BU CS 332 – Theory of Computation

https://forms.gle/KujctosE3s84KLHX8

Lecture 14:

- Countability
- Uncountability / diagonalization
- Undecidable languages

Mark Bun October 27, 2022 Reading:

Sipser Ch 4.2

MW 6 deadline = Friday 11:59 PM

Last Time

Universal Turing machine

A recognizer for $A_{TM} = \{\langle M, w \rangle \mid TM \ M \text{ accepts input } w\}$...but not a decider

Today: Some languages, including $A_{\rm TM}$, are undecidable But first, a math interlude...

Countability and Diagonalization

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them

A set is countable if

- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers

Examples of countable sets

```
Ø
{0,1}
{0,1,2,...,8675309}
```

•
$$E = \{2, 4, 6, 8, ...\}$$

• $SQUARES = \{1, 4, 9, 16, 25, ...\}$
• $POW2 = \{2, 4, 8, 16, 32, ...\}$

$$|E| = |SQUARES| = |POW2| = |\mathbb{N}|$$

How to show that $\mathbb{N} \times \mathbb{N}$ is countable?

How to argue that a set S is countable

• Describe how to list the elements of S, usually in stages:

Ex: Stage 1) List all pairs
$$(x, y)$$
 such that $x + y = 2$
Stage 2) List all pairs (x, y) such that $x + y = 3$
...

Stage n List all pairs (x, y) such that $x + y = n + 1$
...

 (x, y) such that (x, y) such t

ullet Explain why every element of S appears in the list

Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage x + y - 1

• Define the bijection $f: \mathbb{N} \to S$ by f(n) =the n'th element in this list (ignoring duplicates if needed)

```
More examples of countable sets \{0,1\}^* = \{e, 0, 1, 00, 01, 10, 11\}
• {\langle M\rangle | M is a Turing machine} Choose ending < 7 s.t. < M7 = 30,15 for easy M
• \mathbb{Q} = \{ \text{rational numbers} \}
                   Save proof as INXIN contable
```

- If $A \subseteq B$ and B is countable, then A is countable
- If A and B are countable, then $A \times B$ is countable
- S is countable if and only if there exists a surjection (an onto function) $f: \mathbb{N} \to S$

Another version of the dovetailing trick

Ex: Show that $\mathcal{F} = \{L \subseteq \{0, 1\}^* \mid L \text{ is finite}\}\$ is countable

L
$$\subseteq$$
 \S 0,13 *) finite if it has a finite if of elements \S 0,11,100 \S is finite \S 0 n | $n \ge 0$ \S is not finite \S 4 = \S 4, \S 6 \S 3, \S 0 \S 3, \S 1 \S 3, ... \S 5

Droof 1) Define a further $C: \S$ 0,1,11 \S * \Longrightarrow \S 6.
$$C(\chi, \# \chi_2 \# ... \# \chi_n) = \S \chi_{1,1,2} \chi_n \S$$

I a bisychian
$$f: IN \rightarrow 30, I, #3$$

C is a sarrection (onto) => (C of) (n) = ((f(n)))

is a surrection from $IN \rightarrow Z$.

Proof 2 | 4 | L| = A of elevents in L.

e.g. $|\xi \in \delta, \delta, \delta| = 3$ e.g. $|\xi \in \delta, \delta| = 3$ e.g. $|\xi \in \delta, \delta| = 3$ e.g. $|\xi \in \delta| = 3$ E.g. $|\xi \in$

Stope 2 List all sets L

Short Stope 2 List all sets L

Short S.J. $|L| \le 2$ and $m(L) \le 2$ $\frac{1}{5}$

Claim: every finite language

Lappears in this list

let u= maze & ILI, m(L) &

Then Lappears in stage h

Store n: List all L

Store n: L

Store

f(i)= i'th thing enumerated in this

So what *isn't* countable?

Cantor's Diagonalization Method

Georg Cantor 1845-1918

- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...

Some praise for his work:

"Scientific charlatan...renegade...corruptor of youth" –L. Kronecker

"Set theory is wrong...utter nonsense...laughable"

-L. Wittgenstein

Uncountability of the reals

Theorem: The real interval [0, 1] is uncountable.

