BU CS 332 – Theory of Computation

https://forms.gle/KujctosE3s84KLHX8

Lecture 14:

- Countability
- Uncountability / diagonalization
- Undecidable languages

Reading:

Sipser Ch 4.2

Mark Bun October 27, 2022

Last Time

Universal Turing machine

A recognizer for $A_{TM} = \{\langle M, w \rangle \mid TM \ M \text{ accepts input } w\}$...but not a decider

Today: Some languages, including $A_{\rm TM}$, are undecidable But first, a math interlude...

Countability and Diagonalization

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them

A set is countable if

- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers

Examples of countable sets

- Ø
- {0,1}
- {0, 1, 2, ..., 8675309}
- $E = \{2, 4, 6, 8, ...\}$
- $SQUARES = \{1, 4, 9, 16, 25, ...\}$
- $POW2 = \{2, 4, 8, 16, 32, \dots\}$

$$|E| = |SQUARES| = |POW2| = |\mathbb{N}|$$

How to show that $\mathbb{N} \times \mathbb{N}$ is countable?

(1, 1)

(2,1)

(3,1)

(4, 1)

(5, 1) ...

(1, 2)

(2, 2)

(3, 2)

(4, 2)

(5, 2) ...

(1,3)

(2,3)

(3,3)

(4,3)

(5,3) ...

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

٠.

How to argue that a set S is countable

• Describe how to list the elements of S, usually in stages:

```
Ex: Stage 1) List all pairs (x, y) such that x + y = 2
Stage 2) List all pairs (x, y) such that x + y = 3
...
Stage n List all pairs (x, y) such that x + y = n + 1
...
```

Explain why every element of S appears in the list

Ex: Any $(x, y) \in \mathbb{N} \times \mathbb{N}$ will be listed in stage x + y - 1

• Define the bijection $f: \mathbb{N} \to S$ by f(n) = the n'th element in this list (ignoring duplicates if needed)

More examples of countable sets

- {0,1} *
- $\{\langle M \rangle \mid M \text{ is a Turing machine}\}$
- $\mathbb{Q} = \{ \text{rational numbers} \}$
- If $A \subseteq B$ and B is countable, then A is countable
- If A and B are countable, then $A \times B$ is countable
- S is countable if and only if there exists a surjection (an onto function) $f: \mathbb{N} \to S$

Another version of the dovetailing trick

Ex: Show that $\mathcal{F} = \{L \subseteq \{0, 1\}^* \mid L \text{ is finite}\}\$ is countable

So what *isn't* countable?

Cantor's Diagonalization Method

Georg Cantor 1845-1918

- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...

Some praise for his work:

"Scientific charlatan...renegade...corruptor of youth" –L. Kronecker

"Set theory is wrong...utter nonsense...laughable"

-L. Wittgenstein

Uncountability of the reals

Theorem: The real interval [0, 1] is uncountable.

Proof: Assume for the sake of contradiction it were countable, and let $f: \mathbb{N} \to [0,1]$ be a bijection

n	f(n)
1	$0 . d_1^1 d_2^1 d_3^1 d_4^1 d_5^1$
2	$0 . d_1^2 d_2^2 d_3^2 d_4^2 d_5^2$
3	$0 . d_1^3 d_2^3 d_3^3 d_4^3 d_5^3$
4	$0 . d_1^4 d_2^4 d_3^4 d_4^4 d_5^4$
5	$0 . d_1^5 d_2^5 d_3^5 d_4^5 d_5^5$

Construct $b \in [0,1]$ which does not appear in this table – contradiction!

$$b = 0. b_1 b_2 b_3 \dots$$
 where $b_n \neq d_n^n$ (digit n of $f(n)$)

Uncountability of the reals

A concrete example of the contradiction construction:

n	f(n)
1	0.8675309
2	0.1415926
3	0.7182818
4	0.444444
5	0.1337133

Construct $b \in [0,1]$ which does not appear in this table – contradiction!

$$b = 0.b_1b_2b_3...$$
 where $b_n \neq d_n^n$ (digit n of $f(n)$)

Diagonalization

This process of constructing a counterexample by "contradicting the diagonal" is called diagonalization

Structure of a diagonalization proof

Say you want to show that a set T is uncountable

- 1) Assume, for the sake of contradiction, that T is countable with bijection $f: \mathbb{N} \to T$
- 2) "Flip the diagonal" to construct an element $b \in T$ such that $f(n) \neq b$ for every n

Ex: Let
$$b=0$$
. $b_1b_2b_3...$ where $b_n \neq d_n^n$ (where d_n^n is digit n of $f(n)$)

3) Conclude that f is not onto, which contradicts our assumption that f is a bijection

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a bijection $f: X \to P(X)$

What should we do?

- a) Show that for every $S \in P(X)$, there exists $x \in X$ such that f(x) = S
- b) Construct a set $S \in P(X)$ (meaning, $S \subseteq X$) that cannot be the output f(x) for any $x \in X$
- c) Construct a set $S \in P(X)$ and two distinct $x, x' \in X$ such that f(x) = f(x') = S

Diagonalization argument

Assume a bijection $f: X \to P(X)$

X			
x_1			
x_2			
x_3			
x_4			
ŧ			

Diagonalization argument

Assume a bijection $f: X \to P(X)$

X	$x_1 \in f(x)$?	$x_2 \in f(x)$?	$x_3 \in f(x)$?	$x_4 \in f(x)$?	
x_1	Υ	N	Υ	Υ	
x_2	N	N	Υ	Υ	
x_3	Υ	Υ	Υ	N	
x_4	N	N	Υ	N	
ŧ					٠٠.

Define S by flipping the diagonal:

Put
$$x_i \in S \iff x_i \notin f(x_i)$$

Example

Let
$$X = \{1, 2, 3\}$$
, $P(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$
Ex. $f(1) = \{1, 2\}$, $f(2) = \emptyset$, $f(3) = \{2\}$

X	$1 \in f(x)$?	$2 \in f(x)$?	$3 \in f(x)$?
1			
2			
3			

Construct S =

A general theorem about set sizes

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a bijection $f: X \to P(X)$

Construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$:

$$S = \{ x \in X \mid x \notin f(x) \}$$

If
$$S = f(y)$$
 for some $y \in X$,

then $y \in S$ if and only if $y \notin S$

Undecidable Languages

Undecidability / Unrecognizability

Definition: A language L is **undecidable** if there is no TM deciding L

Definition: A language L is unrecognizable if there is no TM recognizing L

An existential proof

Theorem: There exists an undecidable language over $\{0, 1\}$ Proof:

Set of all encodings of TM deciders: $X \subseteq \{0, 1\}^*$ Set of all languages over $\{0, 1\}$:

- a) $\{0, 1\}$
- b) $\{0,1\}^*$
- c) $P(\{0,1\}^*)$: The set of all subsets of $\{0,1\}^*$
- d) $P(P(\{0,1\}^*))$: The set of all subsets of the set of all subsets of $\{0,1\}^*$

An existential proof

Theorem: There exists an undecidable language over $\{0, 1\}$ Proof:

Set of all encodings of TM deciders: $X \subseteq \{0, 1\}^*$ Set of all languages over $\{0, 1\}$: $P(\{0, 1\}^*)$

There are more languages than there are TM deciders!

⇒ There must be an undecidable language

An existential proof

Theorem: There exists an unrecognizable language over $\{0, 1\}$ Proof:

Set of all encodings of TMs: $X \subseteq \{0, 1\}^*$

Set of all languages over $\{0, 1\}$: $P(\{0, 1\}^*)$

There are more languages than there are TM recognizers!

⇒ There must be an unrecognizable language

"Almost all" languages are undecidable

But how do we actually find one?

An Explicit Undecidable Language

Last time:

Theorem: Let X be any set. Then the power set P(X) does **not** have the same size as X.

- 1) Assume, for the sake of contradiction, that there is a bijection $f: X \to P(X)$
- 2) "Flip the diagonal" to construct a set $S \in P(X)$ such that $f(x) \neq S$ for every $x \in X$

3) Conclude that f is not onto, contradicting assumption that f is a bijection

Specializing the proof

Theorem: Let X be the set of all TM deciders. Then there exists an undecidable language in $P(\{0,1\}^*)$

- 1) Assume, for the sake of contradiction, that $L: X \rightarrow P(\{0,1\}^*)$ is onto
- 2) "Flip the diagonal" to construct a language $UD \in P(\{0,1\}^*)$ such that $L(M) \neq UD$ for every $M \in X$

3) Conclude that L is not onto, a contradiction

An explicit undecidable language

TM M			
M_1			
M_2			
M_3			
M_4			
:			

Why is it possible to enumerate all TMs like this?

- a) The set of all TMs is finite
- b) The set of all TMs is countably infinite
- c) The set of all TMs is uncountable

An explicit undecidable language

TM M	$M(\langle M_1 \rangle)$?	$M(\langle M_2 \rangle)$?	$M(\langle M_3 \rangle)$?	$M(\langle M_4 \rangle)$?		$D(\langle D \rangle)$?
M_1	Υ	N	Υ	Υ		
M_2	N	N	Υ	Υ		
M_3	Υ	Υ	Υ	N		
M_4	N	N	Υ	N		
:					••	
D						

 $UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \}$ Claim: UD is undecidable

An explicit undecidable language

Theorem: $UD = \{\langle M \rangle \mid M \text{ is a TM that does not accept on input } \langle M \rangle \}$ is undecidable

Proof: Suppose for contradiction, that TM D decides UD