,9,16,25, \ldots\}$
- POW2 $=\{2,4,8,16,32, \ldots\}$

$$
|E|=|S Q U A R E S|=|P O W 2|=|\mathbb{N}|
$$

## How to show that $\mathbb{N} \times \mathbb{N}$ is countable?

$(1,1)$
$(2,1)$
$(3,1)$
$(4,1)$
$(5,1)$...
$(1,2)$
$(2,2)$
$(3,2)$
$(4,2)$
$(5,2) \quad .$.
$(1,3)$
$(2,3)$
$(3,3)$
$(4,3)$
$(5,3)$
$(1,4)$
$(2,4)$
$(3,4)$
$(4,4)$
$(5,4) \quad .$.
$(1,5)$
$(2,5)$
$(3,5)$
$(4,5)$
$(5,5)$

## How to argue that a set $S$ is countable

- Describe how to "list" the elements of $S$, usually in stages:

Ex: Stage 1) List all pairs $(x, y)$ such that $x+y=2$
Stage 2) List all pairs $(x, y)$ such that $x+y=3$

Stage $n$ ) List all pairs $(x, y)$ such that $x+y=n+1$

- Explain why every element of $S$ appears in the list Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage $x+y-1$
- Define the bijection $f: \mathbb{N} \rightarrow S$ by $f(n)=$ the $n$ 'th element in this list (ignoring duplicates if needed)


## More examples of countable sets

- $\{0,1\}^{*}$
$\cdot\{\langle M\rangle \mid M$ is a Turing machine $\}$
- $\mathbb{Q}=$ \{rational numbers $\}$
- If $A \subseteq B$ and $B$ is countable, then $A$ is countable
- If $A$ and $B$ are countable, then $A \times B$ is countable
- $S$ is countable if and only if there exists a surjection (an onto function) $f: \mathbb{N} \rightarrow S$


## Another version of the dovetailing trick

 Ex: Show that $\mathcal{F}=\left\{L \subseteq\{0,1\}^{*} \mid L\right.$ is finite $\}$ is countable
## So what isn't countable?

## Cantor's Diagonalization Method

- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...


Georg Cantor 1845-1918

Some praise for his work:
"Scientific charlatan...renegade...corruptor of youth" -L. Kronecker
"Set theory is wrong...utter nonsense...laughable" -L. Wittgenstein

## Uncountability of the reals

Theorem: The real interval $[0,1]$ is uncountable.
Proof: Assume for the sake of contradiction it were countable, and let $f: \mathbb{N} \rightarrow[0,1]$ be onto (surjective)

| $n$ | $f(n)$ |
| :---: | :---: |
| 1 | $0 . d_{1}^{1} d_{2}^{1} d_{3}^{1} d_{4}^{1} d_{5}^{1} \ldots$ |
| 2 | $0 . d_{1}^{2} d_{2}^{2} d_{3}^{2} d_{4}^{2} d_{5}^{2} \ldots$ |
| 3 | $0 . d_{1}^{3} d_{2}^{3} d_{3}^{3} d_{4}^{3} d_{5}^{3} \ldots$ |
| 4 | $0 . d_{1}^{4} d_{2}^{4} d_{3}^{4} d_{4}^{4} d_{5}^{4} \ldots$ |
| 5 | $0 . d_{1}^{5} d_{2}^{5} d_{3}^{5} d_{4}^{5} d_{5}^{5} \ldots$ |

Construct $b \in[0,1]$ which does not appear in this table - contradiction!
$b=0 . b_{1} b_{2} b_{3} \ldots$ where $b_{i} \neq d_{i}^{i} \quad$ (digit $i$ of $f(i)$ )

## Uncountability of the reals

A concrete example of the contradiction construction:

| $n$ | $f(n)$ |
| :---: | :---: |
| 1 | $0.8675309 \ldots$ |
| 2 | $0.1415926 \ldots$ |
| 3 | $0.7182818 \ldots$ |
| 4 | $0.4444444 \ldots$ |
| 5 | $0.1337133 \ldots$ |

Construct $b \in[0,1]$ which does not appear in this table

- contradiction!



## Diagonalization

This process of constructing a counterexample by "contradicting the diagonal" is called diagonalization