Proof: Assume for the sake of contradiction it were countable, and let $f: \mathbb{N} \to [0,1]$ be a bijection

n	f(n)	
1	$0.d_1^1d_2^1d_3^1d_4^1d_5^1$	decimal expansion of An)
2	$0.d_1^2 d_2^2 d_3^2 d_4^2 d_5^2$	d" = i'th digit of
3	$0 \cdot d_1^3 d_2^3 d_3^3 d_4^3 d_5^3 \dots$	f(n)
4	$0 . d_1^4 d_2^4 d_3^4 d_4^4 d_5^4 \dots$	
5	$0 . d_1^5 d_2^5 d_3^5 d_4^5 d_5^5 $	

Construct $b \in [0,1]$ which does not appear in this table – contradiction!

$$b = 0. b_1 b_2 b_3 \dots$$
 where $b_n \neq d_n^n$ (digit n of $f(n)$)

Uncountability of the reals

A concrete example of the contradiction construction:

n	f(n)	
1	6/f(1) 0.8675309	b=0.95952
2	bf fi) 0.1415926	
3	b+f(3) 0.7182818	
4	0.444444	
5	0.1337133	

Construct $b \in [0,1]$ which does not appear in this table – contradiction!

$$b=0.b_1b_2b_3...$$
 where $b_n \neq d_n^n$ (digit n of $f(n)$)

Diagonalization

This process of constructing a counterexample by "contradicting the diagonal" is called diagonalization

Structure of a diagonalization proof

Say you want to show that a set T is uncountable

- 1) Assume, for the sake of contradiction, that T is countable with bijection $f: \mathbb{N} \to T$
- (2) "Flip the diagonal" to construct an element $b \in T$ such that $f(n) \neq b$ for every n

```
Ex: Let b=0. b_1b_2b_3... where b_n\neq d_n^n (where d_n^n is digit n of f(n))
```

3) Conclude that f is not onto, which contradicts our assumption that f is a bijection

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a bijection $f: X \to P(X)$

What should we do?

- a) Show that for every $S \in P(X)$, there exists $x \in X$ such that f(x) = S
- Construct a set $S \in P(X)$ (meaning, $S \subseteq X$) that cannot be the output f(x) for any $x \in X$
 - c) Construct a set $S \in P(X)$ and two distinct $x, x' \in X$ such that f(x) = f(x') = S

Diagonalization argument

Assume a bijection $f: X \to P(X)$

x			
x_1			
x_2			
x_3			
x_4			
ŧ			

Diagonalization argument

Assume a bijection $f: X \to P(X)$ $/\exists \xi \ \chi_{i} \in f(\chi_{i})$?

X	$x_1 \in f(x)$?	$x_2 \in f(x)$?/	$x_3 \in f(x)$?	$x_4 \in f(x)$?	
x_1	Υ	N	Υ	Υ	
x_2	N	N »	Υ	Υ	
x_3	Υ	Υ	Υ	N	
x_4	N	N	Υ	N	
:					*•.

Define S by flipping the diagonal:

e S by flipping the diagonal:
$$x_{i} \in S \iff x_{i} \notin f(x_{i}) \xrightarrow{\mathcal{X}_{i}} f(x_{i}) \xrightarrow{\mathcal{X}_{i}}$$

Example

Example

Let
$$X = \{1, 2, 3\}, P(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}\}$$

Ex. $f(1) = \{1, 2\}, f(2) = \emptyset, f(3) = \{2\}$

x	$1 \in f(x)$?	$2 \in f(x)$?	$3 \in f(x)$?
1	YN	Y	N
2	2	NY	N
3	N	4	NY

Construct
$$S = \{2,3\}$$

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a bijection $f: X \to P(X)$

Construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$:

$$S = \{ x \in X \mid x \notin f(x) \}$$

If S = f(y) for some $y \in X$,

then
$$y \in S$$
 if and only if $y \notin S \not + \Rightarrow S \neq f(y)$ for any $y \in S$ if and only if $y \notin S \not + \Rightarrow S \neq f(y)$ for any $y \in S$

Undecidable Languages

Undecidability / Unrecognizability

Definition: A language L is **undecidable** if there is no TM deciding L

Definition: A language L is unrecognizable if there is no TM recognizing L

An existential proof

Theorem: There exists an undecidable language over $\{0, 1\}$ Proof:

Set of all encodings of TM deciders: $X \subseteq \{0, 1\}^*$

Set of all languages over $\{0, 1\}$:

a)
$$\{0, 1\}$$

b)
$$\{0,1\}^*$$

c)
$$P(\{0,1\}^*)$$
: The set of all subsets of $\{0,1\}^*$

d)
$$P(P(\{0,1\}^*))$$
: The set of all subsets of the set of all subsets of $\{0,1\}^*$

An existential proof

Theorem: There exists an undecidable language over $\{0, 1\}$ Proof:

Set of all encodings of TM deciders: $X \subseteq \{0,1\}^*$ Set of all languages over $\{0,1\}$: $P(\{0,1\}^*)$

There are more languages than there are TM deciders!

⇒ There must be an undecidable language

An existential proof

Theorem: There exists an unrecognizable language over $\{0, 1\}$ Proof:

Set of all encodings of TMs: $X \subseteq \{0, 1\}^*$

Set of all languages over $\{0, 1\}$: $P(\{0, 1\}^*)$

There are more languages than there are TM recognizers!

⇒ There must be an unrecognizable language

١

"Almost all" languages are undecidable

But how do we actually find one?